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Abstract
Purpose of Review This review provides a summary of recent
insights into the role of the local white adipose tissue (WAT) in
systemic sclerosis.
Recent Findings Adipocytes located in an interfacial WAT
area adjacent to fibrotic lesions have an intermediate pheno-
type and special properties implicated in fibrotic pathology in
systemic sclerosis (SSc). The important role of these cells is
recognized in different pathologies, such as wound healing,
psoriasis, breast cancer, and prostate cancer. Additionally,
both immature and mature adipocytes are involved in the ap-
pearance of fibroblast-like cells but exhibit different pheno-
types and synthetic properties.
Summary Adipocytes from interfacial WAT adjacent to the
fibrotic area in SSc are phenotypically different from bulk
adipocytes and are involved in pathogenesis of SSc.
Immature and mature adipocytes from this WAT layer differ-
entiate into various types of fibroblast-like cells, making the
local ratio of immature to mature adipocytes in interfacial
WAT of particular importance in SSc pathogenesis.

Keywords Systemic sclerosis . Interfacial white adipose
tissue .Myofibroblast . Immature adipocytes . Mature
adipocytes . Dermal adipocytes . Adipocyte-myofibroblast
transition

Introduction

Systemic sclerosis (SSc) is an autoimmune rheumatic disease
with an incompletely elucidated pathogenesis. Clinical mani-
festations of SSc include the development of fibrotic lesions in
the skin and internal organs [1, 2]. However, the initial events
leading to the appearance of myofibroblasts that are responsi-
ble for these lesions remain a matter of debate. The main
reason for this event is that myofibroblasts can originate from
different cells, including fibroblasts, epithelial and endothelial
cells, pericytes, and adipocytes [3]. The relative weight of
these pathways in different fibrotic lesions in SSc is unknown.

Increasing evidence suggests that white adipose tissue (WAT)
is involved in the development of fibrotic lesions in SSc. Such
involvement was first hypothesized and investigated at the sys-
temic level. However, serum levels of different adipokines dem-
onstrated no distinct correlations with SSc. Some authors report-
ed no difference between patients with SSc and healthy controls
[4], whereas others reported reduced serum adiponectin levels
only in diffuse but not in limited SSc [5]. The coefficients of
variation for serum levels of adipokines in SSc are generally
high, indicating that the investigated groups are heterogeneous,
and various additional hidden parameters are potentially primar-
ily responsible for their systemic expression.

Recently, the main interest in this field shifted to the role of
adipocytes that are locally adjacent to the lesional tissue.
Furthermore, we generally name this adipose tissue “interfacial
WAT,” thus differentiating it from the bulk WAT at the same
location. In this review, we discuss recent insights in this field.

Experimental Findings Supporting the Involvement
of Interfacial WAT in Fibrosis

The idea that interfacial WAT is involved in fibrosis is sup-
ported by multiple experimental findings. First, the
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appearance of dermal fibrosis is generally connected to some
atrophy of the adjacent adipose tissue that generally occurs
before the onset of fibrosis. Correlation of these two processes
can be observed not only after bleomycin injections [6, 7••]
but also after the application of different physical factors, in-
cluding chronic UV irradiation [8, 9]. This effect is also ob-
served in different knockout models, e.g., in the urokinase-
type plasminogen activator receptor (uPAR)-deficient mice:
uPAR attenuates adipocyte differentiation, whereas uPAR−/−

mice demonstrate significant dermal fibrosis accompanied by
a reduction of dermal WAT (dWAT) [6].

Second, immature and mature adipocytes have limited mi-
gration capacity in vivo [10]; thus, any direct interaction be-
tween adipocytes and other cells appears to be spatially limited
to several cell layers. However, very recently, it was reported
that adipose stromal cells can be mobilized fromWAT through
the mechanism of chemotaxis involving different chemokines
[11•]. At the same time, these chemokines can be actively se-
creted by myofibroblasts [12], which not only increases the
effective interaction range but also produces a forced flow of
immature adipocytes into the fibrotic area. Moreover, various
chemokines promote the phenotypic conversion of
myofibroblasts and the development of prostatic fibrosis [13].

