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Abstract  

A Systems approach to understanding Dupuytren’s Disease, March 2011 
Samrina Rehman, PhD, The University of Manchester  
  
Introduction: Dupuytren’s disease (DD) is an ill-defined fibroproliferative disorder affecting the palms 
of the hands of certain patient groups. Whether changes in DD fibroblasts are due to genetic 
alterations alone or related to metabolic dysregulation has not yet been investigated.  
Hypotheses: 1. DD is a disease of several networks rather than of a single gene. 2. DD may be 
investigated more effectively by employing systems biology.  3. Strict definition of cell passage number 
is important for the revelation of any DD phenotype.  4. Some of the differences between DD and 
healthy tissues reside in a difference in their respiratory metabolism. 5. Any such differences are akin 
the Warburg effect noted for tumour cells in the literature.  
Methods:  We induced hypoxia in healthy and disease cells to test whether the difference in disease 
cell types and healthy is the same as the difference in control fibroblasts cultured in normoxia and 
hypoxia. We investigated both at the metabolic level (intracellular and extracellular) and at the 
transcript level. This study also employed Fourier transform infrared spectroscopy to permit profiling of 
cells: (1) DD cords and nodules against the unaffected transverse palmar fascia (internal control), (2) 
those (1) with carpal ligamentous fascia (external controls) (3) those in (1) against DD fat surrounding 
the nodule, and skin overlying the nodule. We then compared metabolic profiles of the above to 
determine the effect of serial passaging by assessment of reproducibility. Subsequently, a novel 
protocol was employed in carefully controlled culture conditions for the parallel extraction of the 
metabolome and transcriptome of DD-derived fibroblasts and control at normoxic and hypoxic 
conditions to investigate this hypothesis. Gas chromatography-mass spectrometry combined with 
microarrays was employed to identify metabolites and transcript characteristic for DD tissue 
phenotypes. The extracellular metabolome was also studied for a selected subset. The metabolic and 
transcriptional changes were then integrated employing a network approach. 
Results: Carefully controlled culture conditions combined with multivariate statistical analyses 
demonstrated metabolic differences in DD and unaffected transverse palmar fascia, in addition to the 
external control. Differences between profiles of the four DD tissue phenotypes were also 
demonstrated. In addition early passage (0-3) metabolic differences were observed where a clear 
separation pattern in clusters was observed. Subsequent passages (4-6) displayed asynchrony, losing 
distinction between diseased and non-diseased sample phenotypes. A substantial number of 
dysregulated metabolites involved in amino acid metabolism, carbohydrate metabolism and also 
metabolism of cofactors and vitamins including downregulated cysteine and aspartic acid have been 
identified from the integrative analyses. Metabolic and transcriptional differences were revealed 
between fibroblast cell samples (passage number 3) cultured in 1% and 21% oxygen. The hypothesis 
that the difference in disease and healthy cells maybe akin to the differences in healthy cells in 
normoxia and hypoxia was rejected as only a very small number of significant molecules from these 
studies coincided in perturbed fascia and disease samples. No lactic acid was observed and little 
difference in the pyruvate concentrations. Yet, upon perturbation several of these transcripts and 
metabolites involved in the afore-mentioned pathways were significantly dysregulated.   
Conclusion: Early, but not late, passage numbers of primary cells provide representative metabolic 
and transcript fingerprinting for investigating DD. A unique parallel analysis of transcript and metabolic 
profiles of DD fibroblasts and control, enabled a robust characterization of DD and correlation of 
parameters across the various levels of systemic description. The tools that should facilitate our 
understanding of these complex systems are immature, but the pleiotropy of the difference between 
health and DD tissue suggest the aetiology of a network-based disease. 
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Chapter 1 

Introduction 

This Chapter provides an introduction to the thesis and the motivation to do this research. 

The study focuses on bringing together two disparate fields; Dupuytren‟s disease (DD) and 

Systems Biology (SB). Approximately 180 years have elapsed, since the first literature 

reference on DD. Conventional research methods have continued to investigate the causes 

underlying DD formation and progression yet has not identified the precise 

aetiopathogenesis of this disease. Single gene approaches have not delivered for DD, and 

DD is a complex disease requiring network analysis. With SB approaches becoming 

increasingly popular in cancer research, it is timely to implement a novel approach where the 

two fields may now cross-fertilise. We first review (1.2; Appendix A) how DD may be a 

network disease, such that a SB approach may help understanding the former. In the latter 

part of this Chapter research objectives of this study (1.3) and the workflow (1.4) to 

implement the strategy used to test the hypotheses which follow in later chapters is outlined. 

Project aims are listed in 1.5. 

 

1.1 About this work 

1.1.1 Motivation 

Dupuytren‟s disease (DD) is a benign fibroproliferative tumour of unknown 

aetiopathogenesis affecting the palm of the hand, which often causes progressive, permanent 

contracture of the digits [1]. Surgical treatment of DD is symptomatic and associated with a 

high rate of recurrence which in some cases leads to amputation of the involved digits [2]. 

Advanced understanding of the mechanisms involved could lead to more-effective and 
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perhaps less invasive therapies. The principal clinical deformity of DD is characterised by a 

slowly progressive and irreversible flexion of the fingers as a result of decreased distance 

between the origin and insertion of the palmar fascia. The slowly progressive shortening of 

the affected digits is termed a contracture [3]. Pathogenesis of DD is characterised by the 

varying proliferative potential of myofibroblasts, (specialised fibroblasts expressing α-

smooth muscle actin (α-SMA)).   

The DD process is described by macroscopical investigations of the affected area that 

demonstrate phenotypic differences between two structurally distinct fibrotic elements (i.e. 

the nodule and the cord).  The nodule is thought to be involved in the most biologically 

active phase of the disease, characterised by soft-tissue masses containing a dense population 

of fibroblasts, which are largely myofibroblasts.  On the contrary, the cord is relatively 

avascular and acellular exhibiting a collagen-rich structure that contains a smaller population 

of myofibroblasts. These abnormal fibroblasts are considered to be responsible for causing 

the disease [4, 5]. In addition, previous hypotheses yet few, have hinted towards pathological 

relevance of adipose tissues (the fat cushioning the nodules) [6] and observations from post-

dermofasciectomy resulting in lower recurrence rates may indicate a relation to the skin 

overlying the nodule (SON) [7]. Furthermore, whether any significant changes in DD are 

due to genetic alterations alone or the consequence of metabolic dysregulation has not to 

date been demonstrated. 

 The analysis of transcription has been pivotal in recent analyses aimed at deciphering 

the control and mechanisms underpinning progression towards a diseased state. In this 

respect, major advancements have been made. Molecular studies from harvested tissue 

biopsies and in-vitro cultivation of fibroblasts derived from DD tissue have demonstrated 

presence and dysregulation (over and under expression) of several candidate genes [8-10]. 

Previous microarray and linkage studies have demonstrated key genes of interest that may 

potentially be involved in DD pathology. A recent study has investigated the differential 

gene expression analysis of subcutaneous fat, fascia, and skin overlying the DD nodule in 

comparison to control tissue [11]. 

However there still exist huge technical and knowledge limitations that hinder the 

accumulation of transcriptional data alone to synthesis of information. Further validation is 

necessary with more sensitive experimental approaches that can be systematically and 

iteratively investigated and validated with modeling approaches to predict responses with 
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certainty to identify and classify the levels of complexity in disease state of individual DD 

phenotypes.  

SB approaches promise to assist by bridging this deficit, making available novel 

analytical tools to unravel transcriptional data through the building of models and 

mathematical predications based on observations. Omics strategies within the framework of 

a SB context offer platforms such as Fourier Transform-Infrared (FT-IR) spectroscopy 

(metabolic fingerprints or non-invasive footprint screening) as a potential diagnostic and 

screening tool, and quantitative real-time polymerase chain reaction (qRT-PCR) for 

quantifying the transcript levels or making use of microarrays as exploratory tools. Such 

methods allow cost-effective and rapid methods of detection. SB is one of the most widely 

discussed fields among the emerging fields of post-genomic disciplines. It applies 

quantitative, mechanistic modeling to the study of genetic networks, signal transduction 

pathways and metabolic networks [12-16]; to understand the complexity of biological 

phenomena at all functional levels in a given cell, organism or tissue. Systems-level 

approaches are making a definitive pace towards scientific understanding and 

biotechnological applications [17]. 

SB for the present largely relates to unicellular organisms, and this study/thesis is one 

of the first to utilise SB to explore the metabolic characteristics and to advance the 

understanding of transcript data in a higher organism (i.e. primary cultures from DD 

(human) biopsies) in the field of medical SB. The data presented in this thesis shall 

constitute to highly systematic studies for a SB case related to DD.   

The purpose of this study is to develop and test our hypothesis that DD is a network 

disease.  This hypothesis has two parts: 

(i) The DD and corresponding healthy tissue differ in function through differences 

between their molecular (and perhaps intercellular) networks, rather than 

differences in a single molecule, in a plethora of unrelated molecules.    

(ii) DD can be caused by any of a variety of perturbations in regulatory networks that 

lead to the above network differences 

Working towards this purpose, I endeavored to develop and engage in a data-driven top-

down SB approach, towards the identification of transcriptome and metabolome differences 

between DD and healthy cells.  The aim is to identify some of the mRNAs and some of the 

metabolites that are different. By projecting the identified molecules onto the existing 
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genome-wide maps, or into functional categories, the objective is to identify pathways that 

account for differences seen with metabolites and transcripts, separately and in conjunction. 

In a bottom-up approach, I shall test an additional hypothesis that some of the differences 

between DD and healthy tissues reside in a difference in their respiratory metabolism.  In 

addition, I shall also examine the hypothesis that any such differences are akin the Warburg 

effects noted for tumour cells in the literature. Overall the aim is to delineate the above as a 

SB approach that may also be of use for the analysis of other ill-understood human diseases. 

 

1.1.2 Strategy of the study and its structure in text 

This study works towards the above aims in seven more or less sequential steps.  Each of 

these corresponds to a chapter of this thesis.  Most steps involve a targeted search for data 

generating a hypothesis.    

The latter part of this Chapter (1.2) reviews how the scientific literature addresses the 

above aims and to what extent SB approaches have already been implemented.  It also 

develops a perspective on how SB may help DD research and ends in outlining the strategy 

followed in this study. The philosophy behind this approach and the plan of action is 

discussed (1.3). Finally, the specific objectives sought in each chapter are outlined followed 

by a summary of the workflow (1.4). Section 1.2 has been submitted to Arthritis Research & 

Therapy and is currently under review. The background concerning the experimental 

techniques, design, patient recruitment, sample size and protocols for all materials and 

methods for Chapters 3-6 are given in Chapter 2. 

 Because SB attempts to analyse and understand in terms of all the networks and 

molecules that may affect a system (organism), its approaches tend to be more 

comprehensive than those of molecular and cell biology in the sense that it accounts for 

dynamic interactions taking place within a system i.e. the subject in question and its 

environment.  In addition the data generated by SB approaches are likely to be utilised by 

other groups, either for modeling approaches, or for connecting them to additional 

experimental data sets (e.g. transcriptome data to proteome data).  This makes it important 

for SB to come to well defined and reproducible experimental (and computational) systems.  

SB is also more sensitive than molecular biology to differences between the in vivo 

physiological state and experimental in vitro states; one is almost forced to work with freshly 

isolated tissues.  However such human tissues are barely accessible, and by virtue of the 
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randomness by which they become available do not lend themselves much to well prepared 

and reproducible experimentation. An alternative could be the use of cell lines derived from 

such primary tissues.   However, the establishment and maintenance of cell lines inevitably 

has consequences for the network functioning of the cells. In the case of DD cells and their 

healthy counterparts for instance, the DD cells may lose their DD characteristics when 

cultured, or develop differences with normal cell that have little to do with the differences 

between the diseased and the healthy tissue in the patient and represent positive selection for 

cells able to survive in-vitro culture conditions.  In Chapter 3, we examine how DD cells 

change when taken from tissue and cultured.  This will enable definition of which passage of 

cell culturing would be best to use in systems approaches to DD, as a compromise between 

retaining in situ DD character and having sufficient cell numbers for analysis.  We shall 

investigate this by implementing the concept of a systems signature defined through FT-IR 

spectroscopy.  Using this methodology we shall assess the reproducibility in vitro of DD 

subsets (i.e. nodule, cord, fat & SON) as compared with internal control (transverse palmar 

fascia) and external controls (carpal ligamentous fascia). To highlight the optimal conditions 

to further investigate the DD system is the objective of Chapter 3.  

SB also tries to integrate possibly all relevant literature data and pre-existing 

knowledge with new experimental data, all in its attempts to understand network 

functioning.  To this aim, systematic text mining of the literature is important.  In Appendix 

E3(2)(manuscript in preparation) we discuss the rationale to develop a novel text mining 

tool, which may help to depict accurate relationships in bio-networks by using natural 

language processing approaches.  Time constraints have kept us from further implementing 

this methodology in the present study. 

The conclusions from the fingerprint screening study in Chapter 3 are focused upon 

to investigate whether there are significant differences in functional genomics between DD 

and healthy cells, and whether a Warburg effect exists in the DD cell.  High-throughput 

studies are used to examine the response to hypoxia at the level of the metabolome and 

transcriptome. These will be shown to provide a useful - albeit noisy and incomplete - sketch 

of the cellular network response to hypoxia (or hypoxia reoxygenation) stimulus. Chapters 4 

and 5 discuss in detail how this was investigated with the use of omics technologies. In 

Chapter 4 a metabolomics approach (using gas chromatography-mass spectrometry (GC-

MS)) identifies dysregulated metabolites, as well as the pathways in which they occur. A 
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first question we shall address is whether the difference in disease cell types (nodule, cord 

and SON) and control cell type is the same as the difference in control fibroblasts cultured in 

normoxia and hypoxia. Second, we shall ask in which specific disease cell type (nodule, 

cord, and/or SON) is the difference with normal cells in intracellular metabolome the 

largest? In addition, the extent of the Warburg effect is also tested when hypoxia is induced 

in the disease cell types. We surmise that not only may DD cells have a Warburg phenotype; 

they may also have a different propensity to assume such phenotype when exposed to 

hypoxia.  In addition, the external stimuli may induce pathway inhibitors - clues can be used 

to investigate and demonstrate maximal differential response in a number of DD cell 

cultures.  

In Chapter 5 the disease cell types (nodule) which demonstrated the most significant 

differences compared with normal and perturbed fascia, were then selected to investigate the 

Warburg effect in the DD transcriptome. Candidate genes were identified and the question 

addressed here is whether the identified transcripts/genes and metabolites show congruence 

across the various levels of systemic description in the context of pathways i.e. the DD 

metabolome and transcriptome. Integration of these complex data sets is a key challenge and 

is the objective of the small Chapter 6, which also involves the mapping onto known genome 

wide pathway maps.    

For accurate interpretation of the intracellular dynamics within the DD cell 

metabolome and transcriptome it is essential to harvest these molecules in identical 

conditions. Current SOP‟s do not permit the harvesting and extraction of these moieties 

simultaneously. This necessitated developing a novel protocol to meet this requirement. The 

aim here was the simultaneous collections at one time point of the three moieties from all 

samples i.e. the extracellular metabolome, the intracellular metabolome and RNA. A robust 

standard operating protocol for three simultaneous sample extractions is given and applied 

for the first time. This novel protocol is discussed in Chapter 2.3.2 - 2.3.3.  

The ultimate goal of this work would be the initiation of a system-wide, data-driven 

model that includes all genes, enzymes, metabolites, and regulatory proteins that are 

involved in hypoxia defenses in DD. It is advantageous to decide a priori the necessary level 

of detail and the corresponding modeling strategy. This would then be extended to model 

metabolism at the level of enzyme fluxes, within the constraint-based framework. The 
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signaling network that modulates these enzymes could then be represented as a map of 

bidirectional links derived from interaction databases.  

 Although it is quite a task to build complete representations of these networks from 

the parts list, factors that define the problem of interest, such as cell type (cord, nodule and 

control fascia), time window (acute, passage number, metabolome and transcript extraction) 

and the specific context (hypoxia) help to narrow the number of players. After iterations of 

experimental validation and refinement, this network model may help to find modulators and 

targets on which to apply more detailed modeling strategies. 

The project encompasses integration of large data-sets from metabolomics and 

transcriptomics collected from suitable test subjects and matched controls. These data are 

used as a basis for the construction of probabilistic and statistical models. In each of the 

studies, the data sets generated have large diversities of characteristics and also have 

different research objectives including automated high-throughput data analysis, 

classification and prediction, as well as multivariate pattern comparison. Hence various 

signal processing and pattern recognition techniques are required to analyse these data sets to 

reveal their patterns and achieve the objective of research. Several models of the same data 

are explored including unsupervised methods principal component analysis (PCA), and 

supervised methods; principal component-discriminant function analyses (PC-DFA) and 

Analysis of Variance-principal component analyses (ANOVA-PCA). These are described in 

their respective chapters and background is given is Chapter 2.2. The prediction of each of 

these models to the same training data set is compared and further experiments conducted on 

new disease & control cell cultures to predict the response of these cells from their system 

signatures. Appropriate computational techniques have been used to elucidate models of 

relationships between gene, protein and metabolite signals and cell functional responses to 

extracellular cues. Elucidated network relationships from candidate subset of metabolites 

and candidate transcripts resulting from experiments are given in Chapter 6.  

The development of a mathematical model can now be initiated to address clinical 

implications. This type of approach will ultimately provide a model and rationale for the 

development of new, dynamic and dual therapeutic strategies and is likely to influence drug 

design. The implications of the findings of this project are not only important for DD but 

also for other fibrotic systems onto which these interactions can be projected. A discussion 

and conclusion of this thesis is given in Chapter 7 followed by references and appendices. 
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The directions for possible future work are chosen here towards further improvement of 

fingerprint screening and validating with text mining approaches, increase on accuracy, 

mapping and integrating pathways and reduction of anomalous results with targeted 

approaches. This work was supported by the BBSRC and EPSRC via the Doctoral Training 

Centre at Manchester Centre for Integrative Systems Biology.  
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1.2 Dupuytren’s – A Systems Biology disease? 

The following is an extensive review of the scientific literature that addresses the above aims 

and to what extent SB approaches have already been implemented.  It also develops a 

perspective on how SB may help DD research and ends in outlining the strategy followed in 

this study. Because Section 1.2 is a manuscript and has been submitted to a peer-reviewed 

journal, it consists of its own abstract, introduction, results, discussion and references. Please 

refer to Appendix A.  

 

1.3 Philosophy of Approach  

The rest of this chapter summarises the concepts and methods applied in this research thesis 

from metabolomics and transcriptomics technologies. The practical problems associated 

with DD research and the rationale behind this approach and statistical data analysis relevant 

for this thesis are given.  

 

1.3.1 Establishing an optimum cell system to investigate Dupuytren’s disease 

Life is structured on many levels of biological organisation. Only in the current post-

genomic era, after sequencing of many genomes (http://genomesonline.org/), we are now 

starting to appreciate the complexity of biological organisation at the cellular level. To 

understand the function and dysfunction of such complex systems requires integrated, 

systems-level approaches. To understand complex disease systems this rationale is even 

more significant. 

The differentiation of DD subsets (nodule, cord and uninvolved transverse palmar 

fascia) has classically been performed on the basis of clinical presentation, histopathology 

and morphological features and more recently with high density microarrays. However, 

phenotypic variations within the DD tissue have led to plausible questioning with regards to 

the classification of this disease. The high degree of macroscopical un-relatedness between 

fibroblasts from the nodule and cord illustrates this. Within the framework of SB, functional 

analyses of the cell should be investigated at all „omics levels in order to determine the 

underlying causes of DD formation. Previous studies have focused on biochemical factors in 

http://genomesonline.org/
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isolation; whilst mostly concentrating on tissue biopsies harvested from DD subjects, there 

has been no work to date on the cascades involved in cellular dysfunctioning within a 

systems context. More recently few studies have focused on the DD myofibroblasts with the 

use of high throughput technologies.  

 It is envisaged the fibroblast is the key cell implicated in cell signaling events leading 

to DD pathogenesis. One study investigated differences in nodule or cord-derived fibroblasts 

focusing on their cellular metabolic activity [18]. Controls were obtained from carpal 

ligaments. The fibroblasts derived from cords presented higher metabolic activity compared 

with fibroblasts derived from nodules or controls (fascial retinaculum) using an XTT assay. 

Nodular fibroblasts presented lower activity than those of control fascial fibroblast assays.  

Despite accumulating evidence that in vitro conditions have an impact on gene 

expression patterns, there are limited studies that have investigated differential gene 

expression in both tissue culture and biopsies. To address these questions, Shih et al 2009 

investigated the gene expression levels of candidate genes differentially expressed in DD 

tissue phenotypes including not only the cords, nodule and fascia but also the fat and SON to 

determine whether the observed results from tissue biopsies were comparable to those from 

cell cultures, in order  to identify potential biomarkers [19]. 

A number of studies have implicated involvement with the TGF-β pathways when 

compared with tissues from the DD palmar fascia [20]. These distant sites are thought to be 

uninvolved in the disease process and may serve as internal controls in addition to tissue 

biopsies harvested from the palmar fascia of patients having Carpal Tunnel Decompression 

(CTD). While the transverse palmar fascia (from the DD patient) would be thought a more 

appropriate control and preferred site for study accounting for a homogeneous study set, 

correlating to the adjacent diseased sites respectively (if excised/harvested on same day), the 

CTD fascial tissue from individuals unaffected by DD has been documented in many studies 

as the common choice for control however this attributes to heterogeneity.  Cellular profiles 

in the Dupuytren tissues (nodules and cords) ultrastructural studies display confirmed 

differences from the transverse palmar fascia, and although it is not completely understood 

nor proven that these tissue from the Dupuytren patient are confirmed as 100% normal, 

macroscopical evidence suggests these may be suitable as internal controls for comparison. 

For this reason, not only is it acceptable but also intriguing in this study to compare the DD 
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tissue (nodule and cords) with those where the site is confirmed to be uninvolved in the 

diseased palm.  

 

1.3.1.1 Passage Number Effect on Metabolic Fingerprint 

Cell line quality is crucial to successful experimentation and an important step to ensure 

reliable and reproducible results. Continuous cell lines are increasingly being used and may 

serve as valuable research tools in medicine and biotechnology [21, 22].  However, the 

ability of continuous cell lines to exist almost indefinitely has opened the possibility of 

questionable sub-culturing practices [23, 24] and hence, scientific data produced as a result 

of experiments performed. The issue has been raised in some recent literature that over-sub-

culturing may have a profound impact that can lead to changes in cell lines properties over 

time. Such changes may occur at high passage numbers where cells may experience 

alterations in cell morphology, response to stimuli, growth rates, protein expression and 

signaling, compared to lower passage cells. In addition, the in vitro culturing conditions may 

affect gene expression profiles and/or ultimately cell phenotypes [25, 26].  

Altered phenotypes in late passage cultures of the DD nodule have been reported, 

where the authors suggest late passage cultures of DD nodule fibroblasts display phenotypes 

similar to those of cord-derived fibroblast [26]. It is difficult to make comparisons from 

previous studies as the reported results are often based on different cellular passages which 

could have a dramatic effect on their gene expressions.  Previous studies on fibroblasts 

derived from DD tissues have looked at cellular passages without considering factors that 

may affect not only morphological changes but gene expression and metabolic differences 

too. Few studies state the passage number used but do not question nor address why those 

cellular passages were selected. It is possible that a higher or an inconsistent passage number 

may lead to production of an adequate biomass, but this has not been investigated or 

reasoned to date.  

 Moreover, normal cells undergo a finite number of divisions and then cease dividing 

after some passages (a process known as replicative senescence), whereas tumour cells are 

able to proliferate indefinitely [27, 28]. The acquisition of an unlimited proliferative 

potential has been proposed as one of the critical steps in cancer (neoplastic diseases), which 

arises as a consequence of the accumulation of multiple independent mutations in genes that 

regulate cell proliferation and survival. Although differing numbers of passages have been 



Chapter 1                                                                                              Dupuytren’s – a Systems Biology disease? 

31 

 

reported in the studies investigating the dupuytren tissue, any change in the proliferative 

potential of the fibroblast has not been stated. DD fibroblasts may possess a higher potential 

for matrix and collagen production through passages than control fascia cells because the 

DD nodules and cords result from an uncontrolled proliferative cellular state. Differences in 

collagen, fibronectin proteins, matrix expression proteins and even proteoglycans could be 

affected by passaging because it is thought that at earlier passages all cells would mostly be 

proliferating while at later passages they would tend to become senescent [29].  

 

1.3.1.2 Whole cell fingerprinting to obtain a system signature 

Careful consideration should be given to factors which could affect the reproducibility of 

data or produce instrument drift including sample preparation, instrument contamination and 

data processing. Time and order of sample analysis could provide significant sources of 

variability, potentially obscuring the biological variation which we seek to characterise. 

FT-IR spectroscopy is a well-established tool for the identification of transition 

phenomena in systems passing through different phases. Within the biosciences, the 

applications of FT-IR have been numerous and diverse. FT-IR spectroscopy can detect and 

identify endogenous (fingerprint) and secreted (footprint) metabolites. It has proven to 

rapidly and accurately identify bacteria to the sub-species level [30], differentiate between 

clinically relevant species [31], and has provided a metabolic footprint of tryptophan-

metabolism mutants [32] as well definitively discriminating between a range of bacterial 

genera. It‟s use as a rapid, yet non-invasive method for embryonic secretome determination 

from preliminary results has demonstrated its powerful potential  as a diagnostic tool [33].  

This approach is based on the principle that when a sample is interrogated with an 

infrared (IR) beam, the functional groups within the sample will absorb the infrared radiation 

and vibrate in one of a number of ways, either stretching, bending, deformation or 

combination vibrations [34]. These absorptions/vibrations can then be correlated directly to 

(bio)chemical species and the resultant infrared absorption spectrum can be described as an 

infrared „fingerprint‟ characteristic of any chemical or biochemical substance. 

 In this study FT-IR spectroscopy is employed as a metabolic fingerprinting screen 

with multivariate statistical techniques for cluster analysis to assess reproducibility of cells. 

In this respect, FT-IR is used to determine the presence of metabolites and their unique 

fingerprints using a metabolomic analysis of fibroblast cultures derived from different DD 
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tissue phenotypes (nodule, cord, subcutaneous fat and SON) to compare early (primary) 

cultures to late passages in order to identify the most representative passage for the disease. 

Controls are both internal (transverse palmar fascia) and external (CTD palmar fascia or 

transverse carpal ligamentous fascia) fibroblasts grown in the same culture medium and 

conditions. It is hypothesised that the culturing conditions may have a profound impact on 

gene expression and metabolic activities as the cells adapt to a new artificial environment 

and the most suitable passage representative of the disease remains unknown. Such 

physicochemical spectroscopic methods are increasingly discussed to have a huge potential 

in disease diagnostics as these platforms offer/facilitate “whole-organism fingerprinting.”   

The fingerprint study in this project forms the basis and starting point of the 

subsequent omics approaches investigated in the concept of a systems signature 

determination. In addition, the fibroblast cultures grown in same culture media are analysed 

for any change in cellular properties due to the passage effect. Details of materials and 

methods are given in Chapter 2.3.1. 

  

1.3.2 Metabolism and Warburg effect 

Metabolism is a constitutive process within a cell. There is still much to learn about how cell 

metabolism is regulated during proliferation. In multicellular organisms, most cells are 

exposed to a constant supply of nutrients. Survival of the organism requires control systems 

that prevent aberrant individual cell proliferation when nutrient availability exceeds the 

levels needed to support cell division. Uncontrolled proliferation is prevented because 

mammalian cells do not normally take up nutrients from their environment unless stimulated 

to do so by growth factors. Many cancer cells overcome this growth factor dependence by 

acquiring genetic mutations that functionally alter receptor-initiated signaling pathways [35]. 

There is growing evidence that some of these pathways constitutively activate the uptake and 

metabolism of nutrients that both promote cell survival and fuel cell growth [36]. 

It is known that tumours alter the metabolic profiles of the cells, which display a 

higher rate of glucose uptake and glycolytic activity when compared to their benign/normal 

counterparts [37]. These metabolic changes might confer a common advantage on many 

different types of cancers, which allows the cells to survive and invade. Another important 

characteristic in many cancer cells is the increase in utilisation of the anaerobic glycolytic 

pathway, converting pyruvate to lactate. This fermentation phenotype was initially thought 
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to raise as an adaptive response to the hypoxic microenvironment that tumour cells were 

forced through an inefficient, disordered and commonly insufficient vascular system [38]. 

However, not all the tumour cells are under hypoxic stress, and the anaerobic glycolytic 

pathway is used even if the tumour cells are in presence of oxygen [39], displaying a 

constitutive alteration in carbon metabolism. This phenomenon is termed as the „Warburg 

effect‟ named after Otto Heinrich Warburg [38].  

Warburg found that unlike most normal tissues, cancer cells tend to “ferment” 

glucose into lactate even in the presence of sufficient oxygen to support mitochondrial 

oxidative phosphorylation and hence their metabolism is often referred to as “aerobic 

glycolysis [40].”  The excess generation of lactate accompanies the Warburg effect. For most 

proliferating cells, nutrients are not limiting so there is no selective pressure to optimise 

metabolism for ATP yield. In contrast, a selective pressure for rate of metabolism does exist. 

For example, immune responses and wound repair depend on the speed of the proliferative 

expansion of effector cells. To survive, the organism must signal the responding cells to 

maximize their rate of anabolic growth. Cells that convert glucose and glutamine into 

biomass most efficiently will proliferate fastest [40]. In addition, there is emerging evidence 

that cellular metabolism within a tumour can be heterogeneous, with some cells using the 

excess lactate generated as a fuel for mitochondrial oxidative phosphorylation; a major 

cellular source of reactive oxygen species (ROS) production [41]. 

Cells with excess nutrient uptake that have not converted to aerobic glycolysis would 

be predicted to have increased oxidative phosphorylation and ROS production. Cellular 

energy supply and demand under hypoxic conditions is regulated by many interacting 

signaling and transcriptional networks, which complicates studies on individual proteins and 

pathways. Ambient air has oxygen partial pressure (pO2) = 158 mmHg, tracheal air in the 

human is pO2 = 149 mmHg, alveolar air; pO2 =100 mmHg; and arterial blood; a pO2 = 95 

mmHg [42, 43]. 

One proposed explanation for Warburg‟s observation is that tumour hypoxia selects 

for cells dependent on anaerobic metabolism [44]. However, cancer cells appear to use 

glycolytic metabolism before exposure to hypoxic conditions. For example, leukemic cells 

are highly glycolytic [45], yet these cells reside within the bloodstream at higher oxygen 

tensions than cells in most normal tissues. Similarly, lung tumours arising in the airways 

exhibit aerobic glycolysis even though these tumour cells are exposed to oxygen during 
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tumorigenesis [46]. Thus, although tumour hypoxia is clearly important for other aspects of 

cancer biology, the available evidence suggests that it is a late-occurring event that may not 

be a major contributor in the switch to aerobic glycolysis by cancer cells. Hypoxia is also 

known as the major cause of necrotic cell death in many diseases. 

 

1.3.2.1 Metabolomics:  A component of systems biology  

Recent development in „omics technologies provide an opportunity to study the effects of 

oxidative stress systematically. Metabolites are potentially a good indication of the state of 

our health. Therefore measurement and analysis of metabolites can be a precise and 

potentially valuable source for identifying biomarkers for diagnostics and drug therapy[47]. 

Metabolomics technologies act as components of systems biology that allow high-

throughput analysis of metabolites, allowing determination of their concentrations, in 

biological samples [48].  

While the genome, transcriptome and proteome are estimated to be quite large, by 

contrast the metabolome is relatively small. It is estimated that there are approximately 7,900 

metabolites in humans as has been proposed by the human metabolomics project [49]. This 

number represents the naturally synthesised biochemicals in humans and now includes some 

complex oligosaccharides, peptides, etc. The total number of synthesised biochemicals is 

much smaller; however, the technology to measure all of those small compounds in a single 

sample is complex and challenging. A major advantage to this smaller number of 

metabolites is the decreased chance of a random false discovery measurement which often 

results when large numbers of measurements are made on a small number of samples, such 

as the small group sizes typically available for most clinical studies – ours is typically one 

such case. 

