IGF2 expression and β-catenin levels are increased in Frozen Shoulder Syndrome

Abstract

Purpose: Frozen Shoulder Syndrome is a fibrosis of the shoulder joint capsule that is clinically associated with Dupuytren's disease, a fibrosis of the palmar fascia. Little is known about any commonalities in the pathophysiology of these connective tissue fibroses. β-catenin, a protein that transactivates gene expression, and levels of IGF2 mRNA, encoding insulin-like growth factor-II, are elevated in Dupuytren's disease. The aim of this study was to determine if correlating changes in β-catenin levels and IGF2 expression are evident in Frozen Shoulder Syndrome.

Methods: Tissue from patients with Frozen Shoulder Syndrome and rotator cuff tear were obtained during shoulder arthroscopies. Total protein extracts were prepared from tissue aliquots and β-catenin immunoreactivity was assessed by Western immunoblotting. In parallel, primary fibroblasts were derived from these tissues and assessed for IGF2 expression by quantitative PCR.

Results: β-catenin levels were significantly increased in Frozen Shoulder Syndrome relative to rotator cuff tear when assessed by Western immunoblotting analyses. IGF2 mRNA levels were significantly increased in primary fibroblasts derived from frozen shoulder syndrome tissues relative to fibroblasts derived from rotator cuff tissues.

Conclusions: As in Dupuytren's disease, β-catenin levels and IGF2 expression are elevated in Frozen Shoulder Syndrome. These findings support the hypothesis that these connective tissue fibroses share a common pathophysiology.
Frozen Shoulder Syndrome (FSS) is a chronic fibrotic disorder of the shoulder joint capsule characterized by painful and restricted shoulder motion. This disorder affects an estimated 2% of adults, is frequently bilateral and can be resistant to therapeutic interventions. Despite its common occurrence, the underlying pathophysiology of this disorder remains ill-defined [1, 2]. Previous studies have suggested that FSS shares a similar patho-mechanism with Dupuytren’s disease (DD) [1], and that these two connective tissue disorders are clinically associated [3-13]. Levels of β-catenin, an established signaling component of the Wnt/frizzled pathway [14-16], have been shown to be increased in DD [17]. More recently, expression of IGF2, encoding insulin-like growth factor-II (IGF-II), has been shown to be increased in DD [18]. In this report, β-catenin levels and IGF2 expression were assessed in tissues and cells derived from the rotator cuff interval of patients with FSS and Rotator Cuff Tear (RCT) to determine if disease-associated changes in these molecules are also evident in FSS and RCT.

Materials and Methods

Tissue collection

Tissue sections were collected with approval of the Human Subjects Research Ethics Board (HSREB) at Western University from surgical specimens of patients undergoing shoulder arthroscopy for the treatment of either FSS or subacromial decompression for RCT. An arthroscopic punch was used to obtain tissue specimens from the rotator cuff interval immediately adjacent to the antero-superior arthroscopic portal from patients with FSS and RCT. Representative samples of these tissues were removed at the time of surgery and immediately transported to the laboratory. The tissues were either snap frozen in liquid nitrogen for total protein extraction or processed for primary fibroblast derivation.

Western immunoblotting

Total protein extracts were prepared from snap frozen tissue using modified RIPA buffer. Tissue lysate (25 μg) was subjected to Western blot analysis and β-catenin levels were assessed using an anti-β-catenin monoclonal antibody (clone 14, Transduction Laboratories, Lexington, KY). β-actin levels were assessed in parallel using an anti-β-actin antibody (Sigma, St Louis, MO) to normalize for variability in total protein loading. Antibody specific bands were visualized using enhanced chemiluminescence (ECL) and Kodak XLS film. Densitometry analysis was carried out using Scion Image software (Scion Corporation, Beta 4.0.2, Frederick, MD). Normalized measurements of β-catenin were plotted as the sample mean (β-catenin /actin) ratio ± standard error of the mean (SEM). Statistical analysis was performed using a paired t-test.

Primary fibroblast derivation and culture

Primary fibroblasts were isolated from FSS and RCT tissues using the same techniques as previously described for primary DD fibroblasts [19]. Cultures were maintained in α-MEM medium supplemented with 10% fetal bovine serum (FBS, Invitrogen Corporation, Carlsbad, CA) and 1% antibiotic-antimycotic solution (Sigma-Aldrich, St Louis, MO). All primary fibroblast cultures were assessed at the lowest passage number achievable up to a maximum of six passages, after which the cells were discarded. No changes in cell morphology, growth and viability attributable to serial passage were evident in these cells (data not shown).

Real Time PCR

Total RNA samples from primary fibroblasts were assessed for quality on an Agilent 2100 Bioanalyzer. High quality total RNA (2 μg) was reverse transcribed into cDNA first strand using the High-Capacity cDNA Archive Kit (Applied Biosystems, city, state) in accordance with the manufacturer’s instructions. TaqMan gene expression assays were used to measure IGF2 expression (Hs01005963_m1) relative to the RPLP0 (Hs99999902_m1) as an endogenous control gene. The ΔΔCt method was employed after confirmation of parallel PCR amplification efficiencies of the target and endogenous control on a Real-Time PCR ABI Prism 7500. PCR reactions were carried out under the following conditions: initial denaturation at 95°C for 5 min followed by cycles of denaturation (95°C for 15 sec), primer annealing (60°C for 1 min) and transcript extension (50°C for 2 min) for 45 cycles.