Third, several recent results demonstrated a correlation be-
tween microRNA (miR)-155 and the appearance of fibrotic
lesions in SSc. On the one hand, miR-155 is involved in SSc
pulmonary fibrosis [14•]. Moreover, miR−/− mice develop sig-
nificantly milder bleomycin-induced pulmonary fibrosis [14•]
and are even resistant to bleomycin-induced skin fibrosis [15•].
On the other hand, high levels of miR-155 suppress adipogenic
differentiation and keep preadipocytes in an undifferentiated
state [16, 17], thus inhibiting adipogenesis. Interestingly,
miR-155 can be stimulated by transforming growth factor β1
(TGF-β1) [17], which is a known fibrotic promoter. Such a
mechanism should have a spatially short-range character and
thus be connected to adjacent and not systemic WAT.

Fourth, the involvement of adjacent adipose tissue was
recently recognized in different pathologies in addition to
SSc, including wound healing [18], psoriasis [19], and pros-
tate cancer [20].

Altogether, the adipocytes located near the interface with
fibrotic lesions should have some special properties involved
in fibrotic pathology. Moreover, significant differences should
exist in the role of immature and mature adipocytes in this
process.

Transformation of Adipocytes Into Fibroblast-Like Cells

Fibroblast-like cells appear not only through differentiation of
adipose-derived stem cells (ADSCs) but also from mature ad-
ipocytes that undergo phenotypic transformation. Replacement
of the subcutaneous WAT (sWAT) by connective tissue in SSc
was likely first described in [21], where it was also suggested

that this process is responsible for the observed skin induration.
It was subsequently demonstrated that acute mechanical or
thermic injury to adipose tissue causes a quick phenotypic
transformation of the mature adipocytes into fibroblast-like
cells with a primitive phenotype [22]. Moreover, dedifferentia-
tion of mature adipocytes into fibroblast-like cells surprisingly
produced a highly phenotypically homogeneous cell popula-
tion compared with ADSCs [23•].

Furthermore, the thickness of the superficial WAT layer in
SSc murine skin decreases with progression of dermal fibrosis
[24, 25]. Induction of SSc in a murine model through
bleomycin injections suppresses adipogenesis in ADSCs and
simultaneously increases the expression of TGF-β1 [26].
Finally, adipocytes undergo a direct adipocyte-myofibroblast
transition, and this transition involves the adiponectin-positive
intradermal progenitors from the interfacial WAT layer adja-
cent to the dermis, i.e., the dermal adipocytes [7••].

This step-by-step process prompted us to conclude that
adipocytes located near the dermis/sWAT interface are in-
volved in cutaneous fibrosis.

Dermal Adipocytes in Cutaneous Fibrosis

Interfacial WAT in dermis is presented by dermal adipocytes,
which are the fat cells located at the dermis/sWAT interface
where they produce the layered structures in rodents and the
typical cone-like structures around the pilosebaceous units
that penetrate into the sWAT in humans [27•]. Compared with
rodents, the cone-like structure of dWAT in humans provides a
significantly increased interface between dermal adipocytes
and other components of the dermis.

Skin histology reveals a correlation between the presence
of such dermal cones and body areas that are typically suscep-
tible to hypertrophic scarring [28, 29]. Over the past few years,
it was shown that dermal adipocytes are involved in different
processes, including wound healing, hair follicle cycling, pro-
tection against skin infection, homeostatic temperature regu-
lation, appearance of different skin lesions, and skin aging (see
recent reviews in [9, 27•, 30]). To highlight their special prop-
erties, dermal adipocytes are even grouped into a special
dWAT depot [31, 32].

It was assumed that dermal adipocytes are phenotypically
different from adipocytes located in the bulk of sWAT [27•].
These cells indeed demonstrate unusually high turnover rates
for adipocytes that are comparable with characteristic times of
wound healing [18] and hair follicle cycling [33] but not with
half-renewal times of 10 years, which are reported for the bulk
abdominal adipocytes [34]. Additionally, these cells demon-
strate high phenotypic flexibility that may be connected to
their intermediate phenotype, which can be compared with
an intermediate adipo-epithelial phenotype observed in adipo-
cytes from the mammary gland during and after pregnancy
[35]. The existence of such intermediate phenotype
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corresponds well with the observed dedifferentiation of ma-
ture adipocytes into the fibroblast-like “stem” cells exhibiting
pronounced multi-lineage potential in vitro [23•].