The primary goal of any metabolomics effort is to extract, identify, and quantify as 

many as possible small molecular compounds (e.g. metabolites) in a biological sample under 

set conditions and to correlate the changes observed to changes in environmental condition 

or perturbation. Yet the size and chemical complexity of the metabolomes itself represent an 

analytical challenge since metabolites differ significantly in their physical and chemical 

properties (volatility, solubility); molecules vary from being polar to non-polar. Moreover, 

these small molecules have a wide range of structures; their molecular weights range from 

50Da to over 1500Da and differ in concentrations. As diverse as these compounds may be, 
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the task for metabolomics is to extract, identify and quantify all of the metabolites in a 

biological sample. To produce an accurate/informative profile of these molecules, not only 

samples themselves, but every compound present in a sample must be reproducibly extracted 

and measured, even when the identity is not known or its presence predicted. Sample 

reproducibly of DD and control cells has been shown and is the objective of Chapter 3.  

This complexity necessitates the use of analytical tools and methodologies of high 

sensitivity, high separation efficiency (specificity) and with the ability to detect metabolites 

over a wide range of concentrations (typically, mM to sub-pM). Global analysis of the 

metabolome is achieved with more than one analytical technique and most commonly is 

achieved using chromatographic separation to fractionate complex samples into simpler 

components according to their physico-chemical properties and linearly introduced into a 

mass-spectrometer (MS) or nuclear magnetic resonance (NMR) spectrometer for detection. 

Gas-chromatography (GC) [50, 51], liquid chromatography (LC) [52, 53] or capillary 

electrophoresis (CE) are most commonly utilised analytical methods to separate metabolites 

based on selectivity and specificity.  

 

1.3.2.2 Metabolic profiling of Dupuytren’s disease phenotypes in oxidative stress 

At present, little is known regarding DD pathogenesis, and even less regarding its cellular 

functions, i.e. metabolic functions and regulation of intermediates involved in glycolysis, 

TCA cycle, pentose phosphate shunt and amino acid metabolism. Knowledge of what 

proliferating cells need in healthy cells and how these cells adapt in hypoxia in terms of 

energy to generate biomass will help to establish hypotheses if not a direct connection 

between disease and a healthy cells. This will illuminate signaling pathways that drive cell 

growth and the regulation of DD cell metabolism.  

Here, we test our hypothesis whether DD cells are also under this Warburg effect. 

This is achieved by inducing a perturbation in healthy cells (fascial cells) cultured in pO2 = 

158 mmHg  corresponding to a concentration of 21% atmospheric oxygen and compare their 

metabolic profiles with healthy cells exposed to hypoxia i.e. in pO2 of 8 mm Hg 

corresponding to concentration of 1% oxygen. Then we examine our hypothesis that any 

such differences are akin the Warburg effects noted for tumour cells in the literature by 

comparing the extracts from intracellular (endo-) and extracellular (exo-) metabolomes 

acquired from DD nodule, cord and SON cultures against those acquired from healthy cells 
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and under hypoxia-induced fascia. The aim here is to identify potential biomarkers of DD by 

comparing the metabolic profiles obtained from disease and healthy cells. In addition, 

response to hypoxia is also examined in the intracellular metabolome of disease cells; this 

may aid in biomarker identification by imposing stress on disease cells. Furthermore the 

question is; if a Warburg effect exists, in which DD phenotype is this effect greatest? What 

are these key players (metabolites) and which pathways are these mapped onto? For 

convenience, fibroblasts from fascia, nodule, cord and SON cultured in pO2 = 158 mmHg 

(21% oxygen, normoxia) are designated as „F21‟, „N21‟, „C21‟, „S21‟ and those cultured in 

concentrations of 1% oxygen (hypoxia)  designated as „F1‟, „N1‟, „C1‟ and „S1‟ 

respectively.  

A point to note here, although pO2 =158 mmHg is not physiologically relevant for 

tissue, the palmar fascia pO2 is expected to be approx 40 mmHg; well above hypoxic 

conditions. Previous studies reported no culturing conditions other than O2 at 21% (ambient 

conditions/setting in standard cell culturing facilities). To make a fair comparison, main 

consistency with previous reported finding and due to technical limitations we were unable 

to provide sufficient culture biomass in all three O2 conditions i.e. 6%, 1% and 21% 

simultaneously. A comparison between 21% (termed normoxic) and 1% (termed hypoxic) is 

made to determine the effects of hypoxia upon the respiratory metabolism of all cultures. 

Metabolic profiling of samples employed GC-MS. Metabolic identification and the effect of 

perturbation is the objective of Chapter 4. Details of materials and methods used in this 

study are explained in Chapter 2.3.2. 

These biomarkers could open up the possibility of developing new, early or 

presymptomatic treatments to improve outcomes or even prevent pathology. Furthermore, 

the validation of biomarkers that can detect early changes specifically correlated to reversal 

or progression of DD is crucial for intervention. Used as predictors, these biomarkers could 

help to identify high-risk individuals and disease subgroups potentially useful as targets for 

chemointervention trials, whilst as surrogate endpoints, biomarkers may be useful for 

assessing the efficacy and cost effectiveness of preventative interventions at a speed that is 

not possible when the incidence of manifest DD is used as the endpoint.  
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1.3.3 Transcriptomics: a component of systems biology 

The transcriptome is the complete set of RNA transcripts produced by the genome at any one 

time. Transcriptomics, the study of the transcriptome involves large-scale analysis of 

messenger RNAs transcribed from active genes to follow when, where, and under what 

conditions genes are expressed. Unlike the genome, the transcriptome is extremely dynamic 

[54]. Our cells contain the same genome regardless of the type of cell, stage of development 

or environmental conditions. Conversely, the transcriptome varies considerably in these 

differing circumstances due to different patterns of gene expression. Transcriptomics is 

therefore a global way of looking at gene expression patterns and in this respect is one such 

component of systems biology that can aid in discovery experiments.  

Microarray technologies allow the examination of gene expression on the scale of a 

genome when an organism or cells experience a changing status thus providing a practical 

method for measuring the expression level of thousands of genes simultaneously. 

Measurement of gene expression with high accuracy and precision is possible with real time 

PCR [55, 56]. This technique can measure and quantify gene expression one at a time and is 

used as a standard for validation and measurement of a few selected genes [56]. However, 

using microarrays it is possible to measure the expression of thousands of genes or more so 

‘transcripts‟ simultaneously [57].  

 Microarray analysis is a very active area of research now. The fields of systems 

biology and microarray analysis are both growing exponentially with > 40,000 hits in 

PubMed using the term „systems biology‟ and > 47,000 hits for „DNA microarray analysis.‟ 

In just over a period of six months (July, 2010 to January 2011) 6000+ papers with terms 

„microarray‟ were added to the database. By contrast, only ~2100 publications on DD have 

appeared since the original publication by Guillaume Dupuytren in 1831, only 56 hits with 

„gene expression + dupuytren‟ and only 11 hits with „microarray + dupuytren.‟ 

 

1.3.3.1 Exploring dynamical changes in DD and control transcriptome  

In addition to dynamic property changes recurring in DD metabolomes and healthy fascia in 

response to hypoxia, simultaneous changes in the transcriptome will also inevitably be in 

progress. A number of key metabolites and pathways that may contribute to DD progression 

or have been invoked as a consequence of hypoxic stress highlighted from results in Chapter 
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4 also demand explanation at the transcriptome level. Intermediates involved in amino acid 

and carbohydrate metabolism have shown significant differences from this analysis. In 

Chapter 5 Affymetrix microarrays were employed extending this approach to investigate the 

perturbation effect in their transcriptome. This study examines whether gene expression 

analysis of such cells could provide a more representative picture of the dynamics involved 

in DD. It is surmised these transcripts will produce a specific signature for DD 

complementing the metabolomics study and allow us to look for cell signaling pathways / 

targets in a controlled systematic manner. The emerging data will form the basis for 

selecting appropriate models for pathway studies.  

In this study, we use 12 x Human Genome U133 Plus 2.0 Arrays (HG U133 Plus 

2.0).  Each chip contains 54,675 probe sets allowing analysis for relative expression levels of 

more than 47,000 transcripts and variants, including more than 38,500 well characterised 

genes and UniGenes [58]. The probe sets represented on these are selected from sequences 

in GenBank®, dbEST and RefSeq [59]. In addition these chips include a set of constitutively 

expressed human maintenance genes to facilitate the normalisation of array experiments. 

This set of normalisation genes has demonstrated consistent levels of expression over a 

diverse set of tissues and serves as a tool to normalise data prior to performing data analysis. 

Details of materials and methods used in this study are explained in Chapter 2.3.3. 

 

1.3.4 Discovery of pathway biomarkers through network analysis  

The qualitative systematic studies from Chapters 3-6 provide us with robust and 

reproducible data sets or at least the parts list that can now facilitate the initiation of model 

construction to study the interplay between theory, experiment and technology and now 

hypothesis testing by modeling the cellular systems. Key parameters and variables of the DD 

and control system can be assigned. The parameters of this dynamical system are those 

properties that are either inherent to the system or whose values can be controlled e.g. to 

study metabolic networks, these would be delineated as the initial concentrations of enzymes 

and metabolites, enzyme kinetic properties such as Km, kcat and Ki. The variables by 

contrast would be those that change during the time evolution of the system e.g. 

concentrations of metabolites and metabolic fluxes. Since it is the parameters that control the 

variables, it is more common to measure the variables than the parameters. Methods which 

start with variables and seek to infer the topology and parameters of the system that 
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generated them are known as „inverse methods‟ or „system identification‟ methods - 

considerably more demanding computationally.  

 At present, knowledge is largely dispersed across various databases ranging from 

proteome-proteome interaction databases [60], human metabolome database (HMDB) [49], 

gene ontology (GO)[61] etc. To facilitate in bridging or integrating some of these databases, 

systems such as Gaggle [62] incorporating geese such as KEGG [63] , Cytoscape [64], 

STRING [65] and more, Taverna [66] and Ingenuity Pathway Analysis (IPA) [67] are found 

to be of considerable utility. Such tools consider both the significance of gene expression 

changes and their topological characteristics in order to better evaluate their impact on the 

pathways of interest [68]. 

 Functional links between molecules e.g. proteins can often be inferred from genomic 

associations between the genes that encode them. However some interactions such as 

protein–protein interactions are not limited to direct physical binding and may also interact 

indirectly e.g. by sharing a substrate in a metabolic pathway or by regulating each other 

transcriptionally. For predicting such functional associations (including direct binding), the 

current growth in completed genomes offers unique opportunities through so-called 

„genomic context‟ or „non-homology-based‟ inference methods [69, 70]. The graphical 

representations of the networks of inferred, weighted entity–entity (e.g. protein-protein, 

gene-protein or enzyme-substrate) interactions provide a high-level view of functional 

linkage, facilitating the analysis of modularity in biological processes.  

Visualisation of networks is highly important, and for this reason, IPA [67] is 

employed for topological network analysis. Combining statistically significant filtered gene 

lists and metabolite lists from the studies in Chapters 4 & 5 to find specific key pathways 

may be indispensable for understanding the regulation of metabolism in DD. Chapter 6 

involves detailed analysis of metabolomic and transcriptomic data using integrative pathway 

analysis which illuminates molecules some which may be of potential importance in the 

pathophysiology of DD and may prove to be important as biomarkers. In this experimental 

model of hypoxia induced in DD cultures and healthy cells, we seek to visualise factors 

affecting the metabolic profiles resulting from the response to hypoxia which induced 

discriminating changes in the metabolic pathways. The aim here is to infer metabolic and 

signaling pathways involved in DD and healthy systems employing both separately and in 

conjunction the statistically relevant small molecules and transcripts by mapping the 
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molecules identified in key transcriptional pathways (and networks) onto the metabolic 

pathways (and networks). The molecules highlighted from metabolite mapping and gene 

mapping will highlight key variables that can then enable construction of model building 

(e.g. constraint-models, kinetic models or Boolean models). 

 In addition the highest scoring networks in the analyses both with and without the 

gene expression data are explored with the aim of illustrating the effects of hypoxia an on 

inflammation, oxidative stress (production of reactive oxygen species), and metabolism. The 

networks identify a number of pathways, key molecules which could play a focal role in DD. 

MetPA (Metabolomics Pathway Analysis) [71]; is also employed for the visualisation and 

analysis of metabolomic data within the biological context of metabolic pathways. In both 

these algorithms, topological connections are inferred from fisher‟s exact ratio. False 

Discovery Rate (FDR) multiple testing correction (Benjamini and Hochberg analysis) [72] is 

possible in IPA. Additionally IPA includes modeled relationships between proteins, genes, 

complexes, cells, tissues, drugs, pathways, and diseases (direct and indirect relationships). It 

includes information from a broad range of published biomedical literature, internally 

curated knowledge, and a wide variety of trusted 3rd party sources and databases, so 

integration from a wide variety of information in one place is possible. All of the content in 

the Ingenuity Knowledge Base is structured, timely (updates occur weekly), and quality 

controlled to ensure quality.  

 

1.3.5 Summary 

The studies in this thesis form a starting point for metabolic and/or signaling network 

analyses.  There are several benefits to modeling for example testing whether the model can 

be made to reflect known experimental facts in DD fascia compared to healthy palmar fascia 

or analysis of the model to understand which parts of the cell system (properties, 

components) contribute to a certain factor e.g. perturbation effect or so-called sensitivity 

analysis. Furthermore, hypothesis generation and testing out rapidly the effects of a change 

or manipulation in the system computationally would be preferred than to perform costly 

future experiments to determine more „what if‟ experiments. Due to cost and time 

constraints, an integrative metabolomics and transcriptomics approach is applied to detect 

and identify variables from endogenous (fingerprint) and secreted (footprint) metabolites 

present in case and controls subjects. Affymetrix microarrays were used to profile a selected 
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subset of samples to both identify and integrate with metabolites data and examine the 

networks using IPA [67] and MetPA [71] to infer metabolic and transcriptional networks 

within cell systems (DD, control and perturbed). 

1.4 Workflow of the Study  

A view of the systems approach (Figure 1), in the framework described involves the 

following sequence of steps: 

 

1. Gather high-throughput molecular fingerprint data from vibrational spectroscopy 

using FT-IR to define all the potential components thought to be involved in DD 

formation and internal & external control. 

2. Assess reproducibility of cultures over time (passage number) by determining the 

hyper spectral signature of each sample with chemometrics & cluster analysis to 

determine the most suitable in vitro representatives for metabolic and transcript level 

profiling and induction of perturbation effects. 

3. Identify key regions of activity from the vibrational bands (i.e. lipids, proteins, 

sugars, nucleic acids). 

4. Examine the extra cellular metabolome with vibrational spectroscopy.  

5. Establish a cell culture system to isolate three biomarkers from the same population 

of cells to enable isolation and measurement of: metabolic footprint and fingerprint, 

and transcriptome.  

6. Simultaneously culture samples in same growth condition and conditioned media in 

normoxic and hypoxic conditions to examine and monitor the perturbed components. 

7. Harvest three cellular components from the same populations of cells in each culture 

condition 21% and 1% oxygen: metabolic footprint, intracellular metabolites and 

mRNA. 

8. Examine metabolic content harvested from the intracellular and extracellular 

metabolome using GC-MS.  

9. Identify key metabolites in disease and control system. 

10. Investigate the effect of hypoxia in the perturbed fascia and compare these resultant 

molecules with those in disease. 

11. Construct key metabolic pathways from this data. 
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12. Investigate this Warburg effect in the transcriptome with high through-put 

Affymetrix oligonucleotide microarrays. 

13. Identify key dysregulated transcripts/genes 

14. Construct key pathways from this data. 

15. Map these genes upon metabolic pathways previously identified in step 11 and vice 

versa. 
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Figure 1 Research pipeline to show the steps involved in this highly exploratory systems biology approach to 

understanding Dupuytren‟s disease. 
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1.5 Aims of this project 

1. To test the hypothesis that metabolic profiles acquired from DD fibroblast cultures 

derived from different DD and control tissue phenotypes are unique to their tissue of 

origin using FT-IR spectroscopy. 

2. To compare the metabolic profiles of DD fibroblast cultures derived from different DD 

and control tissue phenotypes. 

3. To determine effect of serial passaging by comparison of early (primary) cultures to late 

passages in order to identify the most representative passage for the disease using FT-IR 

spectroscopy by assessment of reproducibility on the metabolic fingerprint/profile). The 

passage determined shall be used for subsequent studies once established the hypothesis.  

4. To identify the metabolites that are different in healthy and DD. This will be investigated 

using fibroblast cultures selected from the most suitable representative passage number 

for the disease as determined in steps 1-3. Using a non-targeted approach and a more 

sensitive analytical technique; GC-MS is employed to profile the pool of metabolites 

present within the disease and control fibroblasts. 

5. To determine whether altered oxygen tension (i.e. hypoxic condition) affects the 

composition of intracellular and extracellular metabolomes and the transcriptomes (gene 

expression) of early DD and control fibroblast cultures using GC-MS and Affymetrix 

microarrays for high throughput profiling respectively. This is to test the hypothesis 

whether the difference in disease cell types (nodule, cord and SON) and control cell type 

is the same as the difference in control fibroblasts cultured in normoxia and hypoxia.  

6. To test in which specific disease cell type (nodule, cord, and/or SON) is the difference 

with normal cells in intracellular metabolome the largest?  

7. To examine the extent of the Warburg effect when hypoxia is induced within the disease 

cell types.  

8. To integrate transcript and metabolite profiling data through a SB approach in order to 

determine congruence between the levels of certain metabolites, gene transcripts and 

their protein product(s) using SB tools to identify metabolic pathways, signaling 

pathways and key networks (connections and intercellular dynamics) that may attribute 

to formation of DD. 



 

Chapter 2 

Materials and Methods 

2.1 Background to Experimental Techniques 

This chapter provides the background and theory to the experimental techniques applied in 

this thesis (2.1). Data analysis methodologies (2.2) and the complete protocols for each of 

the experiments in Chapters 3-6 (2.3) are provided.  

 

2.1.1 Fourier transform Infra-red Spectroscopy as a metabolic fingerprinting 

screen 

Infrared (IR) spectroscopy is one of the most common spectroscopic techniques used by 

organic, inorganic chemists and medicinal chemists for the detection of different chemical 

functional groups in the sample [73, 74]. In addition to its ability to provide information 

about the structure of a compound it is also used as an analytical tool to assess the purity of a 

compound [74].  

In IR spectroscopy, IR radiation is passed through a sample. Some of the IR radiation 

is absorbed by the sample and some is transmitted. Different functional groups present in the 

sample absorb characteristic frequencies of IR radiation [75]. This is recorded in the form of 

a spectrum which is a plot of intensity vs. frequency with wavelength or wavenumber as the 

x-axis and absorption intensity or percent transmittance as the y-axis. The resulting spectrum 

represents the molecular absorption and transmission, creating a molecular fingerprint of the 

sample. Like a fingerprint no two unique molecular structures produce the same infrared 
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spectrum [76]. In simple terms, IR spectroscopy is the absorption measurement of different 

IR frequencies by a sample positioned in the path of an IR beam.  

The IR region lies between the visible and microwave regions having wavenumbers 

from approximately 12,500 cm
-1

 to 10 cm
-1

, or wavelengths from 0.78 to 1000 μm. 

Frequency ν (nu) is the number of wave cycles that pass through a point in one second. It is 

measured in Hz, where 1 Hz = 1 cycle/sec. Wavelength, λ (lambda), is the length of one 

complete wave cycle and is often measured in centimeters (cm). 

 

Wavelength and frequency are inversely related: 

      ν  =  c/ λ        where λ= Wavelength (µm), c = Speed of Light. 

and Energy is related to frequency by: 

E =  h ν          where, ν= Frequency (Hz), h = Planck’s constant 

 

The IR region is divided into three regions: the near, mid, and far IR (Figure 2). In 

wavenumbers, the mid IR range is 4000 - 400 cm
–1

. An increase in wavenumber corresponds 

to an increase in energy. This study is performed in the most frequently used mid IR region, 

between 4000 - 400 cm
–1

. 

 

Transmittance, T, is the ratio of radiant power transmitted by the sample (I) to the radiant 

power incident on the sample (I0). Absorbance (A) is the logarithm to the base 10 of the 

reciprocal of the transmittance (T).  

A log10 = (1 / T) = –log10T = –log10I / I0 

The transmittance spectra provide better contrast between intensities of strong and weak 

bands because transmittance ranges from 0 to 100% T whereas absorbance ranges from 

infinity to zero. Often the same sample will give quite different profiles for the IR spectrum, 

which is linear in wavenumber, and the IR plot, which is linear in wavelength. This may 

appear as though some IR bands have been contracted or expanded. 
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Figure 2  The diagram shows the whole electromagnetic spectrum and the position of IR region divided into 

three regions; the near, mid, and far IR.  

 

 

2.1.1.2 Theory of Infrared Absorption 

All atoms in a molecule above absolute zero temperature (0 K) are in continuous vibration 

with respect to each other. A molecule absorbs radiation when the frequency of a specific 

vibration is equal to the frequency of the IR radiation directed on the molecule. Each atom 

within the molecule has three degrees of freedom, which corresponds to motions along any 

of the three Cartesian coordinate axes (x, y, z). A polyatomic molecule of n atoms has 3n 

total degrees of freedom. Of these, 3 degrees of freedom are translational, describing the 

motion of the entire molecule through space. Additionally, there are 3 rotational degrees of 

freedom for a non-linear molecule and 2 rotational degrees of freedom for a linear molecule 

which correspond to the rotations of the entire molecule. Therefore, the remaining 3n – 6 

degrees of freedom are true, fundamental vibrations for nonlinear molecules and for linear 

molecules 3n – 5 fundamental vibrational modes because only 2 degrees of freedom are 

sufficient to describe rotation [77].  
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 Among the 3n – 6 or 3n – 5 fundamental vibrations, those that produce a net change 

in the dipole moment may result in an IR activity and those that give polarisability changes 

may give rise to Raman activity (complementary technique to FT-IR). Some vibrations can 

be both IR- and Raman-active. The total number of observed absorption bands can be 

different and are often reduced from the total number of fundamental vibrations. This is 

because some modes are not IR active and a single frequency can cause more than one mode 

of motion to occur. Conversely, additional bands are generated by the appearance of 

overtones (integral multiples of the fundamental absorption frequencies), combinations of 

fundamental frequencies, differences of fundamental frequencies, coupling interactions of 

two fundamental absorption frequencies, and coupling interactions between fundamental 

vibrations and overtones or combination bands (Fermi resonance). The intensities of 

overtone, combination, and difference bands are less than those of the fundamental bands. 

The combination of all factors creates a unique IR spectrum for each compound [78].   

 
Table 1 An example of atoms as point objects with corresponding degrees of freedom. 

 

 

molecule translational rotational bond length bond angle 

C 3 0 0 0 

O 2 3 2 1 0 

H 2 O 3 3 2 1 

 

 Vibrations can be in the form of bonding vibrations (the number of chemical bonds), 

bending vibrations (change of bonding angles), torsional vibrations, out-of-plane vibrations, 

wagging scissoring etc. Infrared radiation is absorbed and the associated energy is converted 

into these types of motions. Table 1 gives an example of atoms, as point objects that have no 

dimension and hence no moment of inertia and therefore, cannot have rotational degrees of 

freedom. Besides three translational and one vibrational degrees of freedom, a diatomic 

molecule can only rotate rigidly about its center of mass, since it has no cross sectional 

dimension (a bond is idealized as having no thickness). For larger molecules, such as water, 

there can be an oscillation of the bond angle [78]. 

Excitations of the vibrational modes of molecular bonds occur when the molecular 

orbitals absorb photons with infrared wavelengths. A group of these wavelengths are listed 

in Appendix B; Table 22. For example, carbon dioxide CO2 is a linear three atomic molecule 

http://www.rwc.uc.edu/koehler/biophys/1c.html
http://www.rwc.uc.edu/koehler/biophys/2g.html
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that has 4 vibrational degrees of freedom. H2O is non-linear also having three atoms and has 

3 degrees of freedom. These degrees of vibrational freedom occur when each bond acts like 

a spring and carries with it potential and kinetic energy (obeys Hookes law) [79]. Each 

normal mode has its own quantum number and is independent of the other modes.  

 

2.1.1.3 The interpretation of infrared spectra  

Interpretation of vibrations of a polyatomic molecule is complex. The determination of the 

reduced mass of a specific normal mode for larger molecules is increasingly complex. 

However, partitioning and identifying functional groups within a molecule gives valuable 

information and a good approximation about its composition.  

 The interpretation of infrared spectra can be achieved by correlation of absorption 

bands in the spectrum of an unknown compound with the known absorption frequencies 

characteristics for particular types of bonds and functional groups. The most important 

factors sought for elucidation of structure are Intensity (weak, medium or strong), shape 

(broad or sharp), and spectral position (cm
-1

) in the spectrum. For example, X-H stretching 

vibrations due to the light hydrogen atom are in good approximation independent of any 

other vibrations and are found in the region of 3400cm
-1

, and if an O-H bond is present, a 

broad peak is observed in this region. A C=O group with two sharp intensity peaks (one 

longer than the other) would be absorbed around 1715± 100cm
-1

 due to asymmetric and 

symmetric stretching. The four important regions of the IR spectrum are shown Appendix B; 

Table 23, Figure 69. 

 For complexed biological systems little can be understood by simply looking at the 

spectra alone as all spectra will show broad contours in a similar shape due to the typical 

composition of a biological cell (e.g. cells, nuclei, proteins and nucleic acids are present in 

all organisms). It is more practical to incorporate multivariate statistical analyses (MVA) 

methods to help seek trends in the data and to aid interpretation; one such technique is 

principal component analysis (PCA).  

Spectral fingerprints, regardless of the means of acquisition, are highly complex, 

representing the sum of all compound present in a sample. In general, it is very difficult to 

identify, let alone quantify, individual compounds. The introduction of group frequencies 

allows the identification of structural elements of a molecule and makes IR spectroscopy an 
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important tool for the identification of molecular structure and for quantitative analysis 

http://www.rwc.uc.edu/koehler. 

 An IR spectrum represents a fingerprint of a sample with absorption peaks which 

correspond to the frequencies of vibrations between the bonds of the atoms making up the 

material. However, each different material is a unique combination of atoms and no two 

compounds produce an identical spectrum. Therefore, IR spectroscopy can result in a 

positive identification (qualitative analysis) of every different kind of material. In addition, 

the amplitude of the peaks in the spectrum is a direct indication of the amount of material 

present. With modern software and signal processing algorithms, IR spectroscopy is an 

excellent tool for rapid high throughput quantitative chemical analysis [80]. FT-IR 

Spectroscopy is widely employed in metabolomics for initial finger and footprinting 

analysis.  

 

 

2.1.2 Gas chromatography – mass spectrometry in metabolomics 

Gas chromatography mass spectrometry (GC/MS) is a hyphenated analytical platform 

widely employed in the field of analytical science and metabolomic studies for the analysis 

of volatile organic compounds [81]. The GC is employed as front end separation source 

where complex chemical samples are fractioned into simpler components via interactions 

with both the stationary (analytical column) and mobile phases (carrier gas). The type of 

stationary phase employed is dictated by the chemical nature of the compounds (i.e. polarity, 

this is different for fat, proteins etc) and its sample matrix. A small volume of liquid sample 

(1-5 μL) is injected into a high temperature, pressurised injection port assembly causing it to 

immediately vaporise. The sample is then deposited onto the top of the analytical column 

under the influence by the carrier gas, it then migrates through the column as it does 

individual components within the sample will interact with the stationary phase at varying 

degrees. The separation of each individual component within the sample mixture will be 

more pronounced and eventually separates into individual discrete bands. These are then 

eluted from the analytical column. Each band/peak represents an individually resolved 

component within the sample mixture. The eluents are then ionised using an electron impact 

source generating a molecular ion and is then introduced into the mass spectrometer. 

Molecular ions generated are usually unstable and therefore can undergo self fragmentation 



Chapter 2                                                                                                                              Materials and Methods 

51 

 

into smaller sub units. The resulting ion fragments are then detected based on their mass to 

charge ratio (m/z) within the MS producing a mass spectrum of the eluent peak. A 

fragmentation profile is generated for each eluted peak within the sample; the profile is 

highly characteristic and indicative of the original parent molecule. Further examination of 

the isotopic ratios, distribution and composition of these ion fragments, can yield detailed 

significant chemical information regarding the chemical structure and functional groups 

present. The fragmentation profiles are then matched against a known mass spectral library 

such as NIST08 [82] using AMDIS (http://www.amdis.net/) to aid in the identification of the 

unknown compounds.  

 

2.1.2.1 Chemical derivatisation   

Most biofluids and tissue are involatile and this necessitates additional sample processing 

steps to convert the sample, amenable to GC-MS analysis chemical derivatisation is 

employed to achieve this. This method transforms molecules to give them a volatile 

characteristic thus reducing polarity allowing analysis by GC-MS [83]. In smaller molecules 

low volatility may be the result of strong intermolecular attraction between the polar groups 

present [84]. Polar groups such N-H, O-H and S-H groups undergo hydrogen bonding and 

have a significant contribution towards the intermolecular attraction. By replacing the active 

hydrogen in those groups through alkylation, acylation or silylation will dramatically 

increase its chemical volatility particularly in compounds with multiple polar groups. Bulky, 

nonpolar silyl groups such as CH3 are often used for this purpose. This method also serves to 

increase the quality of analysis by improving the chromatographic profiles of the chemical 

compound and overall resolution of the analysis [83].  

 

2.1.3 Microarray: a source of high-throughput biological datasets 

Deoxyribonucleic acid (DNA) is the hereditary molecule of all cellular life forms. Found 

inside the nucleus of a cell, it stores and transmits genetic information. The concept of 

“gene” is simply a piece of this DNA, yet encoded in so many different ways can depict a 

phenotype that distinguishes one from another. The complete set of DNA in any cell of an 

organism is called its genome. However, the genome is only a source of information. In 

order to function, it must be expressed. Gene expression occurs in two stages. First, DNA 

http://www.amdis.net/
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(gene sequence) is transcribed to produce an RNA sequence through a process called 

transcription. Next, this messenger RNA, or mRNA travels from the nucleus to the 

cytoplasm. Each gene sequence in DNA that codes for a protein is expressed as a sequence 

in mRNA. The phrase “gene expression” in quantitative terms means the amount/abundance 

of mRNA present inside the cell. The mRNA sequence is then converted to proteins through 

a process called translation.   

Microarray technologies allow the examination of gene expression (or study of the 

transcriptome) on the scale of a genome when an organism or cells experience a changing 

status thus providing a practical method for measuring the expression level of thousands of 

genes simultaneously. A microarray is typically a glass slide on to which DNA molecules 

are fixed in an orderly manner at specific locations called „features’ or ‘probes’. There are 

two types of microarrays; oligonucleotide microarrays based on Affymetrix technology 

(single-channel) that uses photolithography-directed combinatorial chemical
 
synthesis to 

manufacture its GeneChips, the other type is a spotted microarray which is based on cDNA 

microarray technology [85]. Both these microarrays are based on the mechanisms of DNA 

hybridisation; a process of combining complementary single stranded nucleic acids into a 

single molecule. Two perfectly complementary sequences of nucleotides bind to each other 

under normal condition - a process known as annealing. The microarray contains an array 

series of thousands of microscopic probes of DNA oligonucleotides attached to a glass or a 

silicon chip. Each probe contains picoMoles of a specific DNA sequence [86]. This can be a 

short section of a gene that is expressed in the cell. The oligonucleotide microarrays based 

on Affymetrix technology synthesize small 20-25mer sequences on the probe. A set of 5-15 

probes target a 100 to 200 base pair segments from a known mRNA. These are called „probe 

sets.‟ Affymetrix GeneChip arrays have multiple probes associated with each target. The 

probe set can be used to measure the target concentration and this measurement is then used 

in the downstream analysis to achieve the biological aims of the experiment, e.g. to detect 

significant differential expression between conditions, or for the visualisation and/or 

clustering of data. 

 In single-channel microarrays, the arrays are designed to give estimations of the 

absolute levels of gene expression. A strength of the single-dye system lies in the fact that an 

aberrant sample cannot affect the raw data derived from other samples, because each array 

chip is exposed to only one sample. Another benefit is that data can be compared to arrays 
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from different experiments; the absolute values of gene expression may be compared 

between studies conducted months or years apart or labs apart around the world.  
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2.2 Data analysis 

2.2.1 An essential tool for Metabolomics Data analysis: Chemometrics  

Modern analytical instruments can generate a large amount of data in a short time. 