Results

β-catenin levels are increased in FSS relative to RCT

Western immunoblotting analyses for β-catenin and β-actin immunoreactivity were performed on total protein lysates of FSS and RCT tissues as described in the methods. The majority of samples derived from FSS exhibited increased levels of β-catenin relative to RCT tissues, which mostly expressed very low to undetectable levels of β-catenin, when normalized to β-actin levels as controls. Densitometry analysis confirmed a significant difference in β-catenin levels between FSS and RCT samples (p<0.01, Fig. 1).
IGF2 mRNA levels are increased in primary FSS fibroblasts relative to primary RCT fibroblasts

Quantitative (real time) PCR analyses for IGF2 mRNA levels and RPLP0 mRNA levels were performed on total RNA isolated from primary fibroblasts derived from FSS and RCT tissues as described in the methods. As shown in Fig 2, a significant (p<0.05) increase in IGF2 mRNA levels was evident in the primary fibroblasts derived from FSS tissues relative to the primary fibroblasts derived from RCT tissues when normalized to RPLP0 mRNA levels as controls.

Discussion

Increased β-catenin accumulation [17, 19] and IGF2 expression [18] have been previously identified in DD tissue and primary fibroblasts compared with controls from adjacent, phenotypically non-fibrotic palmar fascia. As FSS and DD are clinically associated [3, 20], we were interested to see if these characteristics were common to both connective tissue fibroblasts. Our findings indicate that increased IGF2 expression and β-catenin accumulation are also evident in FSS, supporting the hypothesis that these connective tissue fibroblasts share a common pathophysiology.

While β-catenin is best recognised as a component of the Wnt/frizzled signalling pathway, [15, 21], additional roles for β-catenin in the transforming growth factor (TGF)-β1 [22-24] and oxidative stress-activated [21] pathways have been described. β-catenin is also an integral component of adherens junctions [15, 25]; cell-membrane-associated structures that myofibroblasts use during cell to cell interactions to promote extracellular matrix contraction and remodelling during fibrosis development [26]. Increased β-catenin levels have been causatively linked to increased fibroblast proliferation in aggressive fibromatoses (desmoid tumor) [27, 28] and hypertrophic scar formation [22]. As these conditions share many molecular similarities with FSS and DD [18, 29], β-catenin is likely to play analogous fibroproliferative roles in these diseases. Western immunoblotting also revealed the presence of multiple molecular weight forms of β-catenin in FSS tissues, correlating with similar observations in DD tissues [17]. Whether these

FIGURE 1. β-catenin accumulation in Frozen Shoulder Syndrome. Tissue extracts were prepared from surgical samples of patients with either Frozen Shoulder Syndrome (FSS), or rotator cuff tear (RCT). (A) Tissue lysates (25 μg) were subjected to Western immunoblotting and total β-catenin levels were assessed using an anti-β-catenin monoclonal antibody. β-actin levels were assessed to normalize protein loading between samples. Antibody specific bands were visualized by ECL on Kodak XLS film. (B) Densitometric analysis of the ECL exposed film was carried out using Scion Image software and normalized measurements of β-catenin were plotted as the sample mean (β-catenin /actin) ratio ± standard error of the mean (SEM). (C) Statistical analysis using a paired t-test (p<0.01).
that bind and inactivate the type-I IGF receptor (IGFRI), the prevent FSS development. Humanized monoclonal antibodies may have potential as targets for therapeutic interventions to components of the same or overlapping signalling pathways. It is possible, therefore, that the increases in a process implicated in both cancer and nucleus during epithelial mesenchymal transition (EMT) [36]; β1 can independently induce fibroblast development [37-39]. It is possible, therefore, that the increases in cytoplasmic β-catenin degradation and/or ubiquitination remains to be investigated.

IGF2 encodes insulin-like growth factor-II (IGF-II); a peptide growth factor with structural and functional similarities to insulin. In contrast to its well-established roles in promoting cancer growth [30-33], relatively little is known about the roles of IGF-II in benign fibroproliferative diseases like FFS and DD. In addition to DD [18], IGF2 expression and IGF-II levels are reported to be increased in systemic sclerosis-associated pulmonary fibrosis [34]. IGF-II can act in combination with TGF-β1 signalling intermediates to promote myofibroblast development in vitro [35] and both IGF-II and TGF-β1 can independently induce β-catenin translocation to the nucleus during epithelial mesenchymal transition (EMT) [36]; a process implicated in both cancer and fibrosis development [37-39]. It is possible, therefore, that the increases in IGF2 expression and β-catenin accumulation in FSS may represent components of the same or overlapping signalling pathways.

When assessed from this perspective, IGF-II and β-catenin may have potential as targets for therapeutic interventions to prevent FSS development. Humanized monoclonal antibodies that bind and inactivate the type-I IGF receptor (IGFRI), the primary IGF-II signaling receptor, are currently undergoing clinical trials to prevent IGF-II signaling in cancers [40-42]. These or similar interventions, potentially combined with TGF-β1 signaling suppressors [43], may have utility for preventing fibrosis development in FSS, DD and other fibroproliferative diseases that exhibit increased IGF2 expression and β-catenin accumulation. A detailed understanding of their roles in fibrosis may also allow us to harness these factors to enhance tissue repair in conditions characterized by a loss of cell proliferation and/or viability, such as rotator cuff disease [44, 45].

Conclusion

This is first report of increased IGF2 expression and β-catenin accumulation in FSS. These findings correlate with our previous reports in DD and support the hypothesis that these connective tissue fibres have a common molecular pathophysiology. A greater understanding of these molecular pathways may enhance therapeutic interventions for FSS and may provide further insights into disorders that are characterized by abnormal healing.

Acknowledgments

This study was supported by the Canadian Orthopedic Foundation (KJF), and by grants from the Plastic Surgery Education Fund (235927) and the Canadian Institutes of Health Research (Operating Grant MOP 84247, BSG, DBO). The authors declare that they have no financial or other conflicts of interest to disclose in relation to this report.

References