Local thickness of the dWAT layer is mainly dependent on
the number and volume of mature dermal adipocytes. This
thickness varies both temporally and spatially, thus making
the skin properties only quasi-constant [36]. This thickness
is significantly modulated during chronological and photo-
induced skin aging [9], follows the hair follicle cycle [36],
and demonstrates quick reactions for different physical and
pharmacological stimuli [27•]. Different temporal and spatial
modifications of dWAT were described in various murine
knockout models [9].

Main Pathways Involved in the Appearance
of Myofibroblasts in Dermal Fibrosis

Synthetically active myofibroblasts can appear from resident
fibroblasts through fibroblast-myofibroblast transition (FMT)
[37], pericytes [38], from epithelial cells through epithelial-
mesenchymal transition (EMT) [39], from endothelial cells
through endothelial-mesenchymal transition (EndMT) [40],
and from some other sources [3]. Most, if not all, of these
processes are considered reversible. The reversibility of
FMT [41], EMT [42], and EndMT [43] transitions were re-
ported both in vitro and in vivo. Moreover, it was proposed
that the same cells can undergo multiple rounds of back and
forth transformations, thus demonstrating high phenotypic
flexibility [42].

Although atrophy of the adjacent adipose tissue generally
precedes the appearance of dermal fibrosis, it is natural to assume
that this effect is connected to the production of myofibroblasts
from some cells present in adipose tissue. Recently, it was re-
ported that myofibroblasts are produced from adiponectin-
positive intradermal progenitors. This process was confirmed
by adipocyte phenotype investigations ex vivo and is termed
adipocyte-myofibroblast transition (AMT) [7••]. This pathway
demonstrates surprisingly rapid dynamics. Twenty-four hours
after stimulation with TGF-β1, dermal adipocytes were in a
transition state and expressed both perilipin and alpha smooth
muscle actin (α-SMA) markers, thus demonstrating an interme-
diate phenotype. This finding clearly limited the pool of adipo-
cytes involved in myofibroblast appearance to dWAT. Cell fat
mapping revealed that the majority of the myofibroblasts accu-
mulated in dermal fibrosis originate from dermal adipocytes
[7••]. This information also answers the question about the
weighting of different pathways in the local appearance of
myofibroblasts in dermal fibrosis. Although these results were
obtained in mice, it can be strongly assumed that similar behav-
iors are noted human dermal lesions in SSc.

Shortly afterwards, it was reported that resistin-like mole-
cule α (RELMα/FIZZ1) triggers dedifferentiation of adipo-
cytes and induces α-SMA expression in these cells [44],

suggesting that RELMα/FIZZ1 is involved in AMT [44,
45]. Interestingly, FIZZ1 knockout mice treated with
bleomycin exhibit significantly impaired pulmonary fibrosis
[46], which is another typical manifestation of SSc. It should
be noted that mature adipocytes can be an important source of
FIZZ1 in vivo [45], and their appearance in the wound under
hypoxic conditions promotes hypertrophic scarring given that
this mitogenic factor is generally hypoxia mediated. The same
is true for the development of dermal fibrosis in SSc.
However, to induce the AMT, the skin environment should
be hypoxic immediately before the appearance of dermal fi-
brosis. Whereas fibrotic skin in SSc indeed demonstrates se-
vere hypoxia [47], the question whether hypoxic skin serves
as a necessary condition for AMT should be investigated.

To the best of our knowledge, differentiation of
myofibroblasts into adipogenic cells (MAT), which would
be the reverse process to AMT, was only reported in vitro to
date [48•]. However, such reversibility in vivo can be as-
sumed. As discussed in [27•], AMT is responsible for the
disappearance of mammary adipocytes during lactation; in
this case, the reappearance of adipocytes after involution of
milk-producing lobules is likely connected to MAT.

Recently, it was shown thatβ-catenin stabilization in fibro-
blasts from the lower dermis leads to a morphological modi-
fication that appears to be typical for the Wnt/β-catenin path-
way: reduction of dWAT with simultaneous induction of der-
mal fibrosis [49, 50•]. β-catenin can be simultaneously acti-
vated in different fibroblast lineages performing distinct func-
tions [51]. In this context, transgenic mice expressing Wnt-
10b demonstrate typical loss of dWAT preceding the onset of
myofibroblast accumulation and dermal fibrosis [52].
Moreover, blockade of the Wnt/β-catenin pathway attenuates
bleomycin-induced fibrosis [53]. Although negative regula-
tion of TGF-β1-induced myofibroblasts appearance was re-
ported only for FMT [54], this pathway seems to be of more
universal physiological importance and is also potentially in-
volved in AMT.