Metabolomics techniques enable high-throughput application to separate complex mixtures 

with several hundreds of chemical compounds, and can provide spectra of the compounds 

for structure elucidation. These analytical techniques provide as powerful tools to analyse 

various types of samples and give a very detailed insight into the nature of the sample. 

However, efficient data analysis methods to extract useful and interpretable information 

from the huge amount of data are a challenge. Chemometrics is the subject of using 

statistics, mathematics methods to solve chemical and biological problems [87]. In addition 

to classical statistical approaches that can be applied to the data sets such as student's t-test, 

ANOVA chemometrics also employed various multivariate methods for analysing complex 

data sets which has more advantages in terms of sensitiveness, robustness and wider 

application prospect. Nevertheless the goal of these statistical or machine learning methods 

is to identify the biochemicals that best represent the most significant changes between the 

groups in the study. 

The basic principle of chemometrics: given the data under consideration, utilise the 

methods of mathematics and statistics to help with the aim of extracting and interpreting 

information for modeling and prediction [87]. Chemometrics deals with experimental 

design; signal processing; pattern recognition; calibration and evolutionary signal processing 

and curve resolution [88]. This is a huge field and certain sections are beyond the scope of 

this study. Experimental design, signal processing and pattern recognition techniques are 

discussed in this thesis. 

 

2.2.2 Pattern recognition in complex data sets 

Pattern recognition techniques can be categorised into two types: unsupervised pattern 

recognition and supervised pattern recognition [89]. Unsupervised pattern recognition plays 

the most important role in exploratory data analysis since it does not require much prior 

information. The information provided by unsupervised pattern recognition is “data driven”, 

i.e. the pattern revealed by unsupervised techniques purely depends on the data used for 
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modeling/clustering and prediction is often not of concern. There are two main tasks for 

unsupervised pattern recognition: (1) data visualisation and (2) cluster analysis; allowing 

examination of the dominated underlying trends within the data set. Therefore, it can be 

considered as a discovery data analysis tool. 

 

2.2.2.1 Unsupervised pattern recognition:  Data visualisation & cluster analysis 

Perception of patterns within data can best be captured by visualisation of data points 

directly through a 2-D or 3-D scatter (score) plot. Since the human eye can only perceive at 

most in 3 dimensions, it is not easy to directly visualise data with more than 3 dimensions. It 

is often desirable to summarise such complexity by projecting the data points into a lower 

dimensional subspaces defined by a few “latent variables”. Such process is under the name 

of  “component analysis” [89]. The most popular component analysis method, is principal 

component analysis (PCA) [90, 91]. This has become the most commonly used data 

visualisation and modeling method in Chemometrics. PCA projects the original multivariate 

data points into a lower dimension space defined by a subset of mutually orthogonal axis 

(principal components, PC) while still preserving the major variations of the data set. In 

PCA, the data matrix is decomposed into the product of 2 matrices named scores matrix and 

loadings matrix[91]. The scores matrix records the relative position of the samples while the 

loadings matrix records the contribution of each variable to the pattern shown in the scores 

matrix. The modeling importance of each principal component (PC) is measured by the 

percentage of total explained variance (TEV) by the PC. If, for example, the sum of TEV of 

the first two PC is high (e.g. 90% of the total variance) then the scatter plot of PC1 vs. PC2 

is a good two-dimensional representation of the original data structure. PCA can also be 

used for predictive modeling.  

Another important area of unsupervised pattern recognition is „cluster analysis.‟ The 

objective of cluster analysis is to partition a given data set into a small number of groups 

(clusters) in terms of similarity as such that data points in the same cluster are more similar 

to each other relative to than the other data points in different clusters further away. One well 

known cluster analysis algorithm is Hierarchical Cluster Analysis (HCA) [92]. The clusters 

identified by such cluster analysis can be further validated by supervised pattern recognition.  
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2.2.2.2 Supervised pattern recognition  

Supervised pattern recognition is used for the purpose of predictive discrimination and 

calibration purposes, where it aims to correctly associate a known response to the correct 

output with minimal error [92]. Given a finite number of classes to be separated, a decision 

rule (classifier) is derived based on a predefined group of samples with known class 

members (training set) and such a rule has capability to predict the class membership of 

unknown samples (test set). The accuracy of the prediction model/classifier is assessed by its 

„generalisation performance‟ of the classifier. To successfully solve a supervised pattern 

recognition problem, two types of problems need to be considered: underfitting and 

overfitting. Underfitting refers to the predictive model not having sufficient complexity to 

fully detect the entire systematic trend in the data set and therefore not being able to give an 

accurate prediction. In contrast, the problem of overfitting refers to an over-complex 

predictive model. Not only the systematic trend but also noise has been modelled. 

Overfitting is particular dangerous in practical applications because it can give a perfect 

prediction on the training set while giving very high prediction errors on the unknown test 

set. Linear Discriminant Analysis (LDA) and its variants, Discriminant Function Analysis 

(DFA) [92, 93]; regression models such as Partial Least Squares for discriminant analysis 

(PLS-DA) [94] and Artificial Neural Networks (ANNs) [95] are some widely used 

supervised pattern recognition methods. 

 

2.2.2.2.1 Principal component-discriminate function analysis (PC-DFA) 

DFA, also known as canonical variate analysis (CVA) was used in Chapter 3 and 4. Since 

DFA cannot handle the problem of colinearity well which is common to almost all 

metabolomics data, it is necessary to "clean" the data beforehand by using PCA. Thus in 

practical use, PCA and DFA is usually applied in a consecutive manner and such 

methodology is under the name of PC-DFA. PC-DFA/CVA is a form of supervised pattern 

recognition as it is applied with a priori knowledge of the class membership of each sample. 

PC-DFA algorithm is based on the Manly principles [96] and it aims to minimise the within 

group variance while maximising the between group variance (by maximising its Fisher ratio 

[97, 98]. The Fisher ratio is defined as the class to class ratio variation divided by the sum of 

the within class variation:  
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((M1-M2)
2
)/(V1+V2),  

where M1 and M2 are mean of Class 1 and Class 2 and V1 and V2 are the variances of the 

Class 1 and Class 2. This method has been extensively applied in metabolomics for the 

analysis of spectroscopic data (Raman and FT-IR) [31, 99, 100]. Discrimination of salt stress 

in tomatoes [101], identification of urinary tract infection bacteria [31] and recently applied 

to the understanding of plant-pathogen interactions [102].  

A PC-DFA/CVA model is generated by using a portion of the data as a training set to 

initially construct the PC-DFA model, its generalisation performance is then assessed by the 

use of a test set, not previously used in the generation of PC-DFA model, this test set is then 

projected onto the cluster space, by examining the Euclidean distance of projected data point 

of the test to that of the training test within cluster space it accuracy can be evaluated, 

typically a third validation set (data points not previously used in either the training and test 

set)  is used to further check the robustness and validity of the PC-DFA model and guard 

against over fitting of the data set.  The PC-DFA model can be optimised by adjusting the 

number of PC used to increase its generalisation performance. The trends or difference 

identified in the model are through the loading of DFs and this is followed by validation 

using other methods or normally confirmed using univariate statistics.  

The Euclidean distance between a priori group centers in DFA space using the first 

two functions (DF1 and DF2), was used to construct a similarity measure, and these distance 

measures were then processed by an agglomerative clustering algorithm to construct a 

dendrogram. 

 

2.2.2.2.2 ANOVA-PCA, a semi-supervised approach 

ANOVA-PCA can be considered as a method somewhere in the middle between 

unsupervised and supervised methodologies. A main drawback of PCA is that it is 

completely variance driven and in this respect, PCA can be disturbed by the variance caused 

by the variables/metabolites which are not affected by the biological experiment. It is 

possible that the most significant PCs obtained from PCA are not related to the aim of the 

study simply because that there are other factors which cause more variances than the factors 

which the experiment was designed to investigate did. Analysis of variance-principal 

components analysis (ANOVA-PCA) is developed to cope with such problem by actively 

incorporating the experimental design into the PCA. 
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ANOVA-PCA creates a series of matrices which contain the means of the different 

levels of the factors under investigation and interactions of these factors according to the 

experimental design, to which are added the residual errors [103]. PCA is then applied to 

each of these mean plus error matrices in order to evaluate the significance of the effects 

caused by each factor against the residual error. Construction of submatrices of the data for 

each factor can be more easily interpreted, visually and statistically, by PCA. Similar to 

PCA, scores and loadings are obtained, which can be used to study the existence of 

groupings of individuals and to evaluate the importance of the initial variables in the 

definition of the effects and the sources of residual variation and to compare it to the 

different factors in the experimental design. This procedure is not related to the ANOVA-

based method that is often used to detect significant variables prior to a multivariate analysis 

such as PCA. Although this method also uses the labeling information, the key difference 

between ANOVA-PCA and supervised methods is that ANOVA-PCA "encourages" the 

PCA to discover the variation of interest by use an ANOVA like data-preprocessing and thus 

increase the chance of discover the variation of interest in the first or first a few PCs while 

supervised methods seek an optimal separation boundary between known classes. As a 

result, the risk of over-fitting of ANOVA-PCA is lower than that of supervised methods 

because it makes no attempt to separate the samples according to their membership 

information. 

The reason ANOVA-PCA is used in this study (2.3.2) is that there are many different 

types of variations in the data and in many cases only a small subset of variation are of 

interest. The variance that PCA considered to be important (i.e. the trends shown in the first 

a few PCs) are not necessarily the ones what we want to see and ANOVA-PCA appeared to 

be much more effective than PCA in revealing the difference between different groups of 

samples. 

 

2.2.3 Microarray data analysis 

The vast numbers of publications that have reported methods for microarray data analysis 

follow differing analytical strategies. Microarray data analysis is a complicated process as 

this technology is associated with many significant sources of experimental uncertainty, 

which must be considered in order to make confident inferences from the data. However, 

there is no standardised microarray data analysis pipeline but what is available are 
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opinionated analysis pipelines based on experience, nature of biological question in the 

study, suitability of method to the experimental design. Following image processing, and 

transformation using the proprietary Affymetrix image analysis software to generate CEL 

files (and other files e.g. CHP, DAT), discovery of relationships between genes can be 

pursued in many ways.  

Affymetrix microarrays are designed to give estimations of the absolute levels of 

gene expression. Relative intensities of each probeset can be used in ratio-based analysis to 

identify up-regulated and down-regulated genes. Expression ratios are the primary form of 

comparison. Background correction and quantile normalisation using Robust Multi Array 

(RMA) [104] and GeneChip Robust Multi Array (GC-RMA) are popular methods used. 

Exclusion of MM data in RMA reduces noise, but loses information. Inclusion of adjusted 

MM data in GC-RMA reduces noise, but retains MM data.  

Like metabolomics data, analysis of gene expression data can be classified into two 

different types; unsupervised and supervised learning. In the case of unsupervised learning 

(exploratory data analysis), the expression data is analysed to identify patterns that can group 

genes or samples into clusters without the use of any form of a priori knowledge. While in 

supervised learning the use of annotation is incorporated to create genes or sample clusters 

in order to identify patterns that would be characteristic of respective clusters. Pattern 

recognition methods have been discussed in 2.2.2.  

Among the most common and important analysis tools is data visualisation using 

heatmaps. Gene expression data is converted to a colour code for visualisation. Common 

practice uses red for up-regulated genes, green for down-regulated genes, and black for no 

change. For simultaneous analysis of a set of microarrays, the data is clustered in terms of 

genes or arrays using different clustering algorithms and the output is visualised by a 

heatmap. Agglomerative hierarchical clustering is commonly used for the analysis of gene 

expression data [92]. The representation of this hierarchy is a dendrogram. This can help 

separate and identify locations of different clusters. Other popular clusters algorithm such as 

Partitioning Around Medoids (PAM) algorithm [105] and k-means [106] are also widely 

used in gene expression data analysis..  

 Arbitrary thresholds such as > 2 fold change (FC) have been used to rank/identify 

genes of interest. Other common methods performed are Pearson‟s correlation coefficient; 

distance metric used in various clustering algorithms including HCA and rank correlation 
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coefficient. Univariate tests can also be applied. Significance analysis of microarray (SAM) 

performs thousands of T-tests efficiently [107]. 

 A number of methods for finding pairs of co-expressed genes, based on correlation or 

measures of mutual information have been used to understand gene regulation [108-112]. 

There are also model based approaches such as Bayesian models which have been very 

successful and are now used extensively [113-118]. Such models explicitly represent and 

reason about biological entities in a modular way, as well as capture the mechanistic details 

of the underlying biological systems. Puma: Propagating Uncertainty in Microarray Analysis 

[119], one such package incorporated the Gamma Model of Signal [120]. These packages 

are freely available via the R-Bioconductor software suite [121]. Bioconductor is an open 

source and open development software project for the analysis and comprehension of 

genomic data. It is based primarily on the statistical R programming language. Other, 

emerging new methodologies for gene expression analysis are making use of Boolean logic 

[122]. Despite this each method has its pros and cons for analysing noisy data.  

Due to experiment errors and noise, there will always be some difference in 

expression between groups. However, it is the size of this difference in comparison to the 

variance (i.e. the range over which expression values fall) that will tell us if this expression 

difference is significant or not. Thus, if the difference is large but the variance is also large, 

then the difference may not be significant. However, a small difference with a very small 

variance could be significant. For example, T-test and ANOVA test return a p-value that 

takes into account the mean difference, the variance and the sample size. The p-value is a 

measure of how likely a particular gene will return if no real difference existed. This is 

called formulating a null hypothesis. A p-value < 0.05 indicates that the chance of this gene 

being different is due to random occurrence and there was in fact no real difference is small 

and therefore the gene could be considered significantly different in the group expression 

data. However, the p-value itself is only valid to a single test. When the statistics test has 

been performed on multiple targets, the chance of having false positive discovery increases 

along with the number of the tests been performed. For example, choosing a threshold of 

0.05 means there is a 5% chance (1 in 20) the returned result is false positive in a single test, 

However, if one perform such test on 2 different genes (assuming the two genes are 

independent to each other) using the same p-value threshold, the chance of at least one of 
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these 2 being false positive becomes 1-0.95×0.95=0.0975. This issue is known as the 

multiple testing problem [123]. 

A number of approaches to overcoming this multiple testing have been suggested. 

These include, assigning an adjusted p-value to each test, or choosing a lower p-value 

threshold e.g. 0.01 or 0.001. The Bonferroni correction [124] is also a popular method, but 

often too conservative. While the method reduces the number of false positives, number of 

true discoveries is also axed. The False Discovery Rate (FDR) approach determines adjusted 

p-values for each test. However, this method controls the number of false discoveries in only 

the significant values, hence it is less conservative than Bonferroni approach and is a 

preferred method to truly identify significant results. An FDR adjusted p-value is now 

termed the q-value. 

When doing lots of tests, as in a microarray experiment, it is more intuitive to 

interpret p and q values by looking at the entire list of values rather that looking at each one 

independently. In this way, a threshold of q < 0.05 has meaning across the entire experiment 

indicating how many false positives can be expected by using this cut-off. 
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2.3 Materials and Methods 

 

2.3.1 Whole-cell fingerprinting using FT-IR (Chapter 3) 

2.3.1.1 Experimental design  

Patient Recruitment – Study 1 

All cases involved in the study were diagnosed to have advanced stage of DD, which was 

determined by the presence of nodule and cord causing contracture of the 

metacarpophalangeal joint and the proximal interphalangeal joint in the involved hand. The 

mean age of the patients participated in Study 1 was 67 ± 10 years. The exact age and 

demographics for all patients can be seen in Appendix B, Table 24. All patients were male 

(except DD13; female) caucasians who had not undergone any previous surgical or non-

surgical treatments.  

 

Patient Recruitment – Study 2 

Four DD cases and five controls subjects (CTD) were included in the study. All recruited 

DD cases were diagnosed with advanced stage of DD, which was determined clinically by 

an experienced hand surgeon. All patients presented flexion contracture of the 

metacarpophalangeal joint and proximal interphalangeal joint as well as presence of nodules. 

All DD patients in this study were male Caucasians and only one (DD2) had undergone 

previous surgical treatment. The mean age was 60 ± 12 years. Four of the five control 

subjects included in the study were Caucasians, and one being Asian Indian. Three of the 

control subjects were male and two were female. The average age of the control subjects was 

57 ± 19 years. The study was approved by the institutional review board for human subjects‟ 

research. 
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Table 2 Demographic details from Dupuytren cases in Study 1 and 2. 

Patient ID Age Sex

DD8 77 M Nodule Cord Fascia

DD9 58 M Nodule Cord Fascia Fat Skin

DD10 76 M Nodule Cord Fascia

DD11 67 M Nodule Cord Fascia Fat Skin

DD12 52 M Nodule Cord Fascia Fat Skin

DD13 74 F Nodule Cord Fascia Fat Skin

Patient ID Age Sex

DD16 46 M Cord Fascia

DD17 67 M Nodule Cord Fascia Fat Skin

DD2-R Nodule Cord Fascia Fat Skin

DD18 68 M Nodule Cord Fat

CT4 67 M Fascia* Fat* Skin*

CT5 78 M Fascia* Fat* Skin*

CT6 62 F Fascia* Fat* Skin*

CT7 50 F Fascia* Fat* Skin*

CT8 28 M Fascia* Fat* Skin*

*CTD patient, external control

Study 1

Anatomical location

Anatomical location

Study 2

 

 

Samples Collections 

DD tissue phenotypes (nodule, cord, unaffected transverse palmar fascia, subcutaneous fat 

superficial to nodule and SON) were carefully dissected using magnifying loupes from each 

patient at the time of surgery (Figure 3(a), Table 2). Three tissue biopsies, including the skin, 

subcutaneous fat and palmar fascia (transverse carpal ligament), were obtained from 

individuals undergoing carpal tunnel release (Figure 3(b). Each biopsy was bisected for 

either 1) cell culture processing or total ribonucleic acid (RNA) extraction or 2) for cell 

culture processing and histology tissue processing. The biopsies used for establishing tissue 

cultures were thoroughly washed for 15 min in 1× Dulbecco‟s phosphate buffered saline 

(Lonza, Belgium) and 1% penicillin/streptomycin (Lonza, Belgium), at room temperature. 

For histological analyses to determine tissue and cell morphology, the biopsies were stored 

in formalin at 3
o
C, and processed within 48 hrs. The harvested biopsy samples for total 

ribonucleic acid (RNA) extraction were kept in RNAlater (Ambion, UK) at 4
o
C overnight 

and stored at -80
o
C until required for subsequent gene expression analysis. 
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Skin

Fat

a)

b)

 

Figure 3 (a) The five sites from the diseased hand. The Dupuytren‟s disease-associated tissues that are 

subjected to analysis in this study. Five different Dupuytren‟s disease-associated tissues in each patient‟s hand 

are collected, the normal fascia (unaffected transverse fascia), palmar nodule and cord, skin overlying nodule, 

and fat. 3 (b) The palm of an unaffected individual used as control. The palm of the hand of a control 

subject, where the overlying skin has been removed to demonstrate the position of the palmar fascia harvested. 

Skin, palmar fascia (transverse carpal ligament) and fat were obtained from control subjects, individuals 

undergoing carpal tunnel release. 
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2.3.1.2 Specimen Processing & Tissue/Cell Culture 

To establish the tissue cultures, the biopsies were further dissected into small pieces, roughly 

1mm
3
 in size, with sterile scalpels. The tissue pieces were incubated in 0.25-5% collagenase 

A solution (Roche Diagnostics, GmBh, Germany) at 37
o
C for 2.5 to 3 hours. The 

collagenase activity was inhibited using fibroblast culturing media (Dulbecco‟s Modified 

Eagle‟s Medium 3 (Lonza, Belgium) supplemented with 10% heat-inactivated fetal bovine 

serum (Lonza, Belgium), 1% penicillin/streptomycin (Lonza, Belgium) and 1% non-

essential amino acids (Lonza, Belgium)). The digested samples were centrifuged at 1,500 

rpm (approximately 400 ×g) for 5 minutes. Each pellet was re-suspended in 5mL fibroblast 

culturing media, seeded to 25cm
2
 culturing flask (Corning, UK) and incubated at 37

o
C in 5% 

CO2. The culturing media was replaced every 48 hours and cell passages were carried out at 

approximately 80-90% confluency using trypsin-ethylene diamine tetraacetic acid (200mg/L 

ethylene diamine tetraacetic acid, 500mg/L trypsin; Lonza, Belgium). The first sub-culturing 

(passage) was performed on cultures that were grown directly from the biopsies. These were 

called passage 0 (P0). Following the first centrifugation of cells, ½ of the pellet obtained was 

seeded onto 1 x 75cm
2
 in study 2 (now called P1 cells) and the ½ pellet was frozen down in 

DMSO containing freezing media. (In Study 1, all cells from the pellet were passaged onto 

new flasks for the first time (4 x 25cm
2 

in equal amounts) and no sample from the previous 

passage (P0) was retained. From here on further passaging was performed on ¼ of the cells 

grown from the current passage (called P1) and ¾ was kept in freezing media containing 

DMSO into 3 separate nunc tubes equally and transferred into Mr Frostie at room 

temperature. These were then stored at -80ºC until required for FT-IR analysis. During the 

incubation period the fibroblasts purity was assessed by morphological observation under an 

inverted phase contrast microscope. The spent culture medium containing all excreted 

metabolites (footprint) were kept in 15 mL falcon tubes and stored at –80°C until analysis. 

The approximate % confluency (85-90%) and days each sample was passaged was recorded. 

All passages of the cell cultures were used in this study. The steps involved in sample 

preparation to sample interrogation are illustrated in Figure 4. All work was conducted using 

a single production batch of serum. 
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Figure 4 A diagram to show the steps undertaken from tissue processing to sample interrogation by FT-IR. 
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Morphological Assessment and Haemocytometer Counting 

Morphological changes of DD and CTD fibroblasts in all groups were monitored under an 

inverted phase contrast microscope during the tissue culture experiments. At the end of each 

passage, cells were washed with phosphate buffered saline (PBS), and detached from the 

culture dish by 0.25% trypsin. Cell number was then counted through direct visualisation 

using a haemocytometer. Prior to sub-culturing, 20 μL of cell suspension was then mixed 

with 20 μL Trypan Blue (Nacalai Tesque, Inc.), a dye exclusion that leaks into cells with 

damaged plasma membranes. In this way, the dead cells were stained blue, allowing the 

living and the dead cells to be distinguished. A 10 μL amount of this solution was then 

placed in a haemocytometer and the number of living cells counted, while being viewed with 

a light microscope. Figure 70 (i) and (ii) in Appendix B show confluent monolayer images 

for nodules and cords fibroblast samples. Average no. of cells per T25 cm
2
 flask were 600-

650,000 for nodules, 400-500,000 for cords, 350-400,000 for the internal control fascia, 400-

500,000 for the subcutaneous fat and 600-670,000 for the skin overlying the nodules. The 

average number of cells per flask and the number of days between each passage for each 

sample was recorded.  

 

2.3.1.3 FT-IR-Fingerprint Sample Preparation 

15µL aliquots of the sample cells dissolved in 50µL DPBS suspensions were evenly applied 

onto a polished silicon (Bruker, Coventry) microplate containing 96 wells. Each sample was 

spotted in triplicates in a random arrangement. Prior to analysis the samples were oven dried 

at 50°C for 30 min. Samples were run in triplicate. The FT-IR instrument used was the 

Bruker IFS28 FT-IR spectrometer (Bruker Spectrospin Ltd., Coventry, United Kingdom) 

equipped with a mercurycadmium-telluride detector cooled with liquid nitrogen. The silicon 

plate was then loaded onto the motorised stage of the FT-IR.  

 The IBM-compatible personal computer used to control the IFS28 spectrometer was 

programmed (using Opus, version 2.1, software running under IBM O/S2 Warp provided by 

the manufacturers) to collect spectra over the wavenumber range of 4,000 cm
–1

 to 600 cm
–1

 

at a rate of 20 s
–1

. A spectral resolution of 4 cm
–1

 was used. To improve the signal-to-noise 

ratio, the spectra were co-added and averaged (Study 1; 468 and Study 2; 927). Each sample 

was thus represented by a spectrum containing 1764 points and spectra were displayed in 

terms of absorbance calculated from the reflectance-absorbance spectra using the Opus 
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software. The combination of both biological and analytical replicates was employed in the 

FT-IR analysis to measure the biological variance in the data. The employment of „analytical 

or machine replicates‟ may be averaged to reduce the heterogeneity of the biological 

replicates in the analysis of the data. An empty well was used to take a reference background 

measurement.  

 

2.3.1.4 FT-IR-Footprint Sample Preparation 

20uL of the secreted metabolites collected in spent media were spotted directly onto the 

Silicon microplates, oven dried and subjected to FT-IR as above.  

 

2.3.1.5 FT-IR data pre-processing and multivariate statistical analysis 

Preprocessing  

All statistical analyses were performed using Matlab R2010a (MathWorks, Inc., MA). The 

ASCII data were imported into Matlab. To minimise problems arising from baseline shifts, 

empirical pre-processing techniques to reduce/eliminate light scattering effects were applied. 

The following procedures in Matlab (methods 1 & 2) were implemented. Method 1 The 

spectra were first scaled / normalised so that the smallest absorbance was set to 0 and the 

highest absorbance was set to +1 for each spectrum. These normalised spectra were then 

detrended by subtracting a linearly increasing baseline from 4,000 to 600 cm
-1

; and finally, 

the smoothed first derivatives of these normalised and detrended spectra were calculated by 

using the Savitzky-Golay algorithm [125]. Method 2 – (yielded best separation between 

tissue phenotypes) To reduce/eliminate light scattering effects an empirical pre-processing 

technique (extended multiplicative scatter correction (EMSC) [126], order 4) was applied to 

the spectra. These normalised spectra were then detrended by subtracting a linearly 

increasing baseline from 4,000 to 600 cm
-1 

where necessary. This method was also tested 

using PyChem 3.05a [127]. 

 

Cluster analyses  

Data were grouped into four categories (the samples included are listed in Tables 25-30 in 

Appendix B)) listed in combinations in Table 3 for comparisons using MVA. The pipeline 

used for MVA on the hyperspectral FT-IR data is detailed in Figure 5. To reduce the 
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dimensionality of the multivariate data whilst preserving most of the variance, Matlab (and 

PyChem (3.05a)) [127] was used to perform PCA according to the NIPALS algorithm [91, 

94].  For each PCA performed on the chosen combination of samples, of the original 1764 

spectral points in the respective study, the maximum percentage of the total variance 

retained in the first 20 principal components (PCs) was recorded for supervised discriminant 

function analysis (DFA). 

DFA was employed for samples where PCA was insufficient for clear pattern 

recognition from the scores plot or where the sample and group size was greater than PCA 

could withstand. DFA; also known as canonical variate analysis [96]  then discriminated 

between groups on the basis of the retained PCs that were used as inputs to the DFA 

algorithm with the a priori knowledge of which spectra were replicates.  DFA was 

programmed to minimise „within-group‟ variance and maximise „between-group‟ variance, 

and as this process uses information based on the biological replicates from each sample, it 

does not bias the analysis, allowing any natural trends or time-dependent trajectories to be 

observed.  

 Using PyChem, the Euclidean distance between a priori group centers in DFA space 

using the first two functions (DF1 and DF2), was used to construct a similarity measure, and 

these distance measures were then processed by an agglomerative clustering algorithm to 

construct a dendrogram. 

 

2.3.1.6 Haematoxylin and Eosin Staining 

Histological examination of palmar aponeurosis tissue specimens stained with haematoxylin 

eosin (H&E) to confirm macroscopical differences in DD phenotypes and control were 

performed. The H&E slides from disease and control tissues are shown in Appendix C; 

Figures 71 (i-viii).   
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Table 3: List of categories and the sample set chosen for principle component analyses. 

 

CATEGORY STUDY SAMPLE SET

1 1A, 2A
Differentiation of diseased subsets (nodule, cord) 

and fascia (internal  control) wrt passage number

2 2C
Differentiation of diseased subsets (nodule, cord) 

with fascia (internal  control) and CTD fascia 

(external control) wrt passage number

3 2B
Differentiation of diseased subsets (nodule, cord) 

with fascia (internal  control), fat and SON wrt 

passage number

4 1A, 2A, 2B
Differentiation of individual sites, from all 

passages wrt to individual patient
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Figure 5 A workflow representing the procedure implemented to analyse the samples from Dupuytren‟s 

disease and control fibroblast cell cultures. 
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2.3.2 Metabolic profiling of fibroblasts under oxidative stress using GC-MS 
(Chapter 4) 
 

2.3.2.1 Experimental design 

Patient Recruitment – Study 3 (GC-MS and Microarray Chapter 4 & 5) 

DD patients (n = 8 men) were used in this study. The age range was between 55 and 70 years 

with a mean age of 67 years (SD ±7). Patient recruitment procedure was followed as 

previously stated in Section 2.3.1.1 and demographic information is given in Appendix D. 

Figure 6 illustrates the experimental design for this study and for part of Chapter 5.  

 

Source of Biopsy Tissue Specimens 

Tissue biopsies were obtained from 8 male DD patient having dermofasciectomy: nodules 

from the palm (n = 7), cords from the palm (n = 7); of which 6 nodules and cords were 

obtained from the same individuals. Transverse palmar ligament (internal control; n = 3) and 

SON (n = 4) were also obtained where possible. Biopsies were harvested at the time of 

surgery. Tissue was carefully excised to include merely the diseased or the normal fascia 

without the adjacent adipose/connective tissue. The tissue was then placed immediately into 

DPBS and transported to the laboratory within an hour to establish cell cultures.  

 

2.3.2.2 Experimental Protocol 

Overview 

This protocol describes methodology for quantifying the concentrations of endogenous and 

secreted metabolites in cultured cells using GC-MS. Cell cultures were established for each 

sample in 21% and 1% oxygen concentrations. In this way, each sample acts as its own 

biological control with 3 biological replicates. Many metabolites turn over very rapidly; 

thus, correctly measuring intracellular metabolite concentrations requires the ability to 

sample cells quickly. If not, the measured levels will reflect the metabolic state induced by 

the handling steps leading up to quenching of metabolism, rather than normal cellular 

physiology. As previously described in Section 2.3.1 DD fibroblast are adherent cells. 

Metabolism was quenched with minimal perturbation of the culture via quick aspiration of 

medium, one wash step (4°C) and addition of cold (-75°C) 70% methanol. The solvent 

addition stopped metabolism (initially due to the temperature drop and subsequently by 
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denaturing enzymes) and simultaneously initiated the extraction process by disrupting the 

cell membrane. Sample preparation for GC-MS analysis followed as described below. 

 

DD fibroblasts are cultured ~ 85-90% confluency in T150ml culture 

flasks in  1) 21% O2 and 2) 1% O2

Each sample acts as its own biological  control with 3 biological 

replicates

GC-MS  GC-MS AFFYMETRIX PLUS 2.0 

1. Aspirate Footprinting media 

2. Retain aliquot per flask

3. Syringe filter into centrifuge tubes

4. Snap freeze in liquid N2

5. Store at -80C until analysed

6. Wash with PBS (4oC X 1)

7. Add 70% MeOH (-75C) to quench cell metabolism

8. Harvest cells by scraping

9. Remove cellular biomass by pipette aspiration and collect 

into falcon tubes

10. Extract metabolites through 3 freeze-thaw cycles. Snap 

freeze in liquid N2 and thaw on dry ice

11. Centrifuge to pellet cell debris and collect supernatant into 

pre-weighed falcon tubes

12. Store at -80 C until analysed (All in one go -1 month)

13. Resuspend cell debris iin 1ml HPLC graded water and 

transfer to pre-weighed eppedorfs

14. RNA extraction

15. RNA QC check –Agilent

16. Microarrays - Metabolomics work 

indicates which samples to do arrays on 

(pre & post-hypoxia)

Nodule (N=7) Cord (N=7) Fascia (N=3)     SON (N=4) 

P3,  Controls - 21% O2

Nodule (N=7) Cord (N=7) Fascia (N=3)     SON (N=4) 

P3,  Hypoxic stress 1% O2

1. Footprint 2. Intracellular metabolome 3. RNA

Experimental Design
Parallel metabolomics and transcriptomics exp 

 

Figure 6 Experimental protocol illustrating steps involved in combined extraction method for metabolomics 

and transcriptomic level investigation to extract 1. metabolic footprint 2. intracellular metabolome and 3. RNA 

from same population of cells 

 

Cell culture 

A total of 126 samples were processed and stored. Samples from (passage 1) DD nodules (n 

= 7), cords (n = 7), fascia (n = 3) and (SON (n = 4)) were seeded into T25 cm
2
 culture flasks. 

Upon 90% confluency, samples were passaged into 2 x T75cm
2
 culture flasks. Approx 1-1.5 

million cells were obtained from each T75cm
2
 flask. Upon 85-9% confluent, these were 

subcultured into 6 x 150cm
2
 flasks; (3 x 150cm

2
 in normoxic O2, 3 x 150cm

2
 in 1% O2, 3 

replicates for each sample. DD fibroblasts were grown until 85-90% confluent in a) 21% O2, 

5 % CO2 and b) 1% O2, 5% CO2. A total of 63 flasks were in normoxic culture and 63 in 

hypoxia. Culture medium for conditions (a) and (b) had same formulation i.e. DMEM 
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(500mL) supplemented with L-glutamine (1%), NEAA (1%) and FBS Gold (10%) and 

Pen/strep (1%). Preparation of the 1% oxygen media (termed hypoxic media) is given below. 

For the purposes of these experiments, 21% O2 was regarded as normoxic and 1% O2 as 

hypoxic conditions for the term DD cultures. After 48-72 h, culture medium was replaced 

with fresh equilibrated medium, All work reported was conducted using a single production 

batch of serum.  

 

Preparation of 1 % oxygen (hypoxic) media 

Data: 1 mol of gas = 22.4 L at 25
o
C, hence 23.0 L at 37

o
C.  Therefore the concentration of 

oxygen (O2) in pure oxygen is:  1000/22.4 mM at 25
o
C, 1000/23 at 37

o
C.  Air contains 

approximately 20.8 % oxygen, hence the oxygen concentration in air is:  at 25
 o

C: [O2]air = 

0.208*1000/22.4 mM= 208/22.4=9.3 mM and at 37
o
C: [O2]air = 0.208*1000/23.0 mM= 

208/23.0=9.0 Mm. Oxygen concentration in water at 25
o
C:-  „Water solubility of oxygen at 

25
o
C and pressure = 1 bar is at 40 mg/L water [128]. In air with a normal composition the 

oxygen partial pressure is 0.2 atm. This results in dissolution of 40
 
x 0.2 = 8 mg O2/L in 

water that comes in contact with air. A formula that calculates for 760 Torr pressure and 25 

°C : 8.3 mg O2/L is given in [129-131].  In terms of molarity this gives: [O2] = 8.3/32=0.26 

Mm. We need higher temperature however: For 37°C the formula gives: [O2]= 6.9/32=0.22 

Mm (760 mmHg (Torr), 29.92 in Hg, 14.696 PSI, 1013.25 millibars, hence 1 atmosphere is 

approximately 760 Torr). The ratio in oxygen molarities in gas to water is: At 25°C : 36 and 

at 37 °C : 41. In what follows we assume that this ratio is 40 at all temperatures.  

 

Making use of the head space 

Measure the total volume of the bottle including all the head space.  Let us call this volume 

Vml. 

Make the empty bottle anaerobic with N2 gas.  Add a volume of X = x.V ml to the bottle.  

Make sure that the head space is anaerobic by using N2 gas.  Close the bottle with an oxygen 

impermeable cap. We assume that this is done with medium at 37°C.  Now we calculate X:  

 

The total amount of oxygen in the bottle before equilibration is: 

 

 

http://en.wikipedia.org/wiki/MmHg
http://en.wikipedia.org/wiki/Torr
http://en.wikipedia.org/wiki/InHg
http://en.wikipedia.org/wiki/Pounds_per_square_inch
http://en.wikipedia.org/wiki/Bar_(unit)
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Two-thirds of the bottle was filled with aerobic medium and the headspace made anaerobic 

with N2. 

 

Metabolite quenching & extraction and obtaining RNA for microarrays 

Isolation of the exometabolome, intracellular endometabolites and total RNA from the 

samples was achieved using a novel combined extraction method developed recently and 

tested on neuroblastoma cell lines [132]. This method permits the isolation of three samples 

from the same population of cells: metabolic footprint, intracellular metabolites and RNA. 

Appropriate changes to this protocol were made for optimal extraction of glycolysis 

intermediates without compromising on RNA integrity or quality. 

 

Isolation of the Metabolic Footprint and Intracellular Metabolites 

Cells were grown from each biological sample until 85-90% confluent. Metabolic footprint 

samples containing exometabolome (secreted metabolites) were obtained from 1mL of used 

growth media. The media was aspirated from cultures, sampled directly from the flask and 

passed through a 0.2µm filter to remove any cells and collected in 2mL pre-labeled 

Eppendorf tubes. The media was immediately snap-frozen in liquid nitrogen, placed in dry 

ice and then stored at -80
o
C until ready for GC-TOF-MS analysis.  

 Following the collection of footprint, the remaining medium was aspirated and the 

cells were washed once with 4
o
C PBS (12mL) and quickly aspirated any traces. Immediate 

addition of 70% methanol (8mL pre-chilled to -75
o
C) was added to quench metabolic 

activity. The selection of cold methanol: water 70:30 as an extraction solvent was based on 

previous systematic studies for extraction of glycolysis intermediates. A large cell scraper 

was used to harvest cells quickly over ice as addition of the quenching solution increases the 

temperature. The cellular biomass was removed by pipette aspiration and collected in 15mL 

centrifuge tubes. Metabolites were immediately snap frozen in liquid nitrogen. Metabolites 

were then extracted through 3 freeze-thaw cycles (vortexed for 30-40 s each time and 

thawed on dry ice) in order to permeabilise the cells, resulting in the leakage of the 

metabolites from the cells. The supernatant (containing the metabolite) was collected by 

centrifugation (15000 × g for 7 min) and transferred into pre-weighed falcon tubes and 
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placed in dry ice. The extracts were stored at -80
o
C until ready for MS preparation. To one 

of the three replicates pellets containing the cell debris and the RNA, trizol (1mL) was added 

and stored at -80
o
C until ready for RNA extraction post metabolomics data analysis. Two of 

the three replicates pellets containing cell debris and RNA were dried to remove residual 

solution and then weighed to determine the mass of dried biomass after extractions to 

determine volume of metabolites needed for analysis. 

 

Derivatization of metabolites for GC-TOF-MS analysis 

Samples were prepared for MS immediately before the analysis was carried out by 

determining the accurate volume of extracts to dry down. These volumes were then 

lyophilized for 16 h in a vacuum concentrator (HETO VR MAXI with RVT 4104 

refrigerated vapor trap; Thermo Life Sciences, Basingstoke, U.K). For MS analysis 

endometabolome samples (200 μL) were spiked with 4 μL internal standard solution and 

lyophilised. Dried extracts were then derivatized as follows; 50 μL of 20 mg mL
-1

 O-

methoxylamine hydrochloride in pyridine was added, vortexed, and incubated at 80 °C for 

15 min in a dri-block heater. A volume of 50 μL of MSTFA was then added and the extracts 

incubated at 80°C for a further 15 min. On completion, 20 μL of retention index marker 

solution was added (0.3 mg mL
-1

 docosane, nonadecane, decane, dodecane, and pentadecane 

in pyridine) prior to centrifugation at 15 800 × g for 15 min. The resulting supernatant (90 

μL) was transferred to GC-MS vials for analysis.  

 

2.3.2.3 Gas chromatography/Time-of-Flight mass spectrometry analysis 

The samples were analyzed in a random order by employing a GC-TOF-MS (Agilent 6890 

GC coupled to a LECO Pegasus III TOF mass spectrometer) using a previously described 

method in [133].  

 

2.3.2.4 Footprint sample analysis 

To allow normalisation of response variability, conditioned culture medium was prepared 

GC-TOF-MS analysis by spiking 200 ml aliquots of cell-free supernatant with 100 ml 

internal standard solution (0.17 mg/ml succinic d4 acid). 
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2.3.2.5 Metabolite identification 

The GC-MS data was deconvoluted producing a peak table of the metabolites identified, a 

three dimensional matrix of information: scan number (related to the time since injection), 

mass and signal intensity. Raw data were processed using LECO ChromaTof v2.12 and its 

associated chromatographic deconvolution algorithm, with the baseline set at 1.0, data point 

averaging of 3 and average peak width of 2.5. A reference database was prepared, 

incorporating the mass spectrum and retention index of all metabolite peaks detected in a 

random selection of samples so to allow detection of all metabolites present, whether or not 

expected from the study of bibliographic data. Each metabolite peak in the reference 

database was searched for in each sample and if matched (retention index deviation <+/- 10; 

mass spectral match > 750) the peak area was reported and the response ratio relative to the 

internal standard (peak area-metabolite/peak area-succinic-d4 acid internal standard) 

calculated. These data (matrix of N samples × P metabolite peaks) representing normalised 

peak lists were exported in ASCII format for further analysis. Metabolites were definitively 

identified by matching the mass spectrum and retention index of detected peaks to those 

present in a mass spectral library constructed at the University of Manchester [134]. A match 

is defined as a match factor greater than 750 and a retention index +/- 10. 

Processed data are described by individual metabolite features (chromatographic 

peaks described by an accurate mass, retention time and peak area). Multiple features can 

represent a single metabolite. Therefore, raw data are represented by metabolite features and 

not metabolites. Metabolite features described in the raw dataset were putatively or 

definitively identified as metabolites in the processed dataset. Putative identification 

involved the matching of the measured accurate mass to accurate mass(es) present in the 

Manchester Metabolomics Database (MMD) and as previously described in [134]. Definitive 

identification involved the matching of accurate mass and retention time of the metabolite to 

that of authentic chemical standards analysed under identical conditions. The reporting of 

multiple metabolites for a single feature is a result of several metabolites having the same 

accurate mass (isomers) which have not been analysed as authentic standards and have 

identical retention times. Also a metabolite can be detected as different ion types (for 

example, a protonated species in positive ion mode and a deprotonated ion species in 

negative ion mode). Only chromatographic peaks assigned a chemical identity as a 
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metabolite are reported, chromatographic peaks not assigned a chemical identity were not 

reported. 

 

2.3.2.6 Metabolomics Data Analysis - Chemometrics 

Analysis of GC-MS raw data and metabolite levels 

Univariate and multivariate analysis were performed on the ion ratio data sets. All statistical 

analyses were performed using Matlab R2010a (MathWorks, Inc., MA). Within a GC-MS-

based data matrix composed of response ratios (peak area-metabolite/peak area - internal 

standard), it is possible to obtain zero (or not detected) values for any given metabolite peak 

caused by either of the following reasons: the metabolite is not present or is present at a 

concentration below the limit of detection; or the metabolite cannot be resolved from others 

in the chromatograph by the deconvolution software. In these cases, the following procedure 

was used to improve data structure for statistical analysis techniques. For univariate analysis, 

two approaches were applied: 1) All data was accounted and the zero values were replaced 

with „NaN‟ (not a number) 2) only the median value of the three replicates was accounted. In 

any case, all peaks with more than 20% missing values were removed from the analysis. 

Outliers were suppressed using 95% Winsorisation – eyeballing data from raw PCA scores 

plots. For multivariate analysis, if two of three replicates were zero values and the third 

replicate was a non-zero value, the third (non-zero) replicate was replaced with zero. If two 

of three replicates were non-zero values and the third replicate was a zero value, the zero 

value for the third replicate was replaced with the mean of the other two replicates. 

Prior to multivariate statistical analyses, data was normalised to zero mean, unit 

variance, (also known as auto-scaling) so that results were not dominated by a small number 

of high intensity peaks but gave equal weighting to peaks of low intensity. A number of 

normalisation methods were investigated including taking the log10, square root, cube root 

and quad root to reduce the dominating effect of higher intensity peaks. MVA were then 

performed using unsupervised (PCA) and supervised clustering methods using principal 

components-discriminant function analysis (PC-DFA). Analysis of variance - principal 

component analysis (ANOVA-PCA) was also used to quantify the relative variance arising 

from site, oxygen tension, analytical uncertainty and to test the significance of differences in 

the chemical composition. 
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The PC-DFA models constructed were cross-validated by iteratively removing one-

third of the available data from the training set and using it as a test set, where these data 

points were projected into the PC space and subsequently the discriminant function space 

and ANOVA-PCA scores space built by the training data. 

 Univariate statistical analysis was performed, using the non-parametric Wilcoxon 

sign rank test and Friedman test to identify metabolites which showed significant difference 

between two types of samples. The critical p-value for rejecting the null hypothesis in a 

single test is 0.05. However, where many metabolites are tested in parallel, the p-value for 

rejecting the individual hypothesis is typically reduced to lower the probability of type 1 

errors (false positives). Therefore, a p-value of 0.01 was also used in these experiments and 

false discovery rate (FDR) controlling test applied. This however, was found too stringent on 

the data sets returning no metabolites. Boxplots were drawn to show relative concentration 

distributions for all samples with respect to a given peak. Figure 7 shows the flowchart of 

steps involved in this experiment, from experimental to data analysis. 
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Figure 7 Flowchart of metabolomics experiment – from experimental design through to data analysis. 
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2.3.3 Dynamic changes in Dupuytren’s Disease and control transcriptome in 
hypoxia (Chapter 5) 

 
2.3.3.1 Experimental design  

DD patients 44, 60 & 61 (n = 3, men) were entered into the study. These are patients 4, 7 and 

8 from the metabolomics study. The 12 samples are listed in Table 4. The following samples 

were used to perform this study: F1, F21, N1 and N21. Demographic and meta data of these 

patients can be found in Appendix D. 

 

Table 4 The twelve samples included for transcriptional level analysis. 

 

Sample No. Patient No. Patient ID Site in Hand Oxygen %

1 4 DD44 Fascia 1

2 4 DD44 Fascia 21

3 4 DD44 Nodule 1

4 4 DD44 Nodule 21

5 7 DD60 Fascia 1

6 7 DD60 Fascia 21

7 7 DD60 Nodule 1

8 7 DD60 Nodule 21

9 8 DD61 Fascia 1

10 8 DD61 Fascia 21

11 8 DD61 Nodule 1

12 8 DD61 Nodule 21

 

2.3.3.2 Experimental Protocol  

RNA extraction 

Samples in trizol (collected in Section 2.3.2) were removed from -80°C freezer and allowed 

to thaw quickly on ice. The contents were transferred to a sterile 1.5mL Eppendorf tube and 

centrifuged at 13,000 rpm for 10 min at 4°C. The supernatant was then recovered into a new 

pre-labeled tube and 0.2mL chloroform (Sigma Aldrich) (per mL of trizol used) was added. 

These were left at room temp for 2 min and then centrifuged at 13,000 rpm for 15 min. The 

upper aqueous layer was pipetted into a fresh Eppendorf tube and an equal volume of 70% 

ethanol was added to this and mixed by pipetting up and down. Following this 700μL of the 

sample, including any precipitate that may have formed was transferred to an RNeasy mini 

column placed in a 2 mL collection tube. This was centrifuge for 15 sec at 13,000 rpm and 
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the flow through discarded. 700μL buffer RW1 to the RNeasy column was added and then 

centrifuge for 15 sec at 13,000rpm. The flow through and collection tubes were discarded. 

The RNeasy column was placed into a new 2 mL collection tube and 500 μL buffer RPE was 

added (RPE buffer is supplied as a concentrate and 4 vols of 96 – 100% EtOH is added 

before using). The tubes were centrifuged for 15 sec at 13,000 rpm to wash the column and 

the flow through was discarded. Another 500 μL buffer RPE was added, centrifuged and the 

flow through discarded. The RNeasy column was centrifuged for 1 min at 13,000 rpm to dry 

the RNeasy silica-gel membrane and then placed into a new 1.5mL collection tube, washed 

with 30 – 50 μL RNase - free water directly on to the RNeasy silica-gel membrane. Tubes 

were closed and left at room temperature for 1 min and then centrifuged at 10,000 rpm for 1 

min. This was followed by sample quantification.  

 

RNA quantification and quality analysis 

RNA was quantified and quality checked using a NanoDrop ND-1000 UV-visible 

spectrophotometer (Labtech International, Ringmer, UK). RNA integrity was assessed using 

the Agilent 2100 Bioanalyzer (Agilent Technologies UK Limited, Stockport, Cheshire, UK). 

Only RNA samples that were of sufficient concentration and showed no degradation as 

evidenced by distinct ribosomal bands at 18S and 28S were used for microarray 

experiments. Ethanol precipitation was also performed on a fractional amount of these 

samples and these were quantified, quality checked and their integrity assessed as 

previously. Non- EtOH precipitated samples were used for the cDNA synthesis. 

 

Affymetrix microarray procedure 

For each sample, RNA (3µg) was reverse transcribed into cDNA using the 3' IVT Express 

Kit (Affymetrix) according to the manufacturer‟s guidelines [135]. Amplified cDNA was 

then purified using magnetic beads. Aliquots of labeled cRNA (20 µg) were fragmented and 

then hybridised to a Human Genome U133 Plus 2.0 GeneChip oligonucleotide array for 16 

hours, rotating at 60 rpm at 45°C in a GeneChip Hybridization Oven 640 (Affymetrix). Each 

chip was washed and stained on a GeneChip Fluidics Station 450 (Affymetrix) and scanned 

on a GeneChip Scanner 450 (Affymetrix) using manufacturer‟s protocol [135].  
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2.3.3.3 Microarray data analysis 

The Affymetrix array data analysis was performed using three methods. The Affymetrix 

CEL files were uploaded and analysed with the R-Bioconductor tools suite [121] using 1) 

Limma and 2) puma methods and 3) GeneSifter microarray analysis tool (geopiza, Seattle, 

WA). The individual methods are described below and Figure 8 illustrates these steps. 

 

Limma: linear models for microarray data 

Background correction and quantile normalisation were performed using (1) RMA and (2) 

GC-RMA in R-Bioconductor. PCA on normalised data was performed to test the quality of 

the array data in R and MATLAB to confirm correlation between clusters in related gene 

array chips. Differential expression analysis was performed with Limma using the functions 

lmFit and eBayes. The analysis was done by creating design and contrast matrices for the 

following sample replicates: F1vs.F21, N21vs.F21 and N1vs.N21. Gene lists of differentially 

expressed (DE) genes were created by filtering for probesets with a p-value <0.055 and FC 

>1.5. These gene expression profiles (gene lists) in terms of p-value and fold change from 

the mean were compared using the FDR Benjamini and Hochberg multiple test correction 

[72]. Results with a p-value 0.05 at the 95% confidence level were considered significant. 

Individual thresholds were further applied (p-value 0.01 to 0.05) to obtain a filtered set of 

statistically significant genes. Gene ontology (GO) over-representation analysis was 

performed using the functional annotation tool of the Database for Annotation, Visualization 

and Integrated Discovery (DAVID) 2.1 program. 

   

PUMA: Propagating Uncertainty in Microarray Analysis 

Normalisation and expression analysis was done using multi-mgMOS [136]. Differential 

expression between the sample groups (F1, F21, N21 & N1) was assessed with puma, a 

Bayesian method which includes probe-level measurement error when assessing statistical 

significance. Analysis was performed with the PUMA [119] package in R. Gross differences 

between arrays were determined using the puma variant of PCA; pumaPCA which can make 

use of the uncertainty in the expression levels determined by multi-mgMOS. Unlike many 

other methods, multi-mgMOS provides information about the expected uncertainty in the 

expression level, as well as a point estimate of the expression level. Standard PCA was 

applied to multi-mgMOS normalised data on filtered dataset by applying a threshold ≥ 1.5 
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by comparing variance of the mean expression to mean of standard error for each probe. 

Differential expression (DE) analysis was performed with the pumaDE function. The results 

of these commands were ranked gene lists in order of probability of positive log-ratio 

(PPLR) values, and the FC values. All possible combinations of pair-wise comparisons 

among experiments were taken to create sets of ratios. A gene list of differentially expressed 

genes was created by filtering for probe sets with a PPLR values ≤ 0.1 and  ≥ 0.9) and 

further filtered to reduce FDR by increasing to ≤ 0.01 and ≥ 0.99  in any of the comparisons 

for each patients between F1 vs. F2, N2 vs. F21 and N1 vs. N21 samples.  

HCA was applied on the normalised and filtered datasets using Euclidean distance 

(average linkage). Heatmap was generated based on similarity of expression profiles across 

the dataset. Pathway analysis of top 1000 and lowest 1000 genes and then on a filtered set of 

selected genes was carried out with KEGG [63]. Venn diagrams were generated to show the 

distribution of the probe set for the filtered probesets. Functional and ontology enrichment 

analysis was performed using the DAVID web-based tool version 2 [137] and the expression 

analysis systematic explorer (EASE) [138]. 

 

GeneSifter microarray analysis tool 

Relative changes in gene expression were evaluated by the expression ratio and (FC), as 

determined from the GC-RMA normalized data reported by GeneSifter. A transcript 

displaying expression ≥ 1.5 FC from the mean in at least 1 array was used as a cut-off level. 

The gene expression profile in terms of FC from the mean was compared using the 

Benjamini and Hochberg multiple test correction. Results with a p-value (adjusted p-value) ≤ 

0.05 at the 95% confidence level were considered significant. Individual thresholds were 

further applied (p-value ≤0.01 to 0.05) to obtain a filtered set of statistically significant 

genes. Two-way ANOVA test was also applied with above cut off points. Genes and arrays 

were clustered according to their expression patterns using cluster software, and heat maps 

were produced. As previously, the subset of filtered genelists were used to study for 

biological relevance using Gene Ontology, [61] and DAVID.  
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Figure 8 Flowchart illustrating steps involved in microarray study, from experimental design to data analyses. 
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2.3.4 Inferring the metabolic and transcriptional networks specific to 
Dupuytren’s disease tumours (Chapter 6) 
 

2.3.4.1 Integrated pathway mapping with Ingenuity Pathway Analysis 

Data were first analysed using stringent chemometrics and microarray data analysis methods 

as to generate a list of significantly differentially expressed molecules as described in 

Section 2.3.3 and 2.3.4. The final set identifiers were combined for each comparison i.e. the 

HMDB ID‟s [49] / CAS registry identifiers (for definitive metabolites) and Affymetrix 

accession Probe ID‟s were combined into a single data set for each of the pairwise analyses 

F1 vs. F21, N21 vs. F21 and N1 vs. N21.  

 

IPA: Network generation  

A data set containing gene/metabolite identifiers and corresponding expression/mean fold 

change values was uploaded into the application. Each gene/metabolite identifier was 

mapped to its corresponding gene/metabolite object in the Ingenuity Pathways knowledge 

base. Those molecules previously identified as being statistically significant, called focus 

molecules, were overlaid onto a global molecular network developed from information 

contained in the Ingenuity Pathways Knowledge Base. Networks of these focus molecules 

were then algorithmically generated based on their connectivity. The network is a graphical 

representation of the molecular relationships between the molecules (genes/endogenous 

chemicals). The molecules are represented as nodes, and the biological relationship between 

two nodes is represented as an edge (line). All edges are supported by at least one reference 

from the literature (http://www.ncbi.nlm.nih.gov/pubmed), from a textbook, or from 

canonical information stored in the Ingenuity Pathways knowledge base. Top scoring 

networks generated from metabolite data sets alone were mapped onto top scoring transcript 

data networks and vice versa. 

 

Global functional analysis  

The functional analysis identified the biological functions and/or diseases that were most 

significant to the data set. Molecules from the dataset uploaded that were associated with 

biological functions and/or diseases in the Ingenuity Pathways Knowledge Base were 

considered for the analysis. Fisher‟s exact test was used to calculate a p-value determining 
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the probability that each biological function and/ or disease assigned to that data set is due to 

chance alone. 

 

Global canonical pathways analysis.  

Canonical pathways analysis identified the pathways from the IPA library of canonical 

pathways that were most significant to the data set. Candidates from the data set that were 

associated with a canonical pathway in the Ingenuity Pathways Knowledge Base were 

considered for the analysis. The significance of the association between the data set and the 

canonical pathway was measured in 3 ways: (1) A ratio of the number of genes from the data 

set that map to the pathway divided by the total number of genes that map to the canonical 

pathway is displayed. (2) Fischer‟s exact test was used to calculate a p-value determining the 

probability that the association between the genes in the data set and the canonical pathway 

is explained by chance alone. (3) Benjamini-Hochberg testing corrected p-values were used.  

 

2.3.4.2 Metabolomic pathway analysis with MetPA:  

Data Input and Processing 

Filtered metabolite lists and their HMDB IDs for each of the three pairwise analyses were 

uploaded in MetPA [71]. The first step involved standardisation of the compound labels 

which were subsequently compared with compounds contained in the pathway library. 1 

indicated exact match, 2 indicated approximate match, and 0 indicated no match.  

 

Pathway and Over Representation Analysis 

The pathway library „Homo sapiens (human)‟ containing 80 pathways from KEGG library 

was selected. The one-tailed Fisher's exact test for pathway enrichment analysis and pathway 

topology analysis were specified for over-representation analysis. This is to test if a 

particular group of compounds is represented more than expected by chance within the 

uploaded compound list. In the context of pathway analysis, we are testing if compounds 

involved in a particular pathway is enriched compared by random hits.  

 

Pathway Topology Analysis 

MetPA [71] uses two well-established node centrality measures to estimate node importance 

– degree centrality and betweenness centrality. As metabolic networks are directed graphs 
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the relative betweenness centrality algorithm for pathway topology analysis was selected for 

metabolite importance measure. The betweenness centrality measures focus on global 

network topology [139].  



 

Chapter 3 

Metabolic Fingerprint and Footprint 
Analysis of Passaged Dupuytren’s Disease 
Cultured Fibroblasts 
 

3.1 Introduction 

Previous studies provide compelling evidence that genetic dysregulation plays an important 

role in DD formation. Macroscopic phenotypic differences between fibrotic elements in DD 

(i.e. nodule and cord), plus the fat and skin overlying the nodule (SON) also show 

microscopic differences with variable cellular density. Abnormal fibroblasts are considered 

to be responsible for causing DD.  A recent study investigated phenotypic descriptors of DD 

tissue (i.e. nodule, cord) and compared with the transverse palmar fascia (internal control) 

and transverse carpal ligamentous fascia (external control) using the Affymetrix HGU133A 

GeneChip array reporting several differentially expressed genes thought be involved in the 

pathogenesis of DD ([10] and Appendix E2(1)). In contrast to our previous study, here, the 

systemic properties of fibroblast cultures derived from different DD tissue phenotypes 

including the fat and the SON are investigated. Comparisons across previous studies are 

impeded because the reported results are often based on different cellular passages which 

could have a dramatic effect not only for morphological properties but also gene expression 

and metabolic differences too. Whether any significant changes are due to genetic alterations 

alone or the consequence of metabolic dysregulation has not to date been demonstrated. In 

this study, a systemic analysis of Dupuytren fibroblast profiles derived from different DD 

tissue phenotypes in order to identify the best time to look at the disease pattern is discussed. 
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The aim of this study is to delineate the morphological components of DD and 

control by looking at differences in cultures derived from disease tissue phenotypes and 

comparing different anatomical locations within the DD tissue using an alternative technique 

to histology. The main advantage is to simultaneously image the quantity and quality of 

multiple components in DD in relation to normal transverse palmar fascia using a technique 

with high molecular sensitivity combined with a spatial resolution down to a few 

micrometres.  

A metabolomic analysis of fibroblast cultures derived from different DD tissue 

phenotypes to compare early (primary) cultures to late passages was employed to identify 

the most representative passages for the disease. Using FT-IR spectroscopy, a comparison of 

metabolic profiles of endogenous and secreted metabolites from (1) DD cords and nodules 

against the unaffected transverse palmar fascia (internal control), (2) DD cords and nodules 

with fat surrounding the nodule, and SON. Following this metabolic profiles of those in (1) 

and (2) between different DD patients and (3) those in (1) and were compared between 

different DD patients and with external controls. 

 Carefully controlled conditions using multivariate statistical analyses (PCA and 

DFA) demonstrated early passage (0-3) metabolic differences where a synchronous 

separation pattern was observed in the PCA scores plots in DD and control fibroblasts. 

However, higher passages (4-6) demonstrated random asynchronous and overlapping 

patterns from which it was unclear how to identify and separate the diseased from non-

diseased sample phenotypes. The cord and control fibroblast clusters were in closer 

proximity in the scores plot of PC1 and PC2 across passages 0-3, while the nodule 

fibroblasts were clearly separable in all PCA plots. The analyses of the PCA scores plots 

between the five sample types from DD subsets (nodule, cord, fascia, fat and SON) 

demonstrated overlapping between the clusters in samples across passages 0-3. In the early 

passages however, the clusters of nodules and SON were in close proximity to each other, 

while the clusters representing the fibroblasts of cords, fascias and fat were often closer than 

those of the nodule. The results from FT-IR metabolic fingerprinting combined with 

chemometrics has demonstrated early passage metabolic differences showing clear 

separation between the different tissue phenotypes in DD and control fibroblasts, whereas 

higher passages demonstrated random asynchronous patterns.  
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3.2 Results 

3.2.1 Histological findings 

The DD nodule, cord, fat, and the skin overlying the nodule and the internal control – the 

transverse palmar fascia (n = 6) and the carpal ligamentous fascia – the external control from 

healthy individuals were identified and confirmed by a senior histopathologist. The nodules 

displayed regions of high cellularity and lots of nuclei were stained/visible, while the cords 

displayed a tendon like collagen rich structure. Cross sections from the fat and the skin 

overlying the nodule were also examined and compared with those from normal CTD skin 

and fat from unaffected patients.  All Histological findings can be found in Appendix C.  

 

 

3.2.2 The raw and preprocessed spectra 

Analysis of the metabolic fingerprints  

Variations in the passage numbers from cultures were investigated by FT-IR metabolic 

fingerprinting, using cell samples which had been washed thoroughly to remove any 

extracellular metabolites medium components. The total number of samples and their 

combinations selected for MVA can be seen across Tables 25-30 in Appendix B. The results 

from typical data analysis, preprocessing and MVA techniques are discussed below. The 

results of the FT-IR spectral data and MVA are presented in the form of PCA, and/or PC-

DFA scores plots as discussed under the corresponding headings for each study respectively. 

Typical raw and normalised absorbance FT-IR spectra for DD and control fibroblasts 

are shown in Figures 9 (& Figure 10) and 11 respectively. These are typical vibrational 

spectra from all samples included in Study 1 and 2. These spectra are the metabolic 

fingerprints of each sample analysed (metabolic footprint in the case of spent media) on the 

Si plate respectively; all showing broad and complex contours with relatively little 

qualitative difference between the spectra visible to the naked eye. Such spectra readily 

illustrate the need to use multivariate statistical techniques in the analysis of data. The 

spectra contain information on functional group vibrations resulting in the absorbance of 

infrared light at specific wavenumbers (1/λ). Some prominent regions (Figure 11) are 

identified to be arising from vibrational modes of  water (O-H stretch centered at 3400cm
-1

), 
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fatty acids (methyl, methylene and CHx stretches at 2956-2850 cm
-1

) proteins (amide I, C=O 

at 1652-1648 cm
-1

; amide II N-H, C-N at 1550-1548 cm
-1

), a mixed region from 1460-110 

cm
-1

 which contains information from fatty acids, polysaccharides, nucleic acids, proteins 

and polysaccharide rings and C-O vibrations at 1085-1052 cm
-1

). Note here, that large 

molecules such as proteins as well as small constituents including nucleic acids are detected 

because the sample preparation used simply DPBS to dissolve the cells and was analysed 

directly without any interference to the intact cells. FT-IR spectra for various DD phenotype 

fibroblasts (from all 5 sites), fibroblast growth media and freezing media were also recorded 

electronically. Again, all spectra showed broad and complex contours, in which there was 

relatively little qualitative difference between the spectra. 
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Figure 9 Typical raw FT-IR spectra from metabolic fingerprints of cultured cells. Each sample is represented 

by an absorbance vs. wavenumber spectrum. 
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Figure 10 A 3-D raw FT-IR spectra from metabolic fingerprints of cultured cells. Each sample is represented 

by an absorbance vs. wavenumber spectrum. 
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Figure 11 Processed FT-IR spectra of cultured cells with band assignments.  Samples are 

normalised using the EMSC preprocessing method and baseline correction. These spectra have 

been offset to see the features more readily. Key to vibrational bands: A = fatty acid, B = 

amide, C = mixed, D = polysaccharide. 
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3.2.3 Multivariate statistical analyses to determine variability of samples 

The next stage was to perform cluster analysis on all preprocessed spectral data. This was 

done separately for all metabolic fingerprint and footprint data. A total of 309 samples were 

analysed three times (927) in Study 2 (234 samples analysed twice (468) in Study 1) and 

PCA was performed in various combinations on the data sets.  