Correlation Between dWATand Dermal Fibrosis

Given that dermal fibrosis is primarily connected to AMT, a
correlation between dWAT properties and the severity of der-
mal fibrosis likely exists. Influence of the mouse strain on the
severity of dermal fibrosis in a bleomycin-induced model was
investigated in five common strains (B10.A, C3H/HeJ,
C57BL/6J, DBA/2, and BALB/c) in 6-week-old female mice
[55]. Histological examination revealed considerably more
prominent dermal fibrosis in B10.A and C3H/HeJ compared
with the other three strains. Later, this study was repeated in
female and male BALB/c, C57BL/6, and DBA/2 mice [56].
BALB/c mice produced more severe dermal fibrosis com-
pared with the other two strains, inducing the greatest number
of myofibroblasts in the skin. The recruitment of these cells in
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the C57BL/6 strain was greater than 50% reduced compared
with that in BALB/c mice.

Different mouse strains have very different dWAT layers
[9] and thus can generally demonstrate different AMT reac-
tions. The dWAT layer is most pronounced in B10.A and
C3H/HeJ strains followed by BALB/c; however, it is much
thinner in C57BL/6J and DBA/2 mice [55]. This finding can
explain the different numbers of recruited myofibroblasts ob-
served in various strains [56]. At the same time, dWAT inmice
is a highly dynamic system that is tightly connected to the hair
follicle cycle and demonstrates strong thickness variations that
are different in various strains and should be assumed to also
be gender dependent [9, 57]. Thus, a simple static comparison
of dWAT thicknesses in different strains may be insufficient to
make a reliable conclusion.

Additional results obtained in [56] revealed sexual dimor-
phism in bleomycin-induced dermal fibrosis, which was much
more pronounced in males than in females. Although the ab-
solute numbers of myofibroblasts accumulated in dermal le-
sions were strain dependent, myofibroblasts were up to two-
fold increase in males in every strain. At first glance, this
finding appears to be surprising given that the thickness of
dWAT demonstrates pronounced sexual dimorphism at least
in rodents [58] and is significantly thicker in female mice. It
seems natural to assume that the larger reservoir of dermal
adipocytes can provide more effective recruitment of
myofibroblasts. Although dWAT thickness mainly reflects
the number and volume of mature adipocytes, the smaller
adiponectin-positive progenitors are mainly involved in
AMT [7••]. Gender differences in the ratio immature/mature
adipocytes in dWAT are unknown.

These findings demonstrate that dermal adipocytes should
play an important role in dermal fibrosis and are potentially
responsible for the appearance of myofibroblasts in lesional
skin. Moreover, the results obtained in [11•] suppose that im-
mature adipocytes undergo chemoattraction to the lesional
area. In addition, the AMT pathway might be of more general
pathophysiological importance appearing in different types of
fibrosis and thus being one of the initial pathophysiological
steps in SSc. Consequently, it can be assumed that this mech-
anism should appear in other types of fibrosis typical for SSc,
including pulmonary fibrosis.

AMT in Pulmonary Fibrosis

Given that dermal and pulmonary fibroses have similar path-
ophysiologies and both involve the AMT, it can be assumed
that lipofibroblasts play the role of dermal adipocytes in pul-
monary fibrosis. These cells are located in the alveolar inter-
stitium, involved in surfactant production [59], and can be
recognized by their characteristic lipid droplets. Whereas lung
lipofibroblasts are well documented in rodents, their existence
in humans is a topic of controversy. Some authors reported the

identification of lung lipofibroblasts in humans [60], whereas
others failed to confirm these results [61, 62].

Lipofibroblasts have an intermediate adipo-epithelial phe-
notype [60] similar to that of adipocytes in the mammary
gland during pregnancy [35]. This finding should be much
more than a simple coincidence given that cells with an
adipo-epithelial phenotype in the mammary gland are highly
positive for Elf5, which is a master regulator of alveologenesis
[35]. Comparing lipofibroblasts with lung myofibroblasts
demonstrated that lipofibroblasts have reduced expression of
the platelet-derived growth factor receptor-α (PDGFRα)
gene, approximately twofold reduced α-SMA expression,
and high expression of the G0–G1 switch 2 gene, which is
typical for mature adipocytes where it is known to be required
for the development of lipid droplets [63]. Additionally,
rosiglitazone inhibits α-SMA expression in PDGFRα+ lung
fibroblasts, suggesting that the activation of PPARγ may pro-
mote an adipo-epithelial phenotype typical of lipofibroblasts
but not the myofibroblast phenotype [64].