 Firstly, the relevant passages (e.g. passage 0, 1, 2 etc) from all sites to undergo 

analysis were grouped by selecting samples from each case and control set. (e.g. all passage 

(P0) samples from DD nodules, cords and internal fascia, then from another data set all P0 

samples from DD nodules, cords and internal fascia and also the external fascia from CTD 

patient, another data set selecting for P0 cultured cells in all five DD subsets including the 

fat and SON). This was carried out across all samples selecting on the basis of passage 

number to determine any similarities and differences across the metabolic profiles 

(fingerprints in this case) to determine whether the passage had any effect on the individual 

samples when sub-cultured overtime in same culture medium and conditions. In addition, 

comparisons of both control fibroblasts were made; i.e. whether internal control 

demonstrated any similarity to fibroblast from external control and whether the choice of 

internal control being used for future studies is in fact a more appropriate or suitable 

representative. The trends sought after were those in which a gradation, similarity and 

differences within the sample clusters were evident.  

 Second, PCA was performed across all passages and all samples within the class of 

dataset in various combinations comparing the sites in individual patients across all passages 

(e.g. (i) for patient DD2; all passages across nodules, cords, fascias, and then (ii) all passages 

across (i) plus the fat and SON). 

 For each study, the two matrices produced from the transformation of the original 

data matrix, X, in the PCA model, (score and a loading matrix and residual matrix; where the 

score matrix contains information on how samples are related to each other and the loading 

matrix shows relationships between variables) were linearly combined with the original data. 

The determination of the number of significant PCs was solved in three ways. First, the scree 

plot of eigenvalues, presented in Figure 12 was examined (this is just for demonstration). Its 

shape suggested selecting between two and three PCs; majority of the variance within the 

data set are captured by the first few PCs with little importance on the later PCs. Second, the 

score plots for PC1 & PC2, PC1 & PC3, PC2 & PC3, and subsequent PCs were analysed. 



Chapter 3                          Metabolic Fingerprint Analysis of Passaged Dupuytren’s Disease Cultured Fibroblasts 

95 

 

Third, the % cumulative variance plot was examined. It was found that for PCs > 3 the plots 

became random. From these facts it was decided that 3 PCs would be the best choice. The 

selection means that most of the variance in absorption of the examined spectra will be 

further interpreted in terms of the above three factors that will be related to (i) passage 

number vs. sample type and (ii) individual patients vs. sample type including all passages. 

Figures 13 and 14 represent the PCA plots from PC1 and PC2 from Study 1 and Figures 16 

represent PCA scores plot from DD nodule, cord and internal fascia primary cultures from 

Study 2 showing the relationships between the three different phenotypes confirming their 

metabolic differences. Boundaries round the clusters were drawn manually. Each numeric 

code represents a single biological sample. Observations were made in the relationships 

between cluster spaces; the closer the samples cluster together the more biochemical 

similarity they possess. 

 

 

Figure 12 : Eigenvalues scree plot for the 

FT-IR spectra of passaged cultured 

fibroblasts subjected to PCA. 

 

 

 

 

 

 

3.2.4 Study 1A - DD Nodule and Cord vs. Transverse palmar fascia 

In the scores plots, different sites are presented as different colours. The patients are labeled 

by their numbers e.g. for each patients where three cell types were analysed (e.g. DD nodule, 

cord and fascia), there are 3 different coloured circles to represent them. For example, in the 

first plot in Figure 13, patient DD8 has 12 circles, because there were 12 samples from this 

patient. Among them, 6 are green (nodule), 3 blue (fascia) and 3 red (cord). 

PCA on EMSC normalised data was performed to test the quality of spectral data 

using the NIPALS option in MATLAB to determine covariance between clusters spectra of 

fibroblast samples. There is a clear separation of control samples and disease tissue. In 

contrast with normal samples, DD fibroblasts (nodule and cords) also show an additional 
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level of heterogeneity. There were two distinct clusters identified among the DD samples 

separating it into cord and nodule (circled in green and red) from the transverse palmar 

fascia (circled in blue) in passage 1. However, as the number of passages increase the 

samples become increasingly random and show overlapping between those derived from 

other tissue phenotypes. In Study 1, the separation is minimal between the clusters of 

individual phenotypes (nodule, cord, fascia) for samples where passage number = 2 and 

samples from cultures where passage number ≥ 3 do not demonstrate clarity in separation 

and are overlapping within the boundary of others.  

 The Fisher‟s ratio was calculated for each patient vs. passage number to determine 

separation/variability within class. The relation between Fisher‟s ratio and passage number is 

plotted in Figure 15. A linearly decreasing value for ratio as the passage numbers increase is 

observed. The trend suggests that the larger the ratio, the better the separation between 

classes (i.e. well separated classes and tight clusters for each class). The decrease in the 

ratios becoming smaller and smaller when the cells are subcultivated (as passage number 

increase) correlates with the findings from those of the PCA scores plots that show clear 

separation between the cultures of different DD phenotypes (nodule, cord and transverse 

palmar fascia) in the early passages (1 and 2) but as the passage number increases, 

asynchrony and overlapping in samples are observed. The ratio becoming smaller and 

smaller as the number of passages increase suggest a similarity (dysregulation) in metabolic 

profiles of the phenotypes consistent with the findings from the PCA indicating an overlap in 

the metabolic profiles in higher passage numbers and resembling little differences in their 

metabolic fingerprint.   

 

3.2.5 Study 1C Patient vs. Passage (Category 4) 

The samples in the PCA plots defined by PC1 and PC2 in this study were not clearly 

separable on the basis of passage number. Though some samples were far apart, the passages 

were not superimposable on cultures derived from the same phenotype. PCA scores plots 

from Patients 8-13 are shown below. Patient 9 demonstrating similar trends observed as in 

Study 1A for the three sites, here, the lower passage number 1, shows clusters from nodule, 

cord and fascia far apart, as passage number increases, the clusters between classes are now 

closer and within classes are no longer clustered as tightly. As there is biological variance 
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between patients, this difference is not so greatly observed through PCA scores plot alone, 

and so PC-DFA is used in Study 2. 
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Figure 13 Projection of the FT-IR spectra of DD fibroblasts derived from the nodule, cord and fascia (control) 

with respect to their passage number onto the plane defined by PC1 and PC2. Patients are labeled by their 

numbers e.g. for each patients where the three cell types were analysed (e.g. DD nodule, cord and fascia), there 

are three different coloured circle for it. Red circle=cords, green circle=nodules, blue circle=fascia (internal 

control).  
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Figure 14 Projection of the FT-IR spectra of DD fibroblasts derived from the nodule, cord and fascia (control) 

with respect to their passage number onto the plane defined by PC1 and PC2. Samples from variable passage 

numbers are coloured and DD nodule, cord and fascia are labeled in lower case letters n,c,f respectively.  

 

 



Chapter 3                          Metabolic Fingerprint Analysis of Passaged Dupuytren’s Disease Cultured Fibroblasts 

99 

 

 

3.2.6 Study 1B - DD Nodule, Cord vs. Transverse Palmar Fascia, Fat, Skin 
overlying nodule  
 

The cultures from the fat and SON were subjected to FT-IR irradiation at a different time 

course and not on two consecutive days. This was due to a technical failure that had occurred 

with the stage of the FT-IR on to which the Si plate is loaded. Therefore, the results of 1B 

were not analysed with respect to the differentiation between the five DD phenotypes, but 

only on the basis of the fat and SON passaged cultures. The PCA scores plot defined by PC1 

and PC2 showed clear differences between the clusters of two different sites (fat and SON) 

across all passages. However due to a flaw in the sample arrangement on two plates, 

(samples not sufficiently randomised); in each passage, all samples from one site were 

located on one plate while all samples from another site were located on the other plate) one 

cannot determine whether such separation was caused by biological difference or merely the 

difference caused by two different plates analysed on two different days or both. 

 

3.2.7 Study 2A - DD Nodule, Cord vs. Transverse Palmar Fascia (Category 1) 

The results from Study 1 implied that performing serial passages >3 did not demonstrate 

clear separation of the metabolic profiles obtained from spectral data of the three sites 

(nodule, cord and fascia). In Study 2A a rather inconsistent sample size was analysed. This 

inconsistency in sample no. was due to several factors ranging from a smaller number of DD 

biopsies, cells that did not grow or survive the tissue processing step, samples arriving on 

Figure 15 Fisher ratio plot vs. passage number 
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separate occasions; with up to 2-4 weeks gap, due to flaws in cell culture management 

leading to contamination of some samples, shared incubators, and also cultures grown in two 

separate buildings.  

 However, by contrast, cultures from passage 0 were also included in this study. 

Although there was very little biomass (¾ of the initial monolayer grown from primary 

fibroblast was subjected to FT-IR spectroscopy), clear separations of the three sample types 

were observed. For this study cultures from passage 0, 1, 2 and 3 were analysed. As in Study 

1A, PCA on EMSC normalised data was performed to test the quality of the spectra using 

the NIPAL option in MATLAB and results were corroborated with those in PyChem to 

confirm the covariance between clusters in spectra of fibroblasts samples. Again, there was 

clear separation of control samples and DD disease tissue. In contrast to normal samples 

(blue circles), DD fibroblasts (nodule and cords) also show an additional level of 

heterogeneity. There were 3 distinct clusters between the samples in passage 0, 1, 2 and 

again little randomisation started to occur in samples of cultures from passage 3. Study 2A 

confirmed that early passages demonstrated metabolic differences in DD and control 

fibroblasts, whereas higher passages demonstrated random asynchronous patterns. This 

study also confirms that early passage numbers are the most suitable representatives for 

investigating DD.  



Chapter 3                          Metabolic Fingerprint Analysis of Passaged Dupuytren’s Disease Cultured Fibroblasts 

101 

 

 

Figure 16 Projection of the FT-IR spectra of DD fibroblasts derived from the  nodule, cord and fascia (internal 

control) with respect to the passage number onto the plane defined by t[1] (PC1) and t[2] (PC2). The samples 

are labeled by numbers and shapes; 1 blue circle = transverse palmar fascia, 2 red square = nodule, 3 green 

cross = cord.  

. 
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Figure 16 Projection of the FT-IR spectra of DD fibroblasts derived from the  nodule, cord and fascia 

(internal control) with respect to the passage number onto the plane defined by t[1] (PC1) and t[2] (PC2). 

The samples are labeled by numbers and shapes; 1 blue circle = transverse palmar fascia, 2 red square = 

nodule, 3 green cross = cord.  
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3.2.8 Study 2B - DD Nodule, Cord vs., Transverse Palmar Fascia, Fat and Skin over 
Nodule 
 

The PCA scores plot did not show clear separation between clusters from sample sets from 

multiple patients combined. Mostly samples from the same phenotype showed asynchronous 

patterns regardless of the passage number. However, nodule and SON derived fibroblasts 

were in closer proximity than those cultures derived from cords, fascias and fat. In addition, 

the samples from the latter three phenotypes demonstrated overlapping in clusters across all 

passages.  

 However, clear separation of DD fascial cells nodule, cord and fascia can be 

observed from fat and SON in Patient 2, passage 0 across PC2, while some fascia can also 

be separated from all other sample clusters, Separation of  fat clusters and SON is observed 

in PC3 (Figure 17 and 18). Figures 19-21 represent the supervised scores plot from PC-DFA 

for Patient 2 passage 0-3. 
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Figure 17 PCA scores plot of the five different sites from a single patient, distinct clusters are observed, the 

spectral profile of SON and fat are highly similar to each other with the cord and fascia showing a similar 

relationship, the nodules cluster within its own space and can be separated from the rest using PC1 and PC2. 
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Figure 18 PCA score plot of PC2 vs. PC3 from patient DD2. The Fat and SON displays greater separation 

compare to PC1 vs. PC2. The overlap between Cord and Fascia is still observed.  
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Figure 19 DFA score plot of all site and passage (0-3) from patient DD2. The profile for each site with respect 

to increasing passage number is observed, where discriminate from the same site is possible based upon 

passage number. 
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Figure 20 DFA score of patient DD2 for DF1 vs. DF3, the effect of different passage number within each 

respective site is still observed.  
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Figure 21 DFA score plot of DF2 vs. DF3 for patient DD2. The trends are less clear compared to previous two 

plots.  

 

 

 



Chapter 3                          Metabolic Fingerprint Analysis of Passaged Dupuytren’s Disease Cultured Fibroblasts 

106 

 

3.2.9 Study 2C - DD Nodule, Cord vs. Transverse Palmar Fascia and Unaffected 
(CTD) normal palmar fascia 
 

Figure 22 shows the DF1 vs. DF2 score plot from the DD subsets compared to internal and 

external control fascia. Its analysis along the DF1 axis shows that this component divides the 

whole set of spectra into four groups; a cluster of red circles (nodules), majority of blue 

circles, (DD fascia-internal control) on the right half of the plot, majority of turquoise/cyan 

circles (CTD fascia-external control) on the left half of the plot, and green circles (cords) 

closer to the centre (zero on x-axis). 

There was clear separation between the DD fascia, nodule, cord and also external 

CTD control. Clusters of samples from DD cells always clustered apart (while showing 

separation between the individual samples) from those of CTD. This separation suggests that 

internal fascia is an appropriate control and can be distinguished from diseased fibroblasts 

using chemometrics techniques. The use of internal fascia as the control will attribute to 

homogeneity in future studies. 
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Figure 22 Projection of the FT-IR spectra of DD fibroblasts derived from the nodule, cord, fascia (internal 

control) and CTD fascia (external control) from passage 0 onto the plane defined by DF1 and DF2. Patients are 

labeled by their numbers e.g. for each patient where the four cell types were analysed (e.g. DD nodule, cord, 

fascia and CT external fascia), there are four different colours to represent them; blue circle = fascia (internal 

control); red circle = nodules; green circle = cords; and turquoise circles = CTD fascia (external control). 
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3.2.10 Study 2D- CTD Fascia, Fat, Skin 

Clear separation was observed in the fibroblasts derived from CTD fat, fascia and skin. 

3.2.11 PCA of Footprint Spectra 

No separation was observed using PCA on footprint data as the culture medium they were 

collected in was nutrient rich and undefined.  An example of the processed FT-IR spectra 

from DD footprint and the PCA plot from this data are shown in Appendix C; Figures 72 

and 73.  

 

3.3 Discussion 

3.3.1 Principal Findings  

The goal of the present work was the analysis of Dupuytren fibroblast cultures derived from 

different DD tissue phenotypes & control (CTD) fibroblast cultures comparing early 

(primary) cultures to late passages in order to identify the most representative passage for the 

disease. 

 Using FT-IR spectroscopy, the metabolic profiles of endogenous and secreted 

metabolites were acquired from (1) DD cords and nodules from the palm against the 

unaffected transverse palmar fascia (internal control), (2) DD cords and nodules with the 

cushioning fat surrounding the nodule, and with the skin overlying the nodule and (3) those 

in (1) and were compared between different DD patients and with external controls.  

 Observational changes in cell growth were recorded to determine whether cultures 

derived from DD tissue phenotypes and control changed with cell passage. The 

haemocytometer cell counts were constantly high for fibroblasts derived from DD nodule, 

cord, fat and SON across passage 1 to passage 6, while the growth of fascial cells considered 

as normal (the internal and external fascia controls) slowed down at higher passage numbers. 

The difference in the cell numbers through variable passages suggest that cell senescence 

may have been achieved by some of the control fibroblasts whereas the proliferative 

potential displayed by fibroblasts derived from the diseased nodule, cord, fat and SON 

consistently provided a high cell count. The evaluation of growth in cultivated fibroblasts 

from different samples has not only shown significant differences in their morphological 

appearance but also differences in generating the number of myofibroblasts. These numbers 
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can be correlated with tissue type as well as their unique metabolic profiles which may be of 

relevance to disease stage in some cases. 

 The FT-IR spectra showed broad and complex contours, in which there was 

relatively little visible qualitative difference between the spectra. In lesser complicated 

molecules such as chemical or medicinal compounds such as drugs whose MW <500, the 

locations of transition points are based on an arbitrary selection of the frequencies that are 

more pronounced for the compound being analysed as the functional groups present are few. 

Such an approach assumes that information about the structural changes leading to the phase 

transition is known a priori. However, for large molecules such as the proteins, biomolecular 

compounds, cells (and samples in this study), the conformational changes cannot be easily 

anticipated because the bands suitable for monitoring complex molecular processes cannot 

be chosen without any a priori assumption about the structure and its infrared intensity 

relationship. This is due to the fact that essential information on any dynamic process being 

analysed by FT-IR spectroscopy does not lie at any individual wavenumber, but across many 

wavenumbers, mostly correlated to each other. These contain many overlapping bands and 

so data interpretation cannot be made by simple visual inspection and therefore, to uncover 

the structure–infrared intensities relationship, unrestricted by any presumptions, suitable 

multivariate methods such as PCA and hierarchical cluster analysis (HCA) are used to look 

at differences and similarities between these spectra.  

 Visual comparisons of the general contours of the spectra were made with bands 

assignments according to peak wavenumber regions and the shape of the normalised spectra 

were compared with metabolic fingerprints of sera, urine and synovial fluids. While the 

spectral contours were similar in shape to all three, they shared spectral contours closer to 

those in synovial fluid.  As the spectral data illustrated the need to use multivariate statistical 

techniques in the analysis, PCA and PC-DFA were applied to discriminate between the data 

sets.  

 Metabolic differences were identified between DD fibroblasts and in control (internal 

and external) fibroblasts through variable passages from the different sites. Analyses of these 

profiles lead to identification of metabolic differences where a synchronous separation 

pattern in early passages was observed in Study 1A & 2A). PCA demonstrated clear 

separation of the three sites from early cell passage cultures (0, 1 & 2). Samples from Study 

2C also displayed this trend and showed separation of the respective sites from early cell 
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passage cultures (0, 1 & 2). The cord and control fibroblast clusters were in closer proximity 

in the scores plot of PC1 and PC2 across passages 0-3, while the nodules fibroblast were 

clearly separable in all PCA plots and were confirmed by Euclidean distances calculated in 

hierarchical cluster analysis using PyChem.  

However, in higher passage numbers (4-6) a random asynchronous pattern in the 

scores plot was observed across all samples. The analyses from both studies demonstrate that 

cultures of different tissue phenotypes from passage 3 show little separation across the cell 

types, (while not being too far apart), and from thereon, subsequent passage numbers 

demonstrated a random asynchronous pattern in metabolic profiles that appear the PCA 

scores plots.  

 The analyses of the PCA scores plots between the five sample types from DD subsets 

in Study 2B demonstrated overlapping between the clusters in samples across passages 0-3. 

In the early passages however, the clusters of nodules and SON were in close proximity to 

each other, while the clusters representing the fibroblasts of cords, fascias and fat were often 

closer than those of the nodule. While PCA showed some differences, an alternative MVA 

method could to be applied to discriminate between these individual cell types.  

 

3.3.2 Strengths and weaknesses of the study 

The FT-IR data together with PCA provide good classification of spectra of DD subsets in 

Study 1 and 2 and also distinguishes spectra from external controls in study 2C with PC-

DFA. Classification of FT-IR data may be explored further using first and second derivatives 

of spectra or by exploring alternative preprocessing methods.  However, the classification 

achieved so far is encouraging, as this technique not only separates DD nodule and cord 

fibroblasts from the two controls, but also between the two fibrotic elements i.e. nodules 

from cords. In addition the analyses across all passages suggest that early passage cultures 

are close representatives of the metabolic fingerprints of those in disease state in vivo and 

may be more appropriate for further DD studies. In addition data from the late passages 

support the hypothesis that the cell culture monolayer environment may alter the functional 

characteristics of the samples, possibly by selecting against a subpopulation of cells which 

survived the in vitro conditions. Differences in FT-IR spectral profiles in DD and in controls 

can be exploited further to test hypotheses with the use of formalin-fixed samples for 

discrimination of normal and diseased tissue. To discriminate between footprint spectral 
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data, supervised chemometrics analysis such as artificial neural networks and genetic 

algorithms may be applied. 

 In order to validate PCA and PC-DFA analyses independently, the data can be 

projected into the PCA or PC-DFA ordinate space. This involves each class within the data 

set being randomly split, and forming a test sample set and a training set. Generate PCA 

and/or PC-DFA models independently for the training set, and the test set then to be 

subsequently projected into the same ordinate space. A close alignment between training and 

test clusters would indicate the validity of the PCA and PC-DFA model. This is particularly 

necessary when the number of variables is considerably larger than the number of samples 

and when one wants to ensure that the hypotheses generated are robust [140]. 

 We have shown that FT-IR spectroscopy is a powerful fingerprinting tool when 

combined with multivariate analyses. It has enabled the detection and acquisition of several 

endogenous metabolic fingerprints from cultures derived from different tissue phenotypes. 

However, due to the complicated nutrient rich medium, this technique was not appropriate 

for detecting patterns of secreted (footprint) metabolites. Nevertheless, it has proven to 

rapidly and accurately identify and distinguished on the basis of separation of the unique 

fingerprints of intact fibroblast cells from diseased and non-diseased regions. Preliminary 

results obtained from Study 1 and validation with those of Study 2 has shown FT-IR to be 

powerful as a diagnostic tool.  

 While it has been recognised that FT-IR is not as specific and sensitive as some 

techniques such as GC-TOF-MS, the high throughput, rapidity and reproducibility of FT-IR 

is demonstrable through the large body of research published using this technology. FT-IR is 

recognised as a valuable tool for metabolic fingerprinting as is able to analyse cellular 

constituents composed of carbohydrates, fatty acids, amino acids, protein, nucleic acids, and 

polysaccharides rapidly and simultaneously with a minimum amount of sample preparation. 

 One of the potential limitations of FT-IR is that the absorption of water is very 

intense.  An attempt to overcome this problem was the dehydration of samples in 50
O
C 

incubator prior to loading onto the stage of the spectrometer. In future analysis, the water 

signal could be subtracted. Alternatively, a related vibrational technique, Raman 

spectroscopy may be used as a complementary tool to confirm the results of FT-IR , yet this 

would be more expensive, low through put, and require much longer analysis time. 
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 This study has enabled characterisation and classification of the various sites thought 

to be involved in DD. In addition, chemometrics has strongly facilitated pattern recognition 

of disease state when compared with normal palmar fascia from several cultures (early and 

late) allowing us make an informed choice of a suitable passage to perform subsequent 

studies in this project. Thus, the present study is not only taken up as a more complicated 

case to discriminate from macroscopical and genetic studies, but also to verify the feasibility 

of spectroscopic methods in predicting the DD tumour response to in vitro cultivation.  

 

3.3.3 Trypsin Effect 

The differences between metabolic profiles achieved from those of early and late passages 

determined by FT-IR and multivariate analyses are clear from the statistical analyses. The 

relation between the Fisher ratio and passage number showing a linearly decreasing value for 

ratio as the passage number increases is also suggestive of a decrease in the ratios due to cell 

subcultivation with the use of trypsin (passage increase). This correlates with findings from 

those of the PCA plots that show separation between DD disease phenotypes in the passage 

1 only (Study 1A) and little separation of samples in subsequent passage numbers. However, 

why this change occurs at such an early onset is not understood. One possible reason for this 

could be the treatment of trypsin to collect these anchorage-dependent cells that were 

cultivated on a solid culture substrate (polystyrene flasks). Trypsinisation of cells may have 

had detrimental effects such as the proteolysis of the cell membrane proteins. Furthermore 

subcultivation and collection of the cells performed in this way could have had detrimental 

effects on the cell number count as well as morphological and conformational changes of the 

cell. This type of methodology and its suitability to retrieve cells could be discussed with a 

cytogeneticist who would have a better perspective. The analysis to locate this change in cell 

cultures (or even cell line) is required early on in establishing a cell line. Little is published 

about the effects of trypsinisation and this method is considered as standard protocol to 

collect anchorage-dependent cells. It is also possible that no study has tried to see what 

changes are/could be taking place at this early stage and may put this down to cells 

undergoing an immortalisation transformation process. A few studies have raised concerns 

about trypsinisation [141, 142]. The synchrony seen between a decrease in the Fishers ratio 

and passage number could be due to a trypsin treatment effect as all passages were produced 

at a convenient point in time in connection to the cells approaching confluence, where many 
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cells had already experienced confluence. With the view that the trypsin had no effect, the 

'passage effect' on metabolite fingerprint is simply because the metabolites were grouped 

into the same culture media representing each passage. Or by contrast, if the process of the 

passage had no effect at all, it would be possible to measure (metabolite) flux as a function 

of passage as the flux would be a continuum. To solve this problem mechanically scraping 

cells (which although may break the intact cell) may avoid the problem of conformational 

changes during sub-cultivation using trypsin (this method is used for harvesting cells from 

cultures for subsequent studies). Additionally, the average concentration of metabolites over 

each passage could be measured. Close examination of the plot at each passage suggests 

there as though there is an inflection (in the plot) at each passage when in fact the process is 

one of gradual change which should be independent of trypsin. Furthermore, this could be 

also be investigated by frequent changes of media to increase the resolution of metabolite 

secretion (on the metabolic footprint).  

 

3.3.4 Conclusion 

The application of FT-IR spectroscopy conducted under carefully controlled conditions with 

appropriate chemometric techniques to differentiate between DD and control fibroblasts has 

been demonstrated to be a powerful tool for discriminating between these cell types in 

individual DD patients, as well as samples from controls. No study to date has attempted to 

demonstrate metabolic analytical differences of dupuytren fibroblast cultures derived from 

different DD tissue phenotypes in early (primary) cultures compared to late passages. This 

study implies that early passage numbers are suitable representatives for DD studies. In 

addition based on their separation, these data demonstrate a gradation in profiles of certain 

metabolites (obtained from their unique fingerprints) in fibroblasts of DD phenotypes 

compared with control. Metabolic fingerprinting is predictive not only of disease but also of 

disease phenotype. The technique has major advantages of speed, sensitivity, and the ability 

to analyse many hundreds of samples simultaneously.  

 

 

 



 

 

Chapter 4 

Metabolic profiling of Dupuytren’s disease 
fibroblasts under oxidative stress  
  

4.1 Introduction 

4.1.1 Metabolism and Warburg effect in DD 

At present, little is known regarding DD pathogenesis, and even less regarding its cellular 

functions, i.e. metabolic functions and regulation of intermediates involved in glycolysis, 

TCA cycle, pentose phosphate shunt and amino acid metabolism. Studies of genetic 

abnormalities and environmental factors have provided evidence for a multifactorial nature 

of DD. The disease progresses with the growth of abnormal fibroblasts and localised 

ischemia/hypoxia. It is speculated that microvessel narrowing preceding localised hypoxia 

may be one possible cause of DD, where fibroblast proliferation ensues during perivascular 

connective tissue damage.  

In this Chapter we test our hypothesis whether DD cells are under the Warburg 

effect. This was achieved by inducing a perturbation in healthy cells (fascial cells) cultured 

in pO2 = 158 mmHg corresponding to a concentration of 21% atmospheric oxygen and 

compare their metabolic profiles with healthy cells exposed to hypoxia i.e. in pO2 = 8 

mmHg corresponding to concentration of 1% oxygen. Then we examine the hypothesis that 

any such differences are akin the Warburg effects noted for tumour cells in the literature by 

comparing the extracts from intracellular (endo-) metabolomes acquired from DD nodule, 

cord and SON cultures against those acquired from healthy cells and under hypoxia-induced 
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fascia. The extracellular (exo-) metabolomes acquired from DD nodule and healthy fascia in 

normal and hypoxia-induced cultures. In addition, response to hypoxia is also examined in 

the intracellular metabolomes of disease cells; this may aid in biomarker identification by 

imposing stress on the disease cells. Furthermore the question is; if a Warburg effect exists, 

in which DD phenotype is this effect greatest? What are these key players (metabolites) and 

which pathways are these mapped onto? In addition, we test another hypothesis; whether 

changes occurring in abnormal fibroblasts are due to gene expression alone or dictated by 

metabolism or a combination of both? (see Chapter 5). The objectives were to investigate 1) 

perturbation effect on healthy fascia cells to investigate whether healthy cells in hypoxia 

mimic disease state scenario 2) progression of disease compared to healthy (nodule, cord and 

SON vs. fascia) 3) the effect of 1% oxygen tension on these samples (1% vs. 21%). The aim 

is to get a deeper understanding of the dynamics involved in the DD cellular system. Sample 

reproducibly of DD and control cells has been shown in Chapter 3. This study employed the 

use of GC-MS to determine metabolic profiles.  

 Metabolic differences between fibroblast cell samples (passage number 3) cultured in 

normoxic and hypoxic conditions have identified a number of significantly dysregulated 

metabolites involved in both amino acid metabolism and carbohydrate metabolism pathways 

in nodule, cord and SON pairwise analyses. The comparisons between disease and control 

fascia reveal that cysteine, aspartic acid and a sugar molecule were significantly down-

regulated in disease. The perturbation effect in control fascia resulted in the identification of 

a number of significant metabolites involved in carbohydrate metabolism and amino acid 

metabolism. While relatively fewer metabolites have been identified in disease when 

compared with control, the perturbations effects have revealed a relatively larger number of 

significant metabolites. It has been demonstrated that GC-MS is a highly sensitive and high 

throughput analytical technique for biomarker screening and identification in DD samples, 

able to discriminate between different oxygen tension and tissues types (cultures), also 

enabling detailed profiling of the induced perturbation of metabolome. This is the first time 

that GC-MS and metabolomics analysis methodology been applied to the characterisation of 

DD samples. 
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4.2 Results 

4.2.1 MVA on GC-MS data acquired from all samples in hypoxia and normoxia 

The intracellular distribution of metabolites and metabolic changes induced by these abiotic 

perturbations were investigated by metabolomics. GC-TOF-MS was employed, providing in 

this study the detection of 129 different metabolite peaks from the intracellular metabolome 

(in each of the 126 samples) and 79 from the exometabolome (36 samples). A typical total 

ion current (TIC) chromatogram from mammalian endometabolome is shown in Figure 23.  

 

 

 

Figure 23 Typical TIC for mammalian cells. 

 

To assess sample variability, GC-TOF-MS analysis was performed on 126 samples, 

constructed from 4 different tissue phenotypes (nodule, cord, skin overlying nodule and 

transverse palmar fascia – i.e. control) cultured in triplicates for each O2 tension. In this 

study there are three factors of interest; 1) progression of disease compared to healthy 

(nodule, cord and SON vs. fascia) 2) the effect of 1% oxygen tension on these samples (1% 

vs. 21%), 3) perturbation effect on healthy fascia cells to investigate whether healthy cells in 

hypoxia mimic disease state scenario. To identify the source of greatest variation within the 

combined and individual groups of data for all samples MVA was employed. The initial 

stage of the data analysis strategy was to use unsupervised exploratory data analysis; PCA 
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was employed to discover any natural groups within the data and also used for discovering 

any outliers before pre-processing. Other methods for outlier detection such as Winsorisation 

may not have provided suitable results as this was an unbalanced data set with respect to 

sample type (phenotypic differences e.g. nodule, n = 7, fascia n = 3). A number of known 

and unknown metabolites were identified. 69 of the 129 metabolites were known metabolites 

or indicatives of sugar. Table 5 shows the identified metabolites and the super families of 

pathways in which they contribute. The results of the PCA for all 8 samples types cultured in 

21% O2 and hypoxia 1% O2 showed separation in clusters from fascia cells to those from all 

skin samples in PC1. There was no obvious separation between these two samples types 

when compared with cords and nodule samples. There was overlap in these clusters in PC1 

and PC2. The results of the PCA are shown in Figure 24(a). Most N21 samples also 

clustered together and separated from N1 in PC1. No trends were clearly observed in cords. 

The 4 samples in Figure 24(b) cultured in 21% O2, plus F1 shows S21 samples separate in 

PC1 from fascia and cord (except patient 5) in PC1. This confirms that SON derived 

fibroblasts were a different sample type (from epidermis) compared with fibroblasts derived 

from nodule, cord and fascia (fascial cells beneath dermis and fat). 
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Figure 24 a) PCA score plot from GC-MS data acquired from 126 samples; nodule, cord, fascia and SON 

fibroblasts cultured in 1% and 21% oxygen. Red dot = N1, red triangle = N21, green dot = C1, green triangle = 

C21, blue dot = F1, blue triangle = F21, magenta dot = S1, magenta triangle = S21. b)  PCA scores plot from 

nodule, cord, fascia and SON fibroblasts cultured in 21% oxygen and fascia cultured in 1% oxygen. In each 

plot the numbers represent patients (each sample with three biological replicates. The numbers represent 

samples (each patient with three biological replicates. Red round dot = N21, green dot green dot = C21, blue 

dot = F21, magenta dot = S21, cyan dot = F1. 
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Table 5 List of 69 known detected metabolite features (peaks) and their involvement in corresponding pathways. „Yes‟ to 

Definitive ID = the metabolite in the sample has matched (by retention index and mass spectrum) to an authentic chemical 

standard present in MMD‟s EI-MS mass spectral library. „No‟ = the mass spectrum only matches to a metabolite in other 

mass spectral libraries (i.e. not the Manchester library). Definitive ID = Due to the nature of the analysis, not all metabolites 

detected can be accurately identified and some have similar chemical structure and were assigned by best possible match 

score.  
Metabolite No HMDB Accession ID Metabolite Identification Definitive Pathway

1 trimethylamine-N-oxide no

2 HMDB00883 valine yes

3 HMDB00192 cystine yes

4 HMDB00929 tryptophan yes

5 HMDB00687 leucine yes

6 HMDB00050 adenosine yes

7 HMDB00172 isoleucine yes

8 HMDB00687 leucine yes

9 HMDB00172 isoleucine yes

10 HMDB00123 glycine yes

11 HMDB00162 proline yes

12 HMDB00187 serine yes

13 HMDB00161 alanine yes

14 HMDB00167 threonine yes

15 HMDB00191 aspartic acid yes

16 HMDB00191 aspartic acid yes

17 HMDB00574 cysteine yes

18 HMDB00696 methionine yes

19 HMDB00574 cysteine yes

20 HMDB00696 methionine yes

21 HMDB00159 phenylalanine yes

22 HMDB00159 phenylalanine yes

23 HMDB00159 phenylalanine yes

24 HMDB00123 glycine yes

25 HMDB00182 lysine yes

26 HMDB00182 lysine yes

27 HMDB00182 lysine yes

28 HMDB11733 glycylglycine no

29 HMDB00158 tyrosine yes

30 HMDB00158 tyrosine yes

31 HMDB00883 valine yes

32 HMDB00167 threonine yes

33 HMDB00191 aspartic acid yes

34 HMDB00143 galactose yes

35 sugar no

36 inositol no

37 sugar no

38 sugar no

39 sugar no

40 sugar no

41 sugar no

42 sugar no

49 sugar no

43 HMDB00827 octadecanoic acid yes

44 HMDB10368 cholesterol yes

45 HMDB00482 octanoic acid yes

46 HMDB00220 hexadecanoic acid yes

47 HMDB00131 glycerol yes

48 HMDB00131 glycerol yes

50 HMDB00126 glycerol-3-phosphate yes

51 HMDB01401 glucose-6-phosphate yes

52 HMDB01401 glucose-6-phosphate yes

53 HMDB02730 nicotinamide yes

54 HMDB00210 Pantothenic acid yes

55 3-ureidopropionic acid and/or beta-alanine no

56 HMDB00641 glutamine yes

57 HMDB00641 glutamine yes

58 HMDB00641 glutamine yes

59 HMDB00300 uracil yes

60 HMDB00300 uracil yes

61 sucrose no

62 sucrose no

63 HMDB00254 succinic acid yes

64 HMDB00094 citric acid yes

65 HMDB00243 pyruvic acid yes

66 thiourea no

67 thiourea no

68 thiourea no

69 à-D-Galactopyranosiduronic acid no Uronic acid pathway

Amino Acid Metabolism

Carbohydrate Metabolism

Fatty Acid Metabolism

Glycerolipid Metabolism 

Glycolysis pathway

Metabolism of Cofactors and Vitamins

Metabolism of Other Amino Acids

Starch and sucrose metabolism

Tricarboxylic acid cycle

Urea cycle
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4.2.2 Effect of O2 tension in intracellular metabolomes of healthy cells  
(F1 vs. F21) 
 

The results from PCA for healthy fascial cells and those under hypoxic insult (F21 and F1) 

are shown in Figure 25(a).  The PCA scores plots show within patient‟s signature was 

stronger than between patients. To analyse the variance a semi-supervised method, ANOVA-

PCA was used which removes uninteresting sources of variance and the results are more 

interpretable. Most of the variance (TEV vs. # PCs) was captured in the first three 

components. The relationship between the data is very well elucidated in Figures 25(c) that 

display PC1 vs. PC2 scores plot. Analysis along the PC1 axis shows that this component 

divides the data into two groups (albeit broad clusters) i.e. F1 clusters and F21 clusters. To 

identify which chemical compounds might be responsible for such separation the 

corresponding loading plot (Figure 25(b)) was assessed. Because the separation between 

healthy and hypoxic fascia appeared in PC1, the variables that show a large diversity in PC1 

are more likely to be the chemicals that differentiate these classes. The numbers represent 

the unique metabolite ID given to the 129 variables, each number corresponds to one peak 

observed in chromatograms.  

From the loadings plot, the variable peaks on the extremes were mainly responsible 

for the separation exhibited in the scores plot whereas those close to the origin had little or 

no contribution to such separation. Examination of the loading plot revealed peaks with the 

highest variability. This was used to compare relative metabolite concentrations in samples 

and whether peaks (metabolite ID‟s) from loading plots correspond with those from 

univariate analysis. Many of these factors were induced by the hypoxic insult. The results 

were mapped onto pathways such as glycolysis, citric acid cycle, amino acid metabolism to 

see which metabolites were up/down regulated as a consequence of hypoxic insult. 

A number of known and unknown metabolites were identified. Variables identified 

from both loadings and univariate analysis (Wilcoxon - sign rank test [143]) in Table 6 and 7 

were considered as significant and box-whisker plots were drawn to display relative 

concentration distributions of metabolites with respect to sample and perturbation effect. 

Using an appropriate level of statistical significance (p ≤ 0.05) major differences in 23 

metabolites were identified (also from PCA) as significantly dysregulated in the 

endometabolomes. Of these 8 were known metabolites; pantothenic acid, a sugar and cystine 

elevated significantly while citric acid, cysteine (identified twice metabolite 40 and 44), 
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aspartic acid, and 3-ureidopropionic acid and/or beta-alanine levels decreased. A further 15 

metabolite features (peaks) were significant but remain unidentified. The metabolites ID 

(e.g. MET 100) are given in Table 7. 
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Figure 25 (a) PCA scores plot showing the separation between hypoxic fascia cells and healthy cells. The 

numbers represent patient the three patients that were entered into the study; patient 4, 7 & 8; each with three 

biological replicates Black denotes control F21 and blue is perturbed fascia; F1. (b) The corresponding PCA 

loadings plot from the first principal component illustrating which features are important for separation in PC1; 

the numbers correspond to the metabolite peaks. These data points were used for univariate analysis. Data 

points that lie close to origin (zero), have little or no contributions toward separations, whereas points that are 

further away from the origin (zero) have more significant contributions toward the separations. (c) PCA scores 

plot from ANOVA-PCA 
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4.2.3 Disease vs. hypoxia induced and healthy fascia 

PCA was then performed on the two disease fibroblasts, with F21 and F1, separately and in 

conjunction. DFA was applied on the PCs (from PCA) to compare more closely the 

clustering in C21 with hypoxia induced and healthy fascia and the same was done for N21. 

Figures 26(a) and (b) represent the PC-DFA scores plot. In Figure 26(a) DF1 separates C21 

from F21 & F1. In Figure 26(b) DF2 separates N21 from F21, while DF1 separates hypoxic 

F1 from normoxic; F21 & N21 clusters. Figure 27(a) shows the scores plot following 

ANOVA-PCA on N21, C21 and F21 and then including F1 respectively in Figure 27(b). It 

can be observed from both scores plots the separation between N21 & F21 appears in PC1 

while separation between C21 & F1 appears in PC2. In addition, PC2 also separates F1 from 

F21 and demonstrates these clusters to be closer to those in C21. As previously, loadings 

were plotted and the variables with data points further away from the origin (zero) that had 

more significant contributions toward the separations were examined.  

The results from Wilcoxon-rank test [143] are as follows. For nodule samples 

compared with normal fascia (N21 vs. F21), 11 metabolites were identified as significantly 

different. Of these 5 known metabolites; cysteine (identified twice - due to the nature of the 

analysis, not all metabolites detected can be accurately identified and some having similar 

chemical structure and were assigned by best possible match score hence all metabolites are 

assigned a Definitive ID), a sugar, phenylalanine, leucine and aspartic acid a decrease was 

observed in nodules. A further 6 metabolite features (peaks) were significant but remain 

unidentified (Table 7). For cords compared with normal fascia (C21 vs. F21), 9 metabolites 

were identified as significantly different. Of these 4 known metabolites; levels of glycerol-3-

phosphate increased while leucine, a sugar and pantothenic acid decreased. Some of these 

trends have been shown in the box-whisker plots in Figures 32(a-j). A further 5 unidentified 

metabolite features were also significant.  

The majority of known metabolites displayed disconcordant changes when disease 

(N21 & C21) and F1were compared with normal fascia F21. Sugar and pantothenic acid 

displayed this trend; up in F1 and down in C21. However, cysteine levels were 

downregulated in both N21 and F1.  
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Figure 26 3D DFA plot based on GC-MS analysis showing the relationship between the disease, healthy and 

hypoxia induced fascia cells (a) DD cords, hypoxia induced fascia cell and normal (healthy) subjects, (b) DD 

nodules, hypoxia induced fascia and healthy subjects. Each symbol represents an individual subject (green 

triangles = C21, red triangles = N21, blue triangles = F21, and cyan dots = F1.  
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Figure 27 a) ANOVA-PCA scores plot based on autocsaled GC-MS data showing the relationship between 

ANOVA-PCA scores plot based on autocsaled GC-MS data showing the relationship between two disease and 

control; N21,C21,F21. The numbers represent the patients. b) ANOVA-PCA scores plot based on autocsaled 

GC-MS data showing the relationship between the four samples; N21, C21, F21 and F1. The numbers represent 

three patients.  Each coloured dot/point represents a sample type. Number refers to Patients 4, 7 and 8. Letters 

refer to replicates.  
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Table 6 Metabolite peaks observed to be statistically different when comparing the intracellular extracts detected for O2 

tensions of 1 and 21%. The legend denotes super families of pathways corresponding to the metabolite detected. The red 

arrow denotes an increase in metabolite concentration. The green arrow denotes a decrease in metabolite concentration. 

No. Metabolite ID F1 vs F21 N1 vsN21 C1 vs  C21 S1 vs  S21 N21 vs  F21 C21 vs  F21 C21 vs  N21

p -value p -value p -value p -value p -value p -value p -value

1 leucine 0.3828 0.0526 ↑ 0.0011 ↑ 0.0098 ↑ 0.0313 ↓ 0.0078 ↓ 0.4887

2 sugar 0.0469 ↑ 0.2146 0.3981 0.5781 0.6250 0.0156 ↓ 0.4631

3 glycerol-3-phosphate 1.0000 0.0024 ↓ 0.7344 0.4961 0.2500 0.0156 ↑ 0.0391 ↑

4 Pantothenic acid 0.0078 ↑ 0.0218 ↑ 0.0080 ↑ 0.4961 0.6875 0.0547 ↓ 0.4887

5 glucose-6-phosphate 0.3828 0.1075 0.5755 0.0098 ↓ 0.6875 0.0781 0.4887

6 sucrose 0.9375 0.0413 ↓ 0.9479 0.1094 0.5625 0.0781 0.6257

7 isoleucine 0.2188 0.0040 ↑ 0.3259 0.7002 1.0000 0.1094 0.3394

8 glucose-6-phosphate 0.5469 0.0854 0.5503 0.0322 ↓ 1.0000 0.1094 0.4543

9 citric acid 0.0156 ↓ 0.0025 ↓ 0.0043 ↓ 0.0098 ↓ 0.3125 0.1484 0.4212

10 tyrosine 0.4609 0.9359 0.3317 0.0244 ↓ 0.3125 0.1484 0.0353 ↑

11 sugar 0.3125 0.1337 0.0152 ↑ 0.1309 0.3125 0.1953 0.8904

12 succinic acid 0.1953 0.0486 ↑ 0.0522 ↑ 0.7646 0.4375 0.1953 0.6387

13 sugar 0.1953 0.0176 ↑ 0.0169 ↑ 0.2324 0.4375 0.2500 0.3028

14 cystine 0.0469 ↑ 0.0029 ↑ 0.0353 ↑ 0.0313 ↑ 0.5000 0.2500 0.9375

15 sugar 0.4375 0.0067 ↑ 0.0586 0.4316 0.0313 ↓ 0.2500 0.2412

16 glutamine 0.3125 0.0353 ↓ 0.1627 0.2754 0.4375 0.2500 0.3804

17 valine 0.3125 0.0395 ↑ 0.0836 0.6875 0.8125 0.2969 0.1688

18 tryptophan 0.1953 0.0072 ↑ 0.0031 ↑ 0.0391 ↑ 0.0625 0.3125 0.2061

19 glycylglycine 0.1094 0.0023 ↑ 0.0771 0.1250 0.1250 0.3125 0.1484

20 glycerol 1.0000 0.0582 0.0005 ↑ 0.8457 0.8438 0.3828 0.5830

21 phenylalanine 0.8438 0.0141 ↑ 0.0304 ↑ 0.0244 ↑ 0.0313 ↓ 0.3828 0.0302 ↑

22 methionine 0.9453 0.0129 ↑ 0.0479 ↑ 0.1094 0.0625 0.3828 0.4263

23 lysine 0.5469 0.1119 0.2322 0.2783 0.2188 0.3828 0.0353 ↑

24 cholesterol 0.5469 0.9359 0.3703 0.0098 ↓ 0.5625 0.3828 0.1514

25 cysteine 0.0547 ↓ 0.0218 ↓ 0.2471 1.0000 0.0313 ↓ 0.4609 0.2524

26 glycine 0.3828 0.1365 0.2959 0.0244 ↓ 0.2188 0.4609 0.3591

27 uracil 0.2500 0.4997 0.0141 ↓ 0.2783 0.5625 0.5469 0.8904

28 lysine 0.3750 0.9359 0.0187 ↓ 0.3203 0.6875 0.5469 0.0353 ↑

29 nicotinamide 0.7422 0.6529 0.0366 ↑ 0.3594 0.8750 0.5469 0.2439

30 leucine 0.6406 0.0017 ↑ 0.1790 0.4131 0.8438 0.5469 0.4212

31

3-ureidopropionic acid 

and/or beta-alanine 0.0469 ↓ 0.2485 0.5862 0.0273 ↓ 1.0000 0.5469 1.0000

32 octadecanoic acid 0.4688 0.0148 ↓ 0.8789 0.0098 ↓ 0.3125 0.5469 0.2163

33 adenosine 0.6406 0.0055 ↑ 0.0910 0.5195 0.2188 0.5781 0.2293

34 sugar 0.3125 0.2311 0.0366 ↑ 0.4961 1.0000 0.6406 0.9341

35 aspartic acid 0.0391 ↓ 0.3547 0.5016 0.2402 0.0625 0.6406 0.5614

36 isoleucine 0.3125 0.0005 ↑ 0.0218 ↑ 0.0420 ↑ 0.0625 0.6875 0.1514

37 glycerol 0.6406 0.0168 ↑ 0.0206 ↑ 0.0840 0.6875 0.7422 0.9460

38 aspartic acid 0.9453 0.2273 0.1084 0.1934 0.0313 ↓ 0.8438 0.0637

39 methionine 0.8438 0.3271 0.3317 0.0420 ↑ 0.0625 0.8438 0.2676

40 valine 0.9453 0.0056 ↑ 0.3958 0.6377 0.0938 0.8438 0.2166

41 sucrose 0.8438 0.0386 ↓ 0.3981 0.8125 0.8125 0.8438 0.3054

42 cysteine 0.0156 ↓ 0.4445 0.2180 0.7002 0.0313 ↓ 0.9453 0.0637

43 octanoic acid 0.1094 0.0129 ↑ 0.2432 0.2324 1.0000 0.9453 0.8552

44 sugar 0.8438 0.0218 ↓ 0.8228 0.9658 0.0625 0.9453 0.0043 ↓

45 thiourea 0.1250 0.0078 ↓ 0.0039 ↓ 0.3750 0.5000 1.0000 0.8125

46 thiourea 0.1094 0.0049 ↓ 0.0161 ↓ 0.0156 ↓ 0.7500 1.0000 0.5703

47 lysine 0.0938 0.0026 ↑ 0.2273 0.4961 0.0625 1.0000 0.0023 ↑

48 serine 0.2500 0.0012 ↑ 0.6788 0.5703 0.1250 1.0000 0.1934   
Pathway Amino acid metabolism Carbohydrate metabolism Fatty acid metabolism Metabolism of Cofactors and Vitamins Urea cycle

Metabolite level ↑ up regulated ↓ down regulated  
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Table 7 Metabolite peaks observed to be statistically different when comparing the intracellular extracts 

detected for O2 tensions of 1 and 20%. These metabolites are unknown and hence MET ID in order detected is 

given. The colours indicate the significant metabolites. 

No. Metabolite ID F1 vs F21 N1 vsN21 C1 vs  C21 S1 vs  S21 N21 vs  F21 C21 vs  F21 N21 vs  C21

p -value p -value p -value p -value p -value p -value p -value

1 MET 31 0.0078 0.0836 0.0304 0.2061 0.5625 0.0781 0.3591

2 MET 54 0.0078 0.0003 0.0080 0.0371 0.4375 1.0000 0.7197

3 MET 55 0.0078 0.0766 0.3760 0.1748 0.4375 0.0781 0.8904

4 MET 83 0.0078 0.0702 0.0442 0.6875 0.3125 0.4609 0.5416

5 MET 107 0.0078 0.0910 0.0620 0.0273 0.5625 0.3828 0.2293

6 MET 115 0.0078 0.0641 0.0569 0.0830 0.8438 0.1094 0.7615

7 MET 14 0.0156 0.0641 0.0930 0.1475 0.0938 0.2500 0.7615

8 MET 27 0.0156 0.1712 0.8107 0.3652 0.8438 0.5469 0.0580

9 MET 45 0.0234 0.4688 0.1454 0.2324 0.8438 0.3828 0.6387

10 MET 71 0.0234 0.6009 0.0479 0.5195 0.6875 0.0781 0.1876

11 MET 9 0.0313 1.0000 1.0000 0.5000 1.0000 1.0000 1.0000

12 MET 19 0.0313 0.0437 0.0002 0.1250 0.8750 0.2188 0.7002

13 MET 122 0.0313 1.0000 0.0005 1.0000 1.0000 1.0000 1.0000

14 MET 32 0.0391 0.0836 0.3317 0.1230 0.5625 0.0781 0.6788

15 MET 114 0.0391 0.0329 0.9405 0.8311 1.0000 0.3828 0.0554

16 MET 100 0.8438 0.0009 0.5862 0.0273 0.0313 0.4609 0.1272

17 MET 13 0.6875 0.0070 0.1221 0.7695 0.6250 0.2188 0.3910

18 MET 29 0.7422 0.0079 0.0400 0.0186 0.0313 0.3125 0.7615

19 MET 59 0.1094 0.0100 0.0072 0.7344 0.0625 0.2500 0.3303

20 MET 58 0.5469 0.0100 0.2790 0.3203 0.0313 0.2500 0.3894

21 MET 21 0.8438 0.0112 0.0364 0.0137 0.0313 0.4609 0.7148

22 MET 3 1.0000 0.0158 0.5257 0.5771 0.4375 0.3828 0.4212

23 MET 77 0.1875 0.0181 1.0000 0.0313 0.0625 0.0156 0.1475

24 MET 62 0.3828 0.0329 0.6813 0.7646 1.0000 0.6406 0.9780

25 MET 96 1.0000 0.0340 0.3271 0.8438 0.0313 0.6875 0.3894

26 MET 99 0.3125 0.0442 0.8228 0.7646 1.0000 0.8438 0.1688

27 MET 126 0.8438 0.0479 0.5228 0.7695 0.6250 0.3750 0.0186

28 MET 28 0.3828 0.0534 0.8721 0.1016 0.6875 0.9453 0.8904

29 MET 1 0.4375 0.9697 0.0002 0.4688 0.2500 1.0000 0.7344

30 MET 102 0.5000 1.0000 0.0020 1.0000 0.2500 0.3750 0.0039

31 MET 82 0.1484 0.2954 0.0022 0.2402 0.0938 0.3828 0.4543

32 MET 121 1.0000 1.0000 0.0078 1.0000 0.0625 0.0313 1.0000

33 MET 112 0.2500 0.0625 0.0117 0.5000 1.0000 0.3125 0.4375

34 MET 61 0.1094 0.3144 0.0152 0.0322 0.5625 0.0547 0.9780

35 MET 4 0.2500 0.0645 0.0156 0.3750 1.0000 0.2500 0.8125

36 MET 124 0.8750 0.7002 0.0156 0.7500 0.5000 0.2500 0.6875

37 MET 60 0.4609 0.7782 0.0169 0.1016 0.3125 0.0391 0.4212

38 MET 106 0.3125 0.0582 0.0171 1.0000 0.4375 0.8438 0.9658

39 MET 17 0.4609 0.3981 0.0401 0.9658 0.1563 0.3828 0.0256

40 MET 25 0.1484 0.0836 0.0522 0.1016 0.8438 0.2500 0.8904

41 MET 123 0.5469 0.7475 0.1560 0.0049 0.2188 0.1484 0.7615

42 MET 120 0.7422 0.9679 0.8519 0.0049 1.0000 0.6406 0.3894

43 MET 125 1.0000 0.1701 0.2180 0.0244 0.6875 0.1484 0.6788

44 MET 119 0.3828 0.1590 0.8228 0.0322 0.4375 0.2500 0.5614

45 MET 74 0.7422 0.8092 0.8789 0.8125 0.0313 0.9453 0.7609

46 MET 128 0.0547 0.4939 0.1169 0.2783 0.5625 0.0234 0.0730

47 MET 94 1.0000 0.1250 1.0000 1.0000 1.0000 0.1250 0.0010

48 MET 16 0.4609 0.2273 1.0000 0.3203 0.1563 0.8438 0.0084

49 MET 7 0.7422 0.8405 0.4209 0.3750 1.0000 1.0000 0.0215  
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4.2.4 Disease vs. Disease – Nodule vs. Cord 

MVA was also performed on the DD cords against DD nodules i.e. C21 vs. N21. Little could 

be depicted from the PCA scores plots (Figure 28). From the Wilcoxon-rank test [143], 5 

metabolites showed a significant increase in cords compared with nodules. These are 

glycerol-3-phosphate, tyrosine, phenylalanine and lysine (identified three times). A sugar 

was markedly down regulated in nodules. In addition 6 unknown metabolites were also 

shown to have significant differences (Table 7). 
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Figure 28 PCA scores plot comparing two disease samples. 

 

 

4.2.5 Nodule, Cord and Skin overlying nodule under hypoxic stress 

MVA was then performed on the DD nodule, cord and SON data to compare against those 

cultured in hypoxic stresses i.e. N1 vs. N21, C1 vs. C21 and S1 vs. S21. Figures 29 (a-c) 

shows the PCA scores plot following ANOVA-PCA in each case. It can be observed from 

all scores plots the separation between samples cultured in normoxic state compared with 

hypoxic conditions separate in PC1. This is clearer in the case of nodules and SON. The 

cords (C21) however show overlap in clusters across PC1 and in PC2, while the hypoxic 
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cords (C1) are mostly observed in PC2. The loadings plot and univariate analyses results are 

as follows.  

For nodules in hypoxia 1% compared with cultures in 21% (N1 vs. N21) 46 

metabolites were identified as significantly different. Of these 30 known metabolites; 20 

increased in hypoxic cultures: leucine (identified twice), pantothenic acid, isoleucine 

(identified twice), succinic acid, a sugar, cystine, another sugar, valine (twice), tryptophan, 

glycylglycine, phenylalanine, methionine, adenosine, glycerol, octanoic acid, lysine and 

serine. A decrease in the relative concentrations for the following 10 metabolites was 

observed: glycerol-3-phosphate, sucrose (twice), citric acid, glutamine, cysteine, 

octadecanoic acid, a sugar and thiourea (twice). The 16 unknown metabolites that displayed 

significant differences are listed in Table 7.  

For cords in hypoxia 1% compared with cultures in 21% (C1 vs. C21) 40 metabolites 

were identified as significantly different. Of these 19 known metabolites; 14 increased in 

their concentration in hypoxic cultures: leucine, pantothenic acid, sugars (three), succinic 

acid, cystine, tryptophan, glycerol (twice), phenylalanine, methionine, nicotinamide and 

isoleucine. A decrease in the relative concentrations for the following 5 metabolites was 

observed: citric acid, uracil, lysine and thiourea (twice). The 21 unknown metabolites that 

displayed significant differences are listed in Table 7.  

For SON in hypoxia 1% compared with cultures in 21% (S1 vs. S21) 26 metabolites 

were identified as significantly different. Of these 15 known metabolites; 6 increased in their 

concentration in hypoxic cultures: leucine, cystine, tryptophan, phenylalanine, isoleucine and 

methionine. A decrease in the relative concentrations for the following 9 metabolites was 

observed: glucose-6-phosphate (twice), citric acid, tyrosine, cholesterol, glycine, 3-

ureidopropionic acid and/or beta-alanine, octadecanoic acid and thiourea. The 11 unknown 

metabolites that displayed significant differences are listed in Table 7.  

The majority of metabolites displayed concordant changes when cord and nodules 

were perturbed in hypoxia (i.e.  increased in both or decreased in both). Citric acid was 

downregulated in hypoxic samples including F1. Pantothenic acid levels increased in both 

disease hypoxic cultures (N1, C1) and F1. Leucine is elevated in N1, C1 and S1 but 

decreases in N21 and C21 compared with controls F21. Figure 30 displays the general trend 

observed in DD nodules, cords and fascia from 3 patients cultured in two oxygen tensions. 

Hypoxia has an influence on disease and healthy cells. Figure 31 shows the separation 
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between DD nodules and fascia and their respective hypoxic counterparts in scores plot from 

PCA and ANOVA-PCA.  
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Figure 29 PCA scores plot demonstrating changes due to hypoxic effect in a) nodules, b) cords and c) skin 

overlying nodules. 
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Figure 30 PCA scores plot demonstrating changes due to hypoxic effect in nodules, cords and control samples 

from three patients. The ellipses do not have statistical significance and are for illustrative purpose only. 
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Figure 31 PCA and ANOVA-PCA scores plot demonstrating changes due to hypoxic effect in both nodules 

and fascia. 
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Figure 32 Box-whisker plots demonstrating altered expression of metabolites in intracellular metabolomes of 

nodules, cords and Fascia in 1% and 21%. a) cysteine, b)cysteine, c) leucine, d) phenylalanine, e) aspartic acid, 

f) pantothenic acid, g) cystine, h) citric acid, i) 3-ureidopropionic acid &/or beta-alanine and j) lysine. The red 

line in the box represents the median change in the peak value; the lower and upper boundaries of the box 

represent the 25th and 75th percentiles, respectively; the lower and upper whiskers represent the 5th and 95th 

percentiles, respectively; and crosses represent the outliers.**p ≤ 0.05 Wilcoxon sign rank test. 

 

 

4.2.6 Effect of O2 tension on the metabolic footprint (exometabolome) 

Two known (ornithine and leucine) and one unknown metabolites (um01) were identified as 

significantly different between samples in N21 vs. F21 (n = 3 nodule, n = 3 fascia; in 

triplicates). None of these metabolites were found to be significantly different between N1 

and N21. Um01 and ornithine were significantly elevated in samples from N21 compared to 

F21 (p = 0.007 and 0.03 respectively). Leucine levels were found to be significantly 

decreasing in samples from N21 (p = 0.03) and F1 (p = 0.05) compared to F21 (Figure 33(a-

c)). 
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4.2.7 Pathway analysis 

Analysis of all known metabolites in the dataset using KEGG database revealed that 

members of the amino acid metabolism pathway were significantly overrepresented in the 

list of metabolites that changed specifically in the setting of hypoxic ischemia. In the case of 

DD nodule and cord samples, the results indicate, that dysregulation in intermediates 

involved in carbohydrate and amino acid metabolism may attribute to DD formation. Table 6 

illustrates the directional change with red arrow (upregulated) and green arrow 

(downregulated). 
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Figure 33 Box and whisker plots demonstrating altered expression of metabolites in conditioned cultured 

medium in DD Footprints in response to different atmospheric O2 tensions. (a) UM01, (b) ornithine, (c) 

leucine, **p ≤ 0.05 Wilcoxon signed rank test. 
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4.3 Discussion 

4.3.1 Principal Findings 

Metabolomics has expanded rapidly into new scientific fields in recent years. Despite this 

expansion, there are no reports of metabolomic (metabolic fingerprint or footprint) 

investigations in DD or any studies of DD cells following exposure to altered oxygenation. 

Variations in the intracellular metabolomes represent biochemical reactions in cells and 

therefore can aid in hypothesis generation regarding the activities within DD compared to 

control cells. From these variations, the pathways affected can be deduced, and the mode of 

action of disease pathogenesis better understood.  

In these preliminary studies despite a small clinical cohort of patients the aim was to 

identify novel biomarkers and determine whether metabolomic strategies were appropriate 

for the investigation of DD, including the assessment of comparison of technical and 

biological variability. In Chapter 3, FT-IR spectroscopy was used to produce unique 

fingerprints of DD and control fibroblasts based on biological provenance of each sample. 

This method represents a novel approach for sample characterisation and has allowed for 

classification of disease samples based on their genotype-phenotype differences and 

identified a suitable passage representative allowing further investigation of this disease in a 

controlled manner through construction of a reproducible cell culture model. Although this 

method proved to be both effective and rapid, it did not yield specific metabolite 

information. To elucidate key metabolites (and their levels in terms of relative abundance), 

an untargeted metabolic profiling approach using GC-MS was applied on selected test 

subjects to identify groups of metabolites associated with a specific pathways thought to be 

involved in the pathogenesis of DD. A targeted approach could then be applied to focus on 

specific groups of metabolites (e.g. lipids, carbohydrates, amino acids). The results from 

metabolomics analyses combined with transcriptomic data are confronted with many 

systems biology tools that facilitate investigation in a more controlled manner in order to 

deduce key pathways thought to be involved in disease. This will be discussed in Chapter 6. 

Using GC-MS, the metabolic profiles of endogenous and secreted metabolites were 

acquired from (1) DD cords and nodules from the palm against the unaffected transverse 

palmar fascia (internal control), (2) DD the skin overlying the nodule and (3) those in (1) and 
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(2) were compared between their counterparts under hypoxic stresses. A total of 129 

metabolites were detected in the analysis of the intracellular metabolome and 79 metabolites 

detected from the footprint. While transport of metabolites between sub-cellular 

compartments may play a key role in regulation of metabolism, the current quenching, 

extraction and analytical approach provides only average metabolite levels throughout the 

full cellular volume. 

The first aim was to determine whether we could detect metabolites (endogenous) in 

healthy cells under hypoxic stress (F1) and compared these with the metabolic profiles 

acquired from healthy transverse palmar fascia (F21). Next, these metabolic profiles were 

compared with DD nodule, cord and SON. This was done to investigate whether DD tumour 

cells were akin to the tumours in which exists the Warburg effect. Furthermore, these 

metabolic profiles were compared with their counterparts under hypoxic stress to test the 

response to hypoxia in the metabolomes of nodules, cords and SON. The key players from 

this study were then used to investigate the cellular dynamics in the transcriptomes (Chapter 

5). For these samples differences between metabolic footprints in two different O2 tensions 

were also investigated. This advanced sensitivity in detecting changes in DD cultures.  