These two phenotypes do not exist separately from each
other, and transdifferentiation of lipofibroblasts into
myofibroblasts is documented in vitro [65]. This transition is
analogous to AMT found in dermal fibrosis and is the key
event in bronchopulmonary dysplasia [65]. Such a transition
can be induced by different insults, such as hyperoxia, trauma,
and infection, and leads to failed alveolarization, suggesting
that lipofibroblasts play an important role not only in lung
development but also in injury repair.

Thus, transdifferentiation of lipofibroblasts into
myofibroblasts in pulmonary fibrosis appears to be a very
similar process to AMT originally described in dermal fibro-
sis. From this point of view, the “adipocyte”-myofibroblast
transition is the universal process responsible for the appear-
ance of different types of fibrosis in SSc. In addition, “adipo-
cyte” should be understood as a chimeric cell with some in-
termediate and variable phenotypes.

What Can We Learn From the Role of Adipocytes
in Cancer Invasion?

Breast cancer demonstrates a characteristic dense collagenous
stroma. It is widely accepted that cancer-associated fibroblasts
(CAFs) are involved in stroma production [66]. It was hypoth-
esized that peritumoral mature adipocytes adjacent to the front
between the malignant and healthy tissue undergo dedifferen-
tiation, producing first the so-called cancer-associated adipo-
cytes (CAAs) and then the fibroblast-like cells from these
CAAs [67•]. This transformation occurs through the produc-
tion of at least one intermediate fibroblast-like phenotype,
which was named “adipose-derived fibroblast” (ADF) [67•].
These intermediate cells express fibronectin, collagen I, and
the CAF marker FSP-1, but not α-SMA. Thus, these cells are
phenotypically different from myofibroblasts [68]. The
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generation of this phenotype is dependent on activation of the
Wnt/β-catenin pathway.

Remarkably, mature adipocytes transform into ADF both
in vitro and in vivo, and this transformation is morphological-
ly connected with appearance of small adipocytes and elon-
gated cells containing multiple small droplets. Such morpho-
logical features indicated that this intermediate phenotype can
be connected with “beiging” of white adipocytes. Under prop-
er conditions, human sWATcan indeed demonstrate the inten-
sive beiging effect. Approximately 50% of omental adipo-
cytes from patients with pheochromocytoma contain
multilocular cells expressing UCP1 [69]. Transdifferentiation
of white-to-beige adipocytes was also reported in breast can-
cer [70]. This idea is further supported by a recent finding that
depletion of white adipocyte progenitors can induce the
beiging effect [71•]. Recently, it was also demonstrated that
burn trauma causes progressive beiging of sWAT adipocytes
located underneath the burn wound [72].

In contrast, under the influence of tumor-derived factors,
ADSCs can differentiate into another CAF subpopulation [73,
74]. These CAFs express a typical α-SMA marker and func-
tion in a similar manner to myofibroblasts in wound healing
[75]. This fraction is especially important in breast cancer.
Enhancement of myofibroblast content in mammary adipose
tissue increases its ECM stiffness, whereas such increased
stiffness through a positive feedback further promotes
myofibroblast differentiation [76]. This process plays a pivotal
role in cancer progression [77]. Moreover, adipose stromal
cells are the component of the tumor microenvironment that
promotes tumor progression, and depletion of these cells in-
hibits tumor growth [78]. In addition, it is actually not known
whether the ADF can further differentiate into typical
myofibroblasts.

Although this item was not investigated properly, it can be
assumed that similar processes should occur in dermal fibro-
sis. The appearance of fibrosis should be dependent on the
ratio of immature to mature adipocytes in interfacial dWAT,
which can be modulated by different internal and external
factors. In this context, it should be noted that bleomycin
suppresses adipogenesis in ADSCs [26]; thus, this treatment
can shift the ratio of immature to mature adipocytes to the
immature pool. In addition, CAAs with an intermediate phe-
notype in breast cancer should be different from intermediate
adipocytes expressing α-SMA in dermal fibrosis [7••]. This
finding reiterates the chimeric nature of adipocytes, especially
in the interfacial area of corresponding WAT [27•].