Multivariate analyses demonstrated within-class inter-patient/site variation was less 

than between-class inter-patient/site variation. This shows that there are greater differences 

between classes (between patients and their respective samples cultured in different O2 

tensions) than within classes (patients/samples cultured at the same O2 tension), which are 

necessary to deduce metabolic changes between the experimental classes. These results 

show that metabolomic methodologies are suitable for distinguishing metabolic variations in 

cultures of DD at different O2 tensions. They also indicate that when appropriate 

experimental design is applied, observed differences are likely to originate from true 

biological variation rather than technical inaccuracies. The groups of metabolites that were 

identified as significantly different in the endometabolomes were amino acids, sugars or 

intermediates in carbohydrate metabolism as explained below. 

Cysteine, decreased in N21, N1 and F1 compared to control samples. This sulfur-

containing amino acid is a building block to most proteins. It is unique among the twenty 

common amino acids because it contains a thiol group with can undergo oxidation of a pair 

of cysteine residues producing cystine, a disulfide-containing derivative. This reaction is 

reversible. The disulphide bonds of cystine are crucial to defining the structures of many 
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proteins. Cystine levels however notably increase in all hypoxic samples. This disulphide 

molecule is generally found in high concentrations in the cells of the immune system, 

skeletal and connective tissues and skin. Hair and skin are 10-14% cystine [49]. A decrease 

in sugars levels in disease cells and increase in hypoxic cells indicate altered glucose 

metabolism in fibroblasts in response to changes in O2 tension. Leucine decreases in N21 

and C21. By contrast it increases in N1, C1 and S1. This essential amino acid is a group of 

three amino acids known as branched-chain amino acids – BCAA (valine and isoleucine 

being the other two) whose carbon structure is marked by a branch point. These three amino 

acids are critical to human life and are particularly involved in stress, energy and muscle 

metabolism. Stress state e.g. surgery, trauma, cirrhosis, infections, fever and starvation 

require proportionately more BCAA than other amino acids and probably proportionately 

more leucine than either valine or isoleucine [49]. Phenylalanine, an essential amino acid is 

observed as downregulated in N21 but upregulated in C21 compared with N21. Previous 

literature reports some tumours use more phenylalanine, particularly in melanoma. One 

strategy suggested to deal with this is to exclude this amino acid from the diet,  the other is 

to increase phenylalanine's competing amino acids, i.e., tryptophan, valine, isoleucine and 

leucine, but not tyrosine [49]. Aspartic acid levels decrease in N21, This non-essential amino 

acid is synthesised from glutamic acid by enzymes using vitamin B6. The amino acid has 

important roles in the urea cycle and DNA metabolism. Aspartic acid is a major excitatory 

neurotransmitter which is sometimes found to be increased in epileptic and stroke patients. 

Pantothenic acid, also called vitamin B5, was elevated in all hypoxic samples. By contrast 

this water-soluble vitamin decreased in C21. Pantothenic acid is required to sustain life; is 

needed to form coenzyme-A (CoA), and is thus critical in the metabolism and synthesis of 

carbohydrates, proteins, and fats. It is found almost in all foods [49]. 

The final aim of the metabolomics experiments was to determine whether GC-MS 

could define differences in exometabolome of cells exposed to different atmospheric O2 

tensions. Using an appropriate level of statistical significance (p ≤ 0.05) only three 

metabolites were identified as significantly different in the exometabolomes; ornithine, 

leucine and the third is unknown. Ornithine; an amino acid not encoded by DNA, i.e. it is 

not involved directly in protein synthesis. In mammalian non-hepatic tissues, the main use of 

the urea cycle is in arginine biosynthesis, ornithine is an intermediate, in this metabolic 

process, and thus is quite important [144]. It is believed not to be a part of genetic code 
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because polypeptides containing unprotected ornithines undergo spontaneous lactamization. 

Overall, no major differences were demonstrated in the exometabolomes. This may suggest 

that cultures in O2 levels exceeding those estimated as physiological for term human cell 

cultures (6-7%) may not significantly alter the secreted metabolic content.  

 

4.3.2 Strengths and weaknesses of the study  

For mammalian cells in culture, characterisation of metabolic footprint and within the cells 

(intracellular metabolites; “fingerprinting”) both have validity for assessment of cellular 

function [145, 146]. Metabolic footprinting offers technical simplicity, high-throughput, and 

automation as samples are simply centrifuged to separate medium and cells prior to analysis 

and is an appropriate tool for screening of large sample libraries. None of the difficulties 

associated with sampling intracellular metabolomes, including cell leakage during 

quenching, are present. It provides a picture of metabolism over a period of time instead of a 

snapshot, as is the case for intracellular metabolism [145]. However, the intracellular 

metabolite profile most accurately defines the metabolic status of the cell, and one of the 

most crucial technical features for characterisation of intracellular metabolites is the 

quenching and extraction process. Many metabolites are extremely labile and, for example, 

ATP and glucose 6-phosphate have turnover rates of less than 1-2s and hence cellular 

metabolism must be stopped immediately (quenched) upon sampling of the cells to prevent / 

minimise metabolite turnover. Here a metabolomics approach within an integrated systems 

biology framework is applied to understand the metabolic and functional response to 

hypoxia in DD cells compared to DD and healthy cells. This high-throughput approach has 

facilitated the identification of several biomarkers (small molecules) thought to be involved 

in DD pathogenesis. In addition, simultaneous measurements of two factors in 126 samples 

i.e. difference in cell type and effect of hypoxia has been possible.  Oxidative stress has been 

linked to many diseases [147-149]. Increased levels of oxidative biomarkers can be detected 

in aging population; oxidants are produced by endogenous sources, such as mitochondrial 

respiration, which generates reactive oxygen species (ROS) as by products. Increased 

production of oxidants results from saturation of antioxidant defenses [150], such as 

inactivation of antioxidant enzymes and depletion of sulfhydryls due to nutritional 

imbalance or exposure to xenobiotics [151]. 



Chapter 4                                          Metabolic profiling of Dupuytren’s disease fibroblasts under oxidative stress   

138 

 

In order to improve the statistical validity of the acquired data, and to facilitate 

epidemiological studies, it is highly desirable to employ data set sizes composed of hundreds 

if not thousands of samples. This requires reproducible analyses over time scales ranging 

from several months to years. The Human Serum Metabolome project [133, 152], conducted 

by the University of Manchester, AstraZeneca, and GlaxoSmithKline, is a study which 

presents this particular challenge. Raw and processed analytical data, together with clinical 

and physiological metadata for the subjects, is a highly useful resource. However, such 

sample collection regimes of many diseases such as DD are not always possible for 

metabolomics experiment, e.g. the fact that patient samples are not always available at the 

time that is optimal for the research project and so in this experiment a small clinical number  

n=8 was only possible. 

The findings from this experiment can now lead to a more targeted profiling 

approach using LC-MS/MS or NMR spectroscopy. The principal carbohydrate product of 

glycolysis is pyruvate, which was not measured as significant here. A key metabolite of 

pyruvate is alanine, which is produced via pyruvate transamination. Levels of alanine were 

also detected. It is clear that several amino acid, sugars and fatty acids altered in DD. This 

investigation provides evidence of this and future studies should be targeted at the amino 

acid utilisation patterns. 

An apparent issue with sample collection/preparation was observed in TIC by the 

high chromatogram baselines. This suggested a high concentration of phosphate and glucose 

in the intra-cellular extracts not due to high concentrations of these metabolites in the cell 

but the issue of all the footprint and wash step involved potentially leaving minute traces 

before the quenching solution was added. Rapid quenching following footprint collection 

was performed instantly to prevent changes in metabolism. This may have been the case in 

few samples due to the large volume of media being aspirated (35mL) and one wash (10mL) 

step which then was also aspirated quickly. The high phosphate concentration interfered in 

accurate determination of the internal standard (succinic acid-d4) as both elute close to each 

other. To overcome this problem all data was normalised according to total peak area for all 

detected peaks for a single sample, i.e. (peak area-metabolite/total peak area for all 

metabolites) x 100. 

Both the strength and weakness of PCA is that it is a non-parametric analysis. One 

only needs to make the assumptions outlined in Chapter 2.2.2 and then calculate the 
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corresponding answer. There are no parameters to tweak and no coefficients to adjust based 

on user experience - the answer is unique and independent of the user [153]. This same 

strength can also be viewed as a weakness. If one knows a priori some features of the 

structure of a system, then it makes sense to incorporate these assumptions into a parametric 

algorithm - or an algorithm with selected parameters. PCA showed little separation of 

different samples types in Figure 24(a-b), therefore, a supervised method, ANOVA-PCA 

was used. This method removed uninteresting sources of variance and the results were more 

interpretable than without ANOVA. This can be seen in Figures 27(a-b). PCA is most 

commonly used to gain an intuitive view of the multivariate data, however, when there are 2 

or more underlying influential factors PCA is not always the best method to reveal the 

influence of these factors. Methods such as PARAFAC [154] and PLS [94] may be more 

appropriate. Again, due to small sample number of patients and only 3 biological replicates 

such methods were not applicable here.  

 Supervised classification attempts to build a predictive model based on a subset of 

samples with known origin (training set). If there are sufficient chemical differences between 

the samples that are detected by GC-MS the model should be able to predict the class 

membership of unknown samples. The accuracy of such prediction can then be assessed by 

using an independent data set (test set) not used during the training stage. DFA was applied 

and the scores plots can be seen in Figures 26(a-b). Despite supervised learning methods, the 

variability between patients is observed in this analysis. This could be due to the patients 

recruited not displaying a similar proliferative disease stage (e.g. early vs. late stage, 

contracted vs. non-contracted hand) and could mostly be at interface or in transformation 

from one state to another. DD cords do however have the least significant no. of differences 

compared with normal fascia, while nodules show 6 significant defected metabolites.  

The study has potential limitations that should be considered. First, although 

sampling in patients who served as their own biological controls (1% and 21%) helped 

diminish interindividual variability and signal-to-noise problems, the study population was 

nevertheless small. Thus, it is important to note that changes in metabolites that failed to 

reach nominal significance in this study still may be scientifically important and should be 

further investigated. For this reason, biological pathway trend analysis offered increased 

advantage to detect subtle but significant differences. Further testing in larger cohorts will 

provide the opportunity for both confirmation and exploration of subgroups of interest, 
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including those based on varying proliferative stages, which this study was underpowered to 

do. Moreover, larger datasets will provide sufficient precision in the estimates of the utility 

of each marker to allow for appropriate relative weighting of each component. Another 

weakness is that independent measurements of lactate and ATP have not been made and 

therefore it cannot be confirmed whether the Warburg is being used or not. The study does 

highlight many trends and these shall be sought in the transcriptome profile in Chapter 5 and 

6. 

 

4.3.3 Conclusions 

Currently, metabolomics has been applied as a hypothesis generation strategy, as there is 

little known of expected metabolic differences in DD. This study is novel in that it also is 

testing for the first time analytical tools and various DD passaged cells. The difficulties 

faced and successfully overcoming challenges associated with primary cultures (e.g. high 

variability and low n number) should not be understated. Metabolic profiling is used to 

detect a wide range of metabolites covering a number of different metabolic classes to 

provide as large an overview of metabolism as achievable. The intracellular and selective 

extracellular metabolome have been studied, giving clues to metabolic pathways that may be 

utilised within the DD cell environment and the effects these cells may be having on their 

environment through released products. Furthermore this approach reveals the effect these 

cells may exert upon induction of a hypoxic insult to disease and healthy cells.  However, 

from Table 6 and 7, it can be observed that the metabolites found significantly dysregulated 

in F1 vs. F21 analysis were not akin the N21 vs. F21 metabolites. From this we may be 

tempted to falsify the first hypothesis that difference in disease and healthy cells maybe akin 

to the differences in healthy cells in normoxia and hypoxia as the number of identified 

metabolites do not coincide in the cases (except cysteine). Because such few dysregulated 

metabolites have been identified in disease it is more appropriate to test this hypothesis in 

the transcriptome for a more clear understanding as it is expected that changes occurring in 

the cells metabolome would also be observed at the transcript level.  

What can be concluded is that these data suggest that hypoxia possesses a role in DD 

investigations as a number of metabolites were significantly upregulated in disease upon 

perturbations which were identified previously as downregulated in disease. Two areas of 

metabolism were highlighted for systems biology and transcriptomics investigation; amino 
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acid (leucine cysteine) metabolism and carbohydrate metabolism. Fatty acid and metabolism 

of cofactors and vitamins should be investigated. These findings will be correlated with 

those in Chapter 5 as a better understanding of the mechanistic links between cellular 

metabolism and transcriptome profiles may ultimately lead to better treatments for DD and 

other disease.  

 



 

 

Chapter 5 

Dynamic changes in Dupuytren’s Disease 
and control transcriptome in hypoxia 
 

5.1 Introduction 

5.1.1 Exploring dynamical changes in DD and control transcriptome  

In Chapter 4 we investigate the dynamic changes occurring in DD phenotypes and healthy 

fascia in response to hypoxia. A number of key metabolites and pathways that may 

contribute to DD progression or have been invoked as a consequence of hypoxic stress are 

highlighted. Intermediates involved in amino acid and carbohydrate metabolism have shown 

significant differences from this analysis. In this Chapter we extend this approach to 

investigate this effect in their transcriptome. This study examines whether gene expression 

analysis of such cells could provide a more representative picture of the dynamics involved 

in DD. It is surmised these transcripts will produce a specific signature for DD 

complementing the metabolomics study and allow us to look for metabolic pathways and 

cell signaling pathways / targets in a controlled systematic manner. The emerging data will 

form the basis for selecting appropriate models for pathway studies.  

In this study, we test the experimental model of hypoxia induced in DD and healthy 

cells, the effect on its transcriptome profile and seek to understand factors that induce 

discriminating changes in both the metabolic and signaling pathways. The aim is to identify 

potential biomarkers of DD and characterise a possible altered biochemical profile of the DD 

cells compared to healthy fascia in patients with and to determine the metabolic impact of 

hypoxia in both. From results in Chapter 4, the nodule displays the maximum differential 
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response (compared with cord and SON is a different cell type) compared with healthy 

fascia.  

In this study, we set out to (1) understand progression of disease compared to healthy 

(nodule vs. fascia) (2) profile DD nodules to investigate the effect of 1% oxygen tension on 

these samples (1% vs. 21%), and 3) investigate the perturbation effect on healthy fascia cells 

to examine whether healthy cells in hypoxia mimic disease state scenario. The study 

employed Affymetrix Human Genome U133 Plus 2.0 GeneChip oligonucleotide arrays [58] 

to determine transcript profiles of fibroblasts cultured in normoxic and hypoxic conditions.  

The study revealed a small number of DE transcripts that were common in N21 vs. 

F21 and F1 vs. F21 analysis. These transcripts were involved in the following pathways: - 

MAPK signaling pathway, ECM-receptor interaction, p53 signals pathway, tyrosine 

metabolism, nicotinate and nicotinamide metabolism, phenylalanine metabolism and vitamin 

B6 metabolism. 

Landmark genes previously identified to be associated with DD were also confirmed 

and key collagens, collagenases, metalloproteinases, and inhibitors, cell adhesion molecules 

and integrins were identified. Genes involved in focal adhesion, regulation of actin 

cytoskeleton, ECM-receptor interaction, vascular smooth muscle contraction pathways, 

cysteine and methionine metabolism were markedly dysregulated. From the perturbation 

effect in N1 vs. N21 fatty acid metabolism, toll-like receptor signaling pathway, biosynthesis 

of unsaturated fatty acids, PPAR signaling pathway, citrate cycle (TCA cycle), glycine, 

serine and threonine metabolism pathways were enriched. These results suggested 

correlation with the molecules dysregulated in the metabolomes. In addition strengthened 

our hypothesis that DD is a disease of networks, where molecules are interconnected and a 

number of amino acid metabolism molecules are actively DE in DD nodules and this 

perturbation effect is observed at both the transcriptome and metabolome levels within a 

cell. These results indicate a number of important candidate genes associated with DD 

formation, which may provide clues for molecular mechanisms involved in DD 

pathogenesis. 
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5.2 Results  

5.2.1 Gene expression Analysis  

Affymetrix microarray technology was adopted to address whether the metabolites found to 

be significantly differentially expressed in Chapter 4 between F1 vs. F21, N21 vs. F21 and 

N1 vs. N21 correlate with differences at the mRNA level. A total of 12 samples were 

analysed using three analysis methods (n = 3 transverse palmar ligaments from DD cases 

acting as control, n = 3 transverse palmar fascia cultured in hypoxia, n = 3 DD nodule 

samples and n = 3 DD nodules cultured in hypoxia). The boxplots shown in Figure 34 

illustrate the distribution for expression values created by each of the normalisation methods 

RMA, GC-RMA, and multi-mgMOS. The PCA scores plot from the multi-mgMOS 

normalised and GC-RMA normalised expression set are given in Figures 35(a) and 35(b) 

respectively.  

It can be seen from Figure 35(a) PC1 appears to be separating the arrays by patient, 

whereas PC2 appears to be separating the arrays by oxygen tension. The grouping of N1 & 

N21 clusters and F1 & F21 clusters is much tighter in pumaPCA using multi-mgMOS 

normalised data. Figure 35(b) using GC-RMA normalised data and standard PCA also 

shows a similar trend across PC1 where separation is observed with respect to patients and 

PC2 separates for disease or healthy cells. This is not the case with patient 60 because PC2 

separates the samples based on oxygen tension not disease. But separation can still be 

observed between disease and healthy samples (in all conditions) in patient 60. One reason 

the difference observed here between pumaPCA and standard PCA is because expression 

levels have been normalised using GC-RMA in Figure 3b; the quantile normalisation used in 

GC-RMA removes such differences. On the whole, both methods show similar observations 

– patients separated along PC1 and oxygen tension (1 always higher than 21 for the same 

patient/cell type) along PC2. Samples of same type from each patient are clustered but there 

is no strong systematic trend for the disease vs. healthy samples that can be seen in PC2.  

HCA using Euclidean distance (average linking) matrix was applied to GC-RMA 

normalised data following a Two-way ANOVA, cut off value p ≤ 0.05 and fold change > 2 

resulting in 461 significant genes. Genes were clustered by applying two-way clustering 

where on one axis (horizontal) array samples (F21 (control), F1, N21 and N1) and on the 
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other axis (vertical) are the genes. The heat map and clustering algorithms identified subsets 

of genes that were co-expressed similarly. An expanded region (cluster of genes) resulting 

from agglomerative HCA of all samples is shown in Figure 36. Presence of large contiguous 

patches of colour represent groups of genes that share similar expression patterns over 

multiple conditions. Branch lengths represent the degree of similarity between the genes. 

Co-regulated and functionally related genes were statistically grouped into clusters. Larger 

groups of clustered genes were examined where we observed a strong tendency for these 

genes to share common roles in cellular processes. Genes illustrated in Cluster A consist of 

co-expressed genes which appear to separate disease from fascia irrespective of oxygen 

concentration. Cluster B groups co-expressed genes impacted by oxygen tension.   

In order to identify genes unique to each of these conditions differential gene 

expression was analysed for F1 vs. F21, N21 vs. F21 and N1 vs. N21 for each of the three 

patients using 1) Limma that produced p-values and q-values (adjusted p values), and log10 

fold change in genes (up, down, or unchanged) between the conditions and these probesets 

were compared with 2) Puma that generated the probability of PPLR statistical scores for 

each probe set by two-way comparisons between pairs of these sample groups. PPLR values 

range from 0 to 1, with values closest to 0 representing the most significantly down-

regulated probe sets and values closest to 1, representing the most significantly up-regulated 

probe sets. Values of 0.5 represent no significant change.  

Probe sets ≥ 1.5 threshold value and with a PPLR value > 0.9 (significantly up-

regulated) and < 0.1 in at least one of the comparisons were compared for their presence 

across the statistically and biologically significant transcript lists retrieved from these 

individual analyses   (i.e., transcripts over- and under expressed in gene lists generated from 

pairwise analyses of F1 vs. F21 compared with those in N21 vs. F21. The same was done for 

other N1 vs. N21 gene lists. Statistical false-positives in this data have been minimized by 

using a high cut-off PPLR value for puma methods (0.9 and 0.1) and a FDR (Benjamini and 

Hochberg) for Limma p-values to locate more disease specific and hypoxia-responsive 

genes. A correction method for PPLR values does not exist at present and filtering in this 

way was deemed appropriate.  

Venn diagrams were generated to illustrate the distribution of the probe set for the 

Limma probe sets with FDR applied. Over representation analysis of probes falling in top 

1000 PPLRs values and weakest 1000 PPLR values was followed by ontological mapping to 
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investigate significant overrepresentations and associations between genes belonging to 

specific patterns and Gene Ontology categories. The same gene lists were also used for 

KEGG pathway analysis (refer to Tables 31-33 in Appendix D). To test whether the genes 

could be mapped onto the pathways detected by metabolomics and also show changes at 

mRNA level by any chance, a  less stringent selection criteria was applied by including 

PPLR values >0.8 and <0.2 counting for the genes showing 1.5-fold or more changes in two 

out of three independent experiments e.g. patient to patient comparison. Table 8-9 show 

significant DE genes identified from each of the pairwise analyses that were common across 

three patients from F1 vs. F21 analysis and N21 vs. F21 analysis. Figure 42 show GO 

analysis from top over expressed genes in N21 vs. F21. Table 10-12 show the top scoring 

pathways from the overlapping (common) DE genes identified from pairwise analyses in 

clusters from heatmaps (Figure 43-44, 48). Tables 13 and 14 show a section of DE from N1 

vs. N21 analysis. 

 

44Fascia 1% 
44Fascia 21% 
44Nodule 1%
44Nodule 21%

60Fascia 1% 
60Fascia 21% 
60Nodule 1%
60Nodule 21%

61Fascia 1% 
61Fascia 21% 
61Nodule 1%

61Nodule 21%
 

Figure 34 Boxplots to show distributions of expression values created by each of the summarisation methods. 

Data set processed by RMA, GCRMA and multi-mgMOS (global median scaling) respectively. 
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Figure 35 First two components after applying a) pumapca and b) prcomp to the 12 samples. 
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Figure 36 A section from the hierarchical clustered display of data from 

12 samples (average) F21, F1, N21 & N1 normalised using GC-RMA, 

followed by Two-way ANOVA. Genes were clustered by applying 2-

way clustering where on x-axis are the array samples and on the y-axis 

are the genes. Genes that are upregulated appear in red; those that are 

downregulated appear in green; black indicates approximately the same 

gene expression as the mean for that gene across all samples. Genes in 

cluster A consist of co-expressed genes which appear to separate disease 

from fascia. Cluster B groups co-expressed genes impacted by oxygen 

tension. 

 

 

A

B
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Probe sets with a probability of positive log-ratio (PPLR) value greater than 0.9 

(significantly up-regulated) in at least one of the comparisons generated a list of 669 probe 

sets. 47 probe sets are uniquely up-regulated when comparing the gene expression profile of 

F1 vs. F21 and N21 vs. F21. When comparing N21 vs. F21, 130 probe sets are uniquely 

upregulated, interestingly however, 4 probe sets are upregulated in all comparisons. The 

number of probe sets associated with a significantly down-regulated PPLR value (0.1) for 

N1 vs.N21was higher than the number for up-regulated probe sets. 256 probe sets alone were 

unique and significantly down regulated in N1 vs.N21 (Figure 37).  

B. PPLR ≤ 0.1A. PPLR ≥ 0.9

 

Figure 37 Distribution of probe sets with a PPLR value greater than 0.9 (A), PPLR less than 0.1 (B) in any one 

of the three comparisons (F1 vs. F21, N21 vs. F21 or N1 vs. N21 are shown in Venn diagrams. 

 

 

Combining probe sets that were either significantly upregulated (0.9) or significantly down-

regulated (0.1) in at least one of the comparisons (F1 vs. F21, N21 vs. F21 and N1 vs. N21) 

generated a list of 669 probe sets (Figure 38(a)). 141 of these probe sets were unique to F1 

vs. F21, 119 of these were unique to N21 vs. F21 and 113 unique to N1 vs. N21. A total of 

54 genes were significantly up-regulated or down-regulated and overlapping in F1 vs. F21 

and N21 vs. F21, 166 overlapped in F1 vs. F21 and N1 vs. N21). 34 genes were common in 

all three comparisons (F1 vs. F21, N21 vs. F21 and N1 vs. N21). By contrast GC-RMA 

normalisation followed by Limma models revealed only 30 probe sets unique to N21 vs. F21 

of which none overlapped with F1 vs. F21 combination, and relatively lower number of 
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probesets unique to F1 vs. F21 (30 probe sets), and unique to N1 vs. N21(31) can be seen in 

Figure 38(b). The 669 probe sets with a PPLR value greater than 0.9 or less than 0.1 in at 

least one of the comparisons (F1 vs. F21, N21 vs. F21 and N1 vs. N21) underwent clustering 

analysis. A number of distinct clusters were generated and probe sets from each cluster were 

subjected to expression analysis systematic explorer (EASE) online tool and DAVID [63]. 

For each cluster, overrepresented GO groups were identified. For each individually patient, 

significant DE was examined and Figure 39 shows the extent of patient variability. Patient 

61 demonstrated the maximum number of DE genes for N21 vs. F21 analysis and N1 vs. 

N21 (514 and 752 respectively). 

 

 

b) GC-RMA + Limma, p=<0.05, FC >1.5a) Multi-mgMOS + Puma, PPLR> 0.9 and <0.1

 

Figure 38 Analysis of microarray data of DD samples using a) mmgMOS and IPPLR for differential 

expression PPLR values were calculated for fascia in normal and hypoxia (F1 vs. F21), nodules in normal and 

hypoxia (N1 vs. N21) and nodules compared to healthy fascia (N21 vs. F21). Distribution of probe sets with a 

PPLR value greater than 0.9 and less than 0.1 in any one of the three comparisons (F1 vs. F21, N21 vs. F21 and 

N1 vs. N21) are shown in Venn diagram b) GC-RMA and Limma to identify differential expression, probe sets 

where p-value ≤ 0.05 and fold change > 1.5 are shown Venn diagram. 
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Patient 44,4 Patient 60,7

Patient 61,8  

Figure 39 Venn diagrams to show filtered probelists following PPLR thresholds applied to data sets from individual 

patients to determine extent of patient variability. Patient 44 (4 from metabolomics study), patient 60 (7 from 

metabolomics study) and patient 61(8 from metabolomics study). PPLR values were calculated for Fascia in normal 

and hypoxia (F1 vs. F21), nodules in normal and hypoxia (N1 vs. N21) and nodules compared to healthy fascia 

(N21 vs. F21). Distribution of probe sets with a PPLR value greater than 0.9 and less than 0.1 in any one of the three 

comparisons (F1 vs. F21, N21 vs. F21 and N1 vs. N21) are shown. 
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5.2.2 Effect of O2 tension in intracellular transcriptomes of healthy cells 

The Venn diagrams from puma analyses in Figure 39 show the number of transcripts that 

were significantly differentially expressed. In hypoxic conditions F1 cells show upregulation 

in a number of intermediates involved in glycolysis and carbohydrate metabolism. Some 

hypothetical proteins are present. This was observed using both methods (puma + limma). 

Figure 40 demonstrates the individual filtered probelists from each patient which allows 

determination of the variability between patients upon hypoxia. Patient 60 consists of 136 

uniquely significant DE genes in F1 vs. F21, while patient 44 demonstrates the smallest 

change with 62 differentially expressed genes. The 25 gene names relevant to the 36 probe 

IDs common across patients are given in Table 8. 

A number of transcripts are consistent across all patients; some showing 

greater/lower PPLR values, however the trends observed are mostly similar across the three 

patients with varying levels of significant expression. In patients 61, 70 probe sets from N1 

vs. N21 list are overlapping with many of the differentially expressed transcripts in F1 are 

also observed in the N1. While no transcripts were identified common from Limma analysis 

in this list for N21 vs. F21.     

 

Effect of Hypoxia in healthy cells across patients F1 vs. F21 

 

Figure 40 Venn diagram showing comparison across patient samples where healthy fascia was compared to 

perturbed fascia. 
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Table 8 The 25 genes (36 probes) significant common in all 3 samples where healthy fascia was induced with 

hypoxic environment. 

Affymetrix Probe ID Gene Name

202464_s_at 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3

204347_at adenylate kinase 3-like 2; adenylate kinase 3-like 1

207692_s_at aggrecan

227337_at ankyrin repeat domain 37

201623_s_at aspartyl-tRNA synthetase

201848_s_at BCL2/adenovirus E1B 19kDa interacting protein 3

222646_s_at ERO1-like (S. cerevisiae)

217967_s_at family with sequence similarity 129, member A

217871_s_at hypothetical protein LOC284889

201650_at junction plakoglobin

212689_s_at lysine (K)-specific demethylase 3A

200738_s_at phosphoglycerate kinase 1

202619_s_at procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2

207543_s_at prolyl 4-hydroxylase, alpha polypeptide I

1554997_a_at prostaglandin-endoperoxide synthase 2

226452_at pyruvate dehydrogenase kinase, isozyme 1

226682_at RAR-related orphan receptor A

219888_at sperm associated antigen 4

212353_at sulfatase 1

202796_at synaptopodin

228483_s_at TAF9B RNA polymerase II, TATA box binding protein (TBP)-associated factor, 31kDa

201010_s_at thioredoxin interacting protein

200822_x_at TPI1 pseudogene; triosephosphate isomerase 1

219410_at transmembrane protein 45A

218149_s_at zinc finger protein 395  
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5.2.3 Disease vs. healthy fascia 

GO biological process and molecular function overrepresentations are illustrated in Figure 

42. The genes enriched in biological processes range from cellular processes involving 

biological regulation. More than half of 1000 gene lists are involved in binding or protein 

binding. Other molecular functions involve catalytic activity and regulator activities. 

From PPLR analyses, 119 transcripts were significantly differentially expressed 

unique to N21 vs. F21 analysis combining data from all patients. The GO 

overrepresentations from these gene lists show upregulation in a number of intermediates 

involved in oxidative phosphorylation, ribosomal subunits, albeit direct glycolysis and 

carbohydrate metabolism intermediates are not clear from this list. A large number of 

downregulated genes have been enriched in pathways associated in Focal cell adhesion 

pathway, ECM-receptor (Figure 46) and TGF beta pathway. A small number was also linked 

with pentose phosphate metabolism. The PPLR method generated a greater number of 

significantly expressed gene lists.  

The PPLR values compare N21 from F21 samples in individual patients which allow 

determination of variability between patients. 36 probe sets are consistent across all patients. 

The gene names associated with the 36 Probe IDs common across the three patients are 

shown in the Venn diagram (Figure 41) and the 25 corresponding genes are listed in Table 9. 

The trends observed are mostly similar across the three patients with varying level of 

significant expression. Many of the differentially expressed transcripts in N21 vs. F21 are 

also observed in N1 vs. N21 but these show an opposite 

effect (i.e. downregulation upon perturbation).  

Figure 41 Venn diagram showing 

comparison across patient samples where 

DD nodule was compared to healthy 

fascia. 
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Table 9 The 25 genes (36 probes from Venn diagram) significant common in all 3 samples where DD nodule 

was compare with fascia.  

 

Affymetrix Probe ID Gene Name

209555_s_at CD36 molecule (thrombospondin receptor)

225496_s_at synaptotagmin-like 2

219148_at PDZ binding kinase

1568618_a_at UDP-N-acetyl-alpha-D-galactosamine

209396_s_at chitinase 3-like 1 (cartilage glycoprotein-39)

203764_at discs, large (Drosophila) homolog-associated protein 5

219685_at transmembrane protein 35

209047_at aquaporin 1 (Colton blood group)

201843_s_at EGF-containing fibulin-like extracellular matrix protein 1

201291_s_at topoisomerase (DNA) II alpha 170kDa

228407_at signal peptide, CUB domain, EGF-like 3

209806_at histone cluster 1, H2bk

211959_at insulin-like growth factor binding protein 5

224941_at PAPPA antisense RNA (non-protein coding)

222608_s_at anillin, actin binding protein

201539_s_at four and a half LIM domains 1

221593_s_at ribosomal protein L31 pseudogene 49

225647_s_at cathepsin C

205923_at reelin

227345_at tumor necrosis factor receptor superfamily, member 10d, decoy with truncated death domain

209120_at nuclear receptor subfamily 2, group F, member 2

202503_s_at KIAA0101

208792_s_at clusterin

229400_at homeobox D10

218009_s_at protein regulator of cytokinesis 1  
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molecular functions

biological processes

 

Figure 42 Pie charts showing gene ontology overrepresentations from 1000 up and 1000 downregulated genes 

illustrated as a percentage of the 2000 probesets involved in nodules 21 % compared with fascia 21%. 
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Figure 43 Probelist (119) unique to N21 vs. F21 where PPLR values ≥0.9 and ≤0.1 
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Table 10 KEGG pathways retrieved from 119 probe lists unique to N21 vs. F21. 