Immature and Mature Adipocytes Produce Different
Fibroblast-Like Cells

All of these results lead to a general conclusion that adipose-
derived progenitors and mature adipocytes should produce
different types of fibroblast-like cells. Immature and mature

adipocytes exhibit different levels of cytokine expression and
drive stem cell signaling in breast cancer cells [79]. Moreover,
ADSCs and mature adipocytes differently impact the differ-
entiation status of normal and cancerous breast epithelial cells
[80]. In this context, it should be mentioned again that imma-
ture adipocytes are subject to chemoattraction to the areas
containing myofibroblasts [11•], which can significantly in-
crease their motility. These findings make the ratio of imma-
ture to mature adipocytes of particular interest in cancer pro-
gression and fibrosis.

It should be noted that this ratio is not constant and is
increased in obesity. Moreover, high local expression of
TNF-α suppresses adipocyte maturation, increasing the
weight of immature adipocytes in the total adipogenic popu-
lation [79], thus also shifting the weight of different pathways
involved in the production of myofibroblasts.

This important item can be illustrated using the recent re-
sults obtained for bone morphogenetic protein (BMP), which
is the antagonist of TGF-β. BMP signaling is significantly
decreased upon bleomycin exposure. In addition, endogenous
activation of BMP reduces pulmonary fibrosis [81]. In con-
trast, BMP4 is induced in human preadipocytes undergoing
differentiation [82], regulates the commitment of adipose pre-
cursor cells into the white adipocyte lineage, and can even
activate the development of the beige phenotype in human
precursor cells [83]. Consequently, it can be assumed that
BMP should increase the number of differentiating adipo-
cytes, thus reducing the probability that the pathway is con-
nected to the production of myofibroblasts.

Dermal fibroblasts also demonstrate significant spatial
phenotypic variations [84], which are connected not only
to microenvironment of these cells but also to different
origins of their progenitors. Fibroblasts from deeper
dermis adjacent to interfacial WAT express more α-SMA
markers [85] and thus should contribute more to hypertrophic
scarring. These phenotypic differences are gradually
dependent on the depth in the dermis, producing a “gradient”
of cell phenotypes. In addition, papillary fibroblasts can
differentiate into reticular fibroblasts [86], which demon-
strates the flexibility of different fibroblast phenotypes.
Interfollicular and follicular epidermal cells are also highly
heterogeneous. Sharing a common basal-epidermal gene
module, these cells simultaneously demonstrate high spatial
phenotypic diversity [87].

If immature adipocytes are mainly involved in the produc-
tion of synthetic active myofibroblasts and the mature adipo-
cytes transform into less synthetically active fibroblast-like
cells, the local ratio of immature to mature adipocytes should
be more carefully investigated in dermal fibrosis and other
SSc pathologies. In this context, more severe bleomycin-
induced dermal fibrosis is observed in male compared with
female mice [55] and is potentially connected to the higher
content of immature adipocytes in males. From this point of
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view, atrophy of the adipose tissue adjacent to the fibrotic area
should be mainly connected to reduction of the number and
volume of mature adipocytes and thus should not be a reliable
indicator of the severity of dermal fibrosis.

Conclusions

Local WAT depots are involved in different pathological
processes, including psoriasis, different types of cancer,
wound healing, and fibrosis. There is increasing evidence that
the adipocytes located near the surface of these depots should
have phenotypical characteristics and physiological properties
that differ from the classical adipogenic phenotype known for
bulk sWAT adipocytes. Cells from the interfacial WAT layer
adjacent to fibrotic lesions often demonstrate intermediate
phenotypes, expressing the marker characteristic both for
adipocytes and fibroblasts. This finding is not very surpris-
ing—given that these cells should simultaneously interact
with classical fibroblasts and classical adipocytes in contrast
to the bulk adipocytes.

Although the WAT depots containing these cells differ
in dermal and pulmonary fibrosis, the pathophysiological
mechanisms of fibrosis in these two diseases appear to be
similar. This finding points to the general involvement of
adipocytes from interfacial WAT in SSc. Given that the
subpopulations of adipocytes in such WAT depots are
highly heterogeneous and that the immature and mature
adipocytes utilize different pathways in the production of
fibroblast-like cells and different migration properties, the
structure and content of these adipogenic subpopulations
in interfacial WAT depots in SSc should be investigated in
more detail in the future experiments.
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