KEGG Pathway Gene Name

Cell adhesion molecule 1

Integrin, alpha 8

Neuroligin 4, X-linked

CD44 molecule

Collagen, type V, alpha 3

Integrin, alpha 8

Mitogen-activated protein kinase 13

Rho GDP dissociation inhibitor (GDI) beta

Aldehyde oxidase 1

Nicotinamide nucleotide adenylyltransferase 2

CD44 molecule 

Mitogen-activated protein kinase 13

Bladder cancer Death-associated protein kinase 1

Cysteine and methionine metabolism Methionine adenosyltransferase II, alpha

Ether lipid metabolism Lysophosphatidylcholine acyltransferase 2

Glycosphingolipid biosynthesis - ganglio series ST3 beta-galactoside alpha-2,3-sialyltransferase 5

Selenoamino acid metabolism Methionine adenosyltransferase II, alpha

Tryptophan metabolism Aldehyde oxidase 1

Tyrosine metabolism Aldehyde oxidase 1

Valine, leucine and isoleucine degradation Aldehyde oxidase 1

Vitamin B6 metabolism Aldehyde oxidase 1

Cell adhesion molecules (CAMs)

ECM-receptor interaction

Neurotrophin signaling pathway

Nicotinate and nicotinamide metabolism

Shigellosis
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Figure 44 Heatmap displaying expression ratios from 88 probelist overlapping from the pairwise analysis on 

N21 vs. F1 and F1 vs. F21. Few F1 and N21 genes are correlated.  
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F1 F21 N21

 
Figure 45 Heatmap displaying expression ratios from the most significant transcripts overlapping from the 

pairwise analyses in N21 vs. F1 and F1 vs. F21. Red = upregulated and green = downregulated.  
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Table 11 KEGG pathways retrieved from 88 overlapping probe lists common to N21 vs. F21 and F1 vs. F21. 

KEGG Pathway Gene Name

Activating transcription factor 4 

Dual specificity phosphatase 1

Nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 4

Platelet-derived growth factor receptor, alpha polypeptide

Activating transcription factor 4 

Cyclin-dependent kinase 2

Platelet-derived growth factor receptor, alpha polypeptide

CD44 molecule (Indian blood group)

Integrin, beta 8

Integrin, beta 8

Protein kinase, AMP-activated, alpha 2 catalytic subunit

Cyclin G2

Cyclin-dependent kinase 2

Aldehyde oxidase 1

Macrophage migration inhibitory factor (glycosylation-inhibiting factor)

Folate biosynthesis Gamma-glutamyl hydrolase 

Nicotinate and nicotinamide metabolism Aldehyde oxidase 1

Phenylalanine metabolism Macrophage migration inhibitory factor (glycosylation-inhibiting factor)

Primary bile acid biosynthesis Cholesterol 25-hydroxylase

Regulation of autophagy Protein kinase, AMP-activated, alpha 2 catalytic subunit

Vitamin B6 metabolism Aldehyde oxidase 1

MAPK signaling pathway

Prostate cancer

ECM-receptor interaction

Hypertrophic cardiomyopathy (HCM)

p53 signaling pathway

Tyrosine metabolism

 
 

 
Table 12 KEGG pathways retrieved from 113 problelists unique to N1 vs. N21. 

KEGG Pathway Gene Name

Lysosome Adaptor-related protein complex 1, sigma 2 subunit

Arylsulfatase G

Cathepsin K

Tripeptidyl peptidase I

Toll-like receptor signaling pathway Cathepsin K

Mitogen-activated protein kinase kinase 2

Toll-like receptor 1

Biosynthesis of unsaturated fatty acids Fatty acid desaturase 1

Stearoyl-CoA desaturase (delta-9-desaturase)

Fatty acid metabolism Acyl-CoA synthetase long-chain family member 3

Dodecenoyl-Coenzyme A delta isomerase 

Peroxisome Acyl-CoA synthetase long-chain family member 3

Isocitrate dehydrogenase 1 (NADP+), soluble

PPAR signaling pathway Acyl-CoA synthetase long-chain family member 3

Stearoyl-CoA desaturase (delta-9-desaturase)

Terpenoid backbone biosynthesis Farnesyl diphosphate synthase 

Isopentenyl-diphosphate delta isomerase 1

Citrate cycle (TCA cycle) Isocitrate dehydrogenase 1 (NADP+), soluble

Glycine, serine and threonine metabolism Serine racemase

Porphyrin and chlorophyll metabolism Biliverdin reductase A

RNA polymerase Polymerase (RNA) III (DNA directed) polypeptide B

Thyroid cancer Mitogen-activated protein kinase kinase 2  
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Figure 46 ECM-receptor interaction diagram schema obtained from KEGG database. These genes are 

significantly differentially expressed in N21 vs.F21. 
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5.2.4 Disease in hypoxic stress 

From PPLR analyses, 113 transcripts were significantly differentially expressed unique to 

N1 vs. N21 analysis combining data from all patients. The GO overrepresentations from 

these genelists show downregulation in a number of intermediates involved in oxidative 

phosphorylation, ribosomal subunits, glycolysis, citric acid cycle, carbohydrate metabolism 

and fatty acid metabolism intermediates. A large number of upregulated genes have been 

enriched in pathways associated in Focal cell adhesion pathway, ECM-receptor and TGF 

beta pathway. A small number was also linked with pentose phosphate metabolism. The 

PPLR method generated a greater number of significantly expressed gene lists. Table 13 and 

14 show a section of the clusters where inducing hypoxia in nodules has up regulating effect, 

particularly in patient 61 and down regulating effect from the three patients combined.  The 

Venn diagram in Figure 47 shows a comparison across patient where perturbed nodule was 

compared to unperturbed nodule (N1 vs. N21). Patient 61‟s nodules demonstrated the 

maximum number of DE genes. 
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Figure 48 Heatmap displaying 113 DE genes unique to N1 vs. N21. 

 

Figure 47 Venn diagram showing comparison across 

patient samples where perturbed nodules N1 was 

compared to unperturbed disease nodules N21. 
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Table 13 A cluster from the most significantly upregulated genes in nodules in 1% in descending order for 

patient 61. The PPLR values for each pairwise analysis and each patient is given. Coloured PPLRs values were 

filtered through applied thresholds >0.9 and <0.1 and cut off at 1.5 threshold calculated by variance /mean of 

standard error. Upregulated genes in nodule in 21% were downregulated upon hypoxic induction. Blue PPLR 

value = F1 vs.F21, red PPLR value = N21 vs.F21 and orange PPLR value = N1 vs. N21. 

Gene Title

44 60 61 44 60 61 44 60 61

0.718574 0.887815 0.637286 0.00822 0.9871 2.256E-07 0.709087 0.645745 1 anillin, actin binding protein

0.969455 0.99376 0.892637 0.99301 0.854193 0.0057309 0.321391 0.00579 1 cartilage oligomeric matrix protein

0.968656 0.99793 0.98547 0.06015 0.99202 0.54178045 0.99317 0.99851 0.99999 keratin 19

0.702811 0.538372 0.847788 0.827663 0.781848 0.0301109 0.504834 0.894362 0.99999 keratin associated protein 1-5

0.716923 0.861019 0.579127 0.114924 0.99327 2.589E-05 0.486039 0.603754 0.99997 ribonucleotide reductase M2

0.988427 0.99531 0.955704 0.476238 0.694773 0.17141395 0.97107 0.97624 0.99996 phosphoglycerate kinase 1

0.933711 0.97894 0.795848 0.544678 0.94342 0.0976347 0.804438 0.819971 0.99995 enolase 1, (alpha)

0.483066 0.97582 0.202194 0.829364 0.892457 0.21871269 0.544958 0.602791 0.99995 microtubule-associated protein 7

0.766935 0.98115 0.243967 0.600533 0.89107 0.19367931 0.790868 0.251839 0.99984 tenascin C

0.841894 0.99288 0.765051 0.875038 0.740007 0.0083822 0.762495 0.704613 0.99971 ADAM metallopeptidase with thrombospondin type 1 motif, 1

0.740832 0.93558 0.370647 0.03545 0.96865 0.0007852 0.586164 0.537268 0.99966 topoisomerase (DNA) II alpha 170kDa

0.735155 0.889697 0.447871 0.06701 0.97229 0.0014163 0.514132 0.528171 0.9993 protein regulator of cytokinesis 1

0.920004 0.86878 0.963535 0.826189 0.0153 0.22709253 0.854154 0.98938 0.99885 Hyaluronan synthase 2

0.961601 0.892888 0.221875 0.874232 0.22141 0.0037772 0.492348 0.55322 0.99875 TIMP metallopeptidase inhibitor 3

0.9797 0.98946 0.727395 0.676385 0.813496 0.12474992 0.85177 0.840167 0.99863 glucose-6-phosphate isomerase

0.998009 1 0.99986 0.89911 0.98869 0.67676494 0.96854 0.99255 0.99843 procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2

0.649619 0.582144 0.425659 0.06597 0.464525 0.54276319 0.799399 0.796252 0.99838 lymphocyte antigen 6 complex, locus K

0.634552 0.562206 0.815759 0.02089 0.95202 0.0001784 0.473758 0.588634 0.998 PDZ binding kinase

0.953371 0.99866 0.668381 0.97358 0.857032 0.0585368 0.514532 0.65614 0.99777 collagen, type V, alpha 1

0.93749 0.97806 0.235076 0.206388 0.93781 0.0471915 0.294236 0.456295 0.99698 follistatin

0.687632 0.894347 0.039551 0.828983 0.747221 0.0750765 0.435088 0.587703 0.9966 protein disulfide isomerase family A, member 6

0.734488 0.99987 0.084193 0.96719 0.99904 0.20530817 0.336546 0.117982 0.99644 collagen, type XII, alpha 1

0.873885 0.838389 0.127601 0.011 0.99767 0.0051529 0.866715 0.521115 0.99615 four and a half LIM domains 1

0.742307 0.97551 0.796964 0.861947 0.770534 0.18283947 0.522767 0.706115 0.99592 lysyl oxidase-like 2

0.71332 0.96421 0.90394 0.475086 0.87881 0.091007 0.676519 0.708455 0.99568 cysteine-rich, angiogenic inducer, 61

0.753956 0.93508 0.069555 0.595971 0.871871 0.17986166 0.50156 0.462219 0.99563 prolyl 4-hydroxylase, beta polypeptide

0.810472 0.96983 0.913577 0.572733 0.90831 0.11940655 0.636146 0.709332 0.99546 cysteine-rich, angiogenic inducer, 61

0.736274 0.97777 0.428559 0.9254 0.629151 0.0039913 0.487503 0.508989 0.9954 lysyl oxidase

0.996448 0.99519 0.995476 0.398058 0.489721 0.39197187 0.99765 0.99508 0.99515 pyruvate dehydrogenase kinase, isozyme 1

0.986508 0.94687 0.043057 0.99959 0.887674 0.0134854 0.809172 0.04709 0.99426 aggrecan

0.892211 0.91928 0.886742 0.511751 0.675846 0.26925903 0.808951 0.755733 0.99399 phosphofructokinase, platelet

0.983147 0.97257 0.974628 0.627699 0.67941 0.46854296 0.9077 0.96069 0.9927 triosephosphate isomerase 1

0.835124 0.96378 0.147373 0.700977 0.833064 0.16435574 0.579176 0.478601 0.9927 prolyl 4-hydroxylase, beta polypeptide

0.713036 0.479589 0.859703 0.133181 0.776016 0.0269158 0.485595 0.79558 0.9925 pituitary tumor-transforming 1

0.999576 0.99456 0.997872 0.97057 0.150293 0.10488757 0.93717 0.99418 0.99248 adenylate kinase 3-like 1

0.597714 0.836998 0.516529 0.54815 0.90954 0.0972981 0.289431 0.321367 0.99243 solute carrier family 7 

0.999333 0.99709 0.999809 0.419378 0.662824 0.7528722 0.99841 0.99941 0.9924 BCL2/adenovirus E1B 19kDa interacting protein 3

Fas 1- Fas 21 Nod 21 - Fas 21 Nod 1 - Nod 21
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Table 14 A cluster from the most significantly upregulated genes in nodules in 1% in descending order for 

patient 61. The PPLR values for each pairwise analysis and each patient is given. Coloured PPLRs values were 

filtered through applied thresholds >0.9 and <0.1 and cut off at 1.5 threshold calculated by variance /mean of 

standard error. Upregulated genes in nodule in 21% were downregulated upon hypoxic induction. Blue PPLR 

value for F1 vs. F21, red PPLR value for N21 vs.F21 and orange PPLR value N1 vs. N21. A cluster of 

differentially expressed genes. Blue PPLR value = F1 vs. F21, red PPLR value = N21 vs. F21 and orange PPLR 

value = N1 vs.N21. 

 

F1 v F21 N21 v F21 N1 v N21 Gene Title

0.214384 0.99999 8.1E-06 stonin 2

2.01E-05 0.99999 1.3E-11 chitinase 3-like 2

0.551767 0.99998 1.9E-07 lysophospholipase-like 1

0.500286 0.99997 0.115965 WNT1 inducible signaling pathway protein 2

0.948089 0.999948 6.7E-05 ribonuclease P RNA component H1

0.911325 0.99992 0.00015 ribosomal protein L31

0.924233 0.99983 2.7E-06 cytochrome c oxidase subunit VIIc

0.742703 0.99982 0.00108 cytochrome P450, family 24, subfamily A, polypeptide 1

0.017217 0.99981 0.00088 tumor necrosis factor, alpha-induced protein 6

0.086406 0.9998 0.01343 GTP binding protein overexpressed in skeletal muscle

0.587924 0.99969 7.3E-07 lymphocyte antigen 96

0.907669 0.99956 0.01174 microRNA 21

0.868802 0.99954 5E-05 prefoldin subunit 4

0.763007 0.99947 0.468237 runt-related transcription factor 2

0.585672 0.99947 0.00593 cystatin A (stefin A)

0.685392 0.99933 0.160908 neuritin 1

0.027009 0.99916 1E-06 interleukin 1 receptor, type II

0.643232 0.99913 0.00286 cartilage intermediate layer protein

0.411317 0.99892 0.00016 ATP-binding cassette, sub-family B (MDR/TAP), member 5

0.811695 0.99876 7.6E-05 hypothetical LOC388789

0.311654 0.9986 0.00315 basic helix-loop-helix family, member e22

0.619723 0.9985 0.401579 glucosaminyl (N-acetyl) transferase 1, core 2

0.527067 0.99842 0.0001 hypothetical protein MGC5566

0.093916 0.99834 0.07707 dipeptidyl-peptidase 4

0.724518 0.99813 0.00022 TatD DNase domain containing 1

0.462208 0.99802 0.0014 glycoprotein, alpha-galactosyltransferase 1 pseudogene

0.645576 0.99796 0.00041 alkB, alkylation repair homolog 7 (E. coli)

0.727138 0.99794 2.4E-05 growth arrest-specific 5 (non-protein coding)

0.626711 0.99752 0.00605 parathyroid hormone-like hormone

0.467238 0.99602 0.00671 chitinase 3-like 1 (cartilage glycoprotein-39)

0.965408 0.99589 0.00098 integrin beta 3 binding protein (beta3-endonexin)

0.013607 0.99563 4E-05 plexin domain containing 1

0.777867 0.99493 0.00041 methylmalonyl CoA epimerase

0.736525 0.99491 0.00175 synaptonemal complex central element protein 1-like

0.902797 0.99437 0.00055 LSM domain containing 1

0.847522 0.99423 0.01113 ribosomal L24 domain containing 1

0.000479 0.99413 0.101812 clusterin  
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5.3 Discussion 

5.3.1 Principal Findings 

Transcriptome profiling has enabled the investigation of the expression levels of thousands 

of genes associated with DD formation simultaneously. A quantitative comparison was made 

between 1) mRNA expression levels in normal oxygenated and hypoxic transverse palmar 

fascia in search for novel hypoxia-induced genes to investigate whether this change was 

mimicked in disease state scenario. 2) The transcriptional response to hypoxia was also 

investigated in nodules from the same patients. 3) mRNA expression levels in normal 

oxygenated disease with healthy fascia. The study and funds permitted for 12 Affymetrix 

microarrays, 4 samples cultured at two oxygen levels from 3 patients.  

Landmark genes identified in previous studies [9, 19, 155] to be involved in DD were 

also validated in this study. In addition, this study has made possible identification of genes 

not only displaying unique characteristics of disease cells compared with normal palmar 

fascia but also transcriptionally hypoxia-activated genes in both healthy and disease cells. 

Several common effects of hypoxia were seen in the DD nodules and fascia, such as an 

increase in glycolytic metabolism; however, the response to hypoxia varies greatly between 

the individual patients. We discuss these key findings below.  

A meta-analysis of top1000 genes with PPLR values > 0.8 and lowest 1000 genes 

with PPLR value < 0.2 for each pair in a given analysis were entered into KEGG pathway 

database to identify molecular pathways (metabolic and signaling) that were statistically 

significantly enriched (from uploaded gene lists). Significantly up regulated gene lists 

produced enrichment in 20 molecular pathways enriched for F1 vs. F21. Significantly down 

regulated gene lists produced enrichment in 33 molecular pathways enriched for F1 vs. F21 

(Appendix; Table J). Gene enrichment analysis was then performed using top 1000 and 

bottom 1000 genes significantly dysregulated in gene lists from pairwise comparison of N21 

vs. F21 and then repeated with gene lists for the combination pair N1 vs. N21. An attempt to 

connect the common pathways into a hypothetical common molecular network for each 

combination/pair and compare with pathways identified in Chapter 4 from metabolomics 

data is given Chapter 6 currently in progress.  

Differential alterations in gene expression in N21 (compared with F21) were 

observed in pathways associated with focal cell adhesion, apoptosis, and inflammation. 
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Among the dysregulated transcripts, marked enrichment was observed in those directly 

involved in developmental processes including cell growth, proliferation, differentiation, 

regulation of cell death, biological cell adhesion, localisation, extracellular matrix-receptor 

interaction, and cell communication. Neuritin and Amphiphysin were upregulated in N21. 

Neuritin is a growth-promoting protein and may be involved in tumorigenesis [156]. Cell 

adhesion molecules were up regulated in N21. Major down regulated groups of genes were 

involved in focal cell adhesion pathway.  Focal adhesions connect the ECM to actin 

filaments of the cell. This cell-to-ECM adhesion is regulated by specific cell surface cellular 

adhesion molecules (CAM) known as integrins. Integrins are cell surface proteins that bind 

cells to ECM structures, such as fibronectin and laminin, and also to integrin proteins on the 

surface of other cells [157]. Fibronectins bind to ECM macromolecules and facilitate their 

binding to transmembrane integrins. The attachment of fibronectin to the extracellular 

domain initiates intracellular signaling pathways as well as association with the cellular 

cytoskeleton via a set of adaptor molecules such as actin [157]. CD36 was significantly 

down regulated in N21. Collagen, type VI, alpha 6, was found upregulated in N21, but 

downregulated in N1. No change was observed in F1. Vascular cell adhesion molecule 1, 

collagen, type XII, alpha 1 and collagen, type XIV, alpha 1 were upregulated in disease but 

downregulated upon perturbation in N1.  

 However, from Table 11 and Figure 44(a) and 44(b), it can be observed that 

relatively few transcripts identified as significantly dysregulated in F1 vs. F21 analysis were 

present in N21 vs. F21 analysis. From these analyses it is tempting to falsify the first 

hypothesis that difference in disease and healthy cells maybe akin to the differences in 

healthy cells in normoxia and hypoxia as only a very small number of significant DE 

transcripts coincide in F1 and N21 candidate lists. In Chapter 6 these significant candidates 

(i.e. metabolites and transcripts) from Chapter 4 and 5 are integrated to visualize 

relationships using network analysis (e.g. candidate metabolites and transcripts in F1 vs.F21 

using IPA and these networks are mapped on the networks from significant molecules in 

N21 vs. F21 analysis.  

These results imply that DD is associated with a stimulation of collagen gene 

expression at the transcriptional and translational levels together with an increase in the rate 

of collagenolytic activity in up regulated inhibitors such as ADAM metallopeptidase 

domains (ADAM12 and ADAM19). A disintegrin-like and metalloproteinase with 

http://en.wikipedia.org/wiki/Focal_adhesions
http://en.wikipedia.org/wiki/Actin
http://en.wikipedia.org/wiki/Cellular_adhesion_molecule
http://en.wikipedia.org/wiki/Cellular_adhesion_molecule
http://en.wikipedia.org/wiki/Integrins
http://en.wikipedia.org/wiki/Actin
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thrombospondin type 1 motif, 2 (ADAMTS2) and TIMP were notably differentially 

expressed in DD nodule tissues compared with external controls only.  

 

A list of few DE genes unique to disease 

CD44 molecule, encodes a cell-surface glycoprotein involved in cell-cell interactions, cell 

adhesion and migration. It is a receptor for hyaluronic acid (HA) and can also interact with 

other ligands, such as osteopontin, collagens, and matrix metalloproteinases (MMPs) [158]. 

This protein participates in a wide variety of cellular functions including lymphocyte 

activation, recirculation and homing, hematopoiesis, and tumour metastasis. Alternative 

splicing is the basis for the structural and functional diversity of this protein, and may be 

related to tumour metastasis. Collagen, type V, alpha 3, encodes an alpha chain for one of 

the low abundance fibrillar collagens. Fibrillar collagen molecules are trimers that can be 

composed of one or more types of alpha chains. Type V collagen is found in tissues 

containing type I collagen and appears to regulate the assembly of heterotypic fibers 

composed of both type I and type V collagen [159]. This gene product is closely related to 

type XI collagen and it is possible that the collagen chains of types V and XI constitute a 

single collagen type with tissue-specific chain combinations. Mutations in this gene are 

thought to be responsible for the symptoms of a subset of patients with Ehlers-Danlos 

syndrome type III [160]. 

Mitogen-activated protein kinase 13; encodes proteins which are members of the 

MAP kinase family. MAP kinases act as an integration point for multiple biochemical 

signals, and are involved in a wide variety of cellular processes such as proliferation, 

differentiation, transcription regulation and development [161]. This kinase is closely related 

to p38 MAP kinase, both of which can be activated by proinflammatory cytokines and 

cellular stress. MAP kinases 3, and 6 can phosphorylate and activate this kinase. 

Nicotinamide nucleotide adenylyltransferase 2; this gene product belongs to the 

nicotinamide mononucleotide adenylyltransferase (NMNAT) enzyme family, members of 

which catalyse an essential step in NAD (NADP) biosynthetic pathway. Ganglioside GM3 is 

known to participate in the induction of cell differentiation, modulation of cell proliferation, 

maintenance of fibroblast morphology, signal transduction, and integrin-mediated cell 

adhesion. Aldehyde oxidase produces hydrogen peroxide and, under certain conditions, can 
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catalyze the formation of superoxide. Aldehyde oxidase is a candidate gene for amyotrophic 

lateral sclerosis. 

 

Some DE genes common to N21 and F1 albeit not always in the same direction. 

Activating transcription factor 4; The protein encoded by this gene belongs to a family of 

DNA-binding proteins that includes the AP-1 family of transcription factors, cAMP-

response element binding proteins (CREBs) and CREB-like proteins. These transcription 

factors share a leucine zipper region that is involved in protein-protein interactions, located 

C-terminal to a stretch of basic amino acids that functions as a DNA binding domain. Dual 

specificity phosphatase 1, The expression of DUSP1 gene is induced in human skin 

fibroblasts by oxidative/heat stress and growth factors. It specifies a protein with structural 

features similar to members of the non-receptor-type protein-tyrosine phosphatase family, 

and which has significant amino-acid sequence similarity to a Tyr/Ser-protein phosphatase. 

DUSP1 may play an important role in the human cellular response to environmental stress as 

well as in the negative regulation of cellular proliferation.  

Nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 4; the product 

of this gene is a member of the nuclear factors of activated T cells DNA-binding 

transcription complex. The product of this gene plays a role in the inducible expression of 

cytokine genes in T cells, especially in the induction of the IL-2 and IL-4. Cyclin-dependent 

kinase 2; the protein encoded by this gene is a member of the Ser/Thr protein kinase family. 

It is a catalytic subunit of the cyclin-dependent protein kinase complex, whose activity is 

restricted to the G1-S phase, and essential for cell cycle G1/S phase transition. This protein 

associates with and regulated by the regulatory subunits of the complex including cyclin A 

or E, CDK inhibitor p21Cip1 (CDKN1A) and p27Kip1 (CDKN1B). Integrin, beta 8; in 

general, integrin complexes mediate cell-cell and cell-extracellular matrix interactions and 

this complex plays a role in human airway epithelial proliferation. Protein kinase, AMP-

activated, alpha 2 catalytic subunit; encodes a protein that is a catalytic subunit of the AMP-

activated protein kinase (AMPK). AMPK is an important energy-sensing enzyme that 

monitors cellular energy status. In response to cellular metabolic stresses, AMPK is 

activated, and thus phosphorylates and inactivates acetyl-CoA carboxylase (ACC) and beta-

hydroxy beta-methylglutaryl-CoA reductase (HMGCR), key enzymes involved in regulating 
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de novo biosynthesis of fatty acid and cholesterol. Cholesterol 25-hydroxylase; an intronless 

gene that is involved in cholesterol and lipid metabolism.  

 

Some DE genes unique to N1 list 

Arylsulfatase G; Sulfatases, such as ARSG, hydrolyze sulfate esters from sulfated steroids, 

carbohydrates, proteoglycans, and glycolipids. They are involved in hormone biosynthesis, 

modulation of cell signaling, and degradation of macromolecules. Cathepsin K; The protein 

encoded by this gene is a lysosomal cysteine proteinase involved in bone remodeling and 

resorption. Toll-like receptor 1; This family of protein plays a fundamental role in pathogen 

recognition and activation of innate immunity. TLRs are highly conserved from Drosophila 

to humans and share structural and functional similarities. They recognize pathogen-

associated molecular patterns (PAMPs) that are expressed on infectious agents, and mediate 

the production of cytokines necessary for the development of effective immunity.  Stearoyl-

CoA desaturase (delta-9-desaturase); an iron-containing enzyme that catalyzes a rate-

limiting step in the synthesis of unsaturated fatty acids. The principal product of SCD is 

oleic acid, which is formed by desaturation of stearic acid. The ratio of stearic acid to oleic 

acid has been implicated in the regulation of cell growth and differentiation through effects 

on cell membrane fluidity and signal transduction. 

 Within our candidate gene lists across the multiple comparisons a group of hypoxia-

responsive genes have been identified. Hypoxia affected the expression of multiple genes in 

F21, and N21 which were either induced or repressed under these conditions. Some of these 

lists are novel candidates for hypoxia-driven angiogenesis including vascular endothelial 

growth factor (VEGF) and matrix metalloproteinases MMPs [162]. The KEGG pathways 

enriched by these genes include glycolysis and gluconeogenesis, hypertrophy model, wnt 

signaling pathway, smooth muscle contraction and pentose phosphate pathway. 

Interestingly a cluster of these genes were also dysregulated in N1. Tables 10, 11 and 

12 display several concordant differentially expressed genes in these two samples i.e. up in 

fascia 1% and up in nodule 1% following the perturbation effect. In addition to the KEGG 

pathways identified by genelists F1, gene enrichment was observed in the following 

pathways:  eicosanoid synthesis, prostaglandin synthesis regulation, fatty acid degradation, 

glycogen metabolism, blood clotting cascade, GPCRDB class A rhodopsin-like pathway. 



Chapter 5                           Dynamic changes in Dupuytren’s disease and control transcriptome in hypoxic stress 

172 

 

VEGFA was upregulated in N21 and also in F1. VEGF has been reported to be a 

major contributor to angiogenesis, increasing the number of capillaries in a given network 

[163]. Previous in vitro studies clearly demonstrate that VEGF is a potent stimulator of 

angiogenesis because, in the presence of this growth factor, plated endothelial cells will 

proliferate and migrate, eventually forming tube structures resembling capillaries. 

Up-regulated genes included those for glycolysis, the tricarboxylic acid (TCA) cycle. 

Ethanol and lactate production was not observed under hypoxic conditions  indicating that 

glucose was not fermented to these compounds via the glycolytic pathway. Hypoxia down-

regulated some genes involved in transcription initiation by RNA polymerase II, and also 

some hypothetical protein coding genes that were previously upregulated in N21.  

 

5.3.2 Strengths and weakness of study 

For any system under study, we need to understand
 
the magnitude and diversity of gene 

expression in the unperturbed
 
state and normal state. It is accepted

 
that, for any particular 

parameter, physiological "normalcy"
 
is not a strict value but is rather a range of values 

presented
 
by healthy individuals. It is perhaps due to this reason "normal" fascia gene 

expression displays similar variability, while this not the case for disease samples. This 

study has used microarray technology to simultaneously profile healthy cells in normal and 

perturbed state to understand the gene expression profiles of these healthy cells prior to 

comparison with disease. Additionally, perturbation effects in disease cultures have 

implicated several genes to be downregulated which were previously found to be 

upregulated.  The profiling of healthy palmar fascia and in perturbed conditions is a key 

strength of this study. A key strength of this study is that samples were obtained from 

previous optimised methods using FT-IR in order to confirm reproducibility. Optimised 

modeling cell culture system and sample harvesting methodology from same population of 

cells allowed for comparison with the intracellular metabolome.  

Another key strength of this study was the use of Affymetrix oligonucleotide arrays 

that allows the examination of 47,000 transcripts simultaneously. Previous studies report the 

use of microarrays with a significantly lower number and we used a chip with 22,500 

previously. This same strength can be considered as a weakness as increase in chip probe 

size also increases noise in the data generated and this may result in an increase in false 

discoveries as well as true discoveries in subsequent data analysis. For this reason, robust 
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data analysis methods using 3 independent methods with three normalisation methods have 

been employed to infer unique discoveries.  The method also allowed comparisons across 

fascia and nodule within and across individual patients by generating a range of contrasts 

matrices from the p-data uploaded (readaffy files). Also contrasts between individual probe 

sets of uncertainty using PPLR methods were used. The limma methods accounted for false 

discoveries, while puma methods accounted for probe level uncertainties and yielded a much 

greater number of DE genes. Regardless of the different methods employed, high noise to 

signal ratio is still a significant factor in the data set. FDR removed all such noise and false 

genes resulting in only handful i.e. 20 genes. Occasional occurrence where the adjusted p-

values are equal to 1 suggests this is not an error situation but rather an indication that there 

is no evidence of DE in the data after adjusting for multiple testing. To make objective 

judgments about the most promising candidates for follow-up studies, a trading off of both 

p-values and log odd values could be a good criteria but selection of genes solely on multiple 

correction or one method would a be a criteria too stringent. 

While an attempt to profile normal here has been made, n = 3 is an insufficient 

number and only acceptable for a pilot study. To formulate new hypotheses, as previously 

stated this sample number must increase as the variability within these 3 patients, (different 

growth stage of disease, individual patient signature, and other traits) may have a significant 

impact on results generated from this study. Such variability
 
between individuals emphasises 

the need to pool samples, and
 
to perform additional biological and analytical replicates. The 

current study could not afford replicates, as the cost for 12 arrays was already £6000 alone. 

Three patients too small a sample number, large noise to signal ratio within the dataset and 

high patient to patient variation is evident from PCA. The individual patient signature was 

greater in some case. e.g. collagen V was up regulated in patients 44 and 60 but not in 61. 

This biased analysis does not give rise to correct pathways prediction. 

The statistical analysis of microarray data represents a significant challenge as the 

aim is to apply standard statistical approaches to determine
 
gene expression and gene 

expression alteration significance,
 
thus enabling the extraction of significant biological 

information
 

from a morass of noise and variability. However, present data analysis 

methodologies
 
do not adequately deal well with the number of possible combinations. 

Statisticians
 
are experienced with handling data involving a limited number

 
of variables, but 

a large number of samples (e.g., the average
 
weight of persons in UK is a problem of a single 
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variable
 
and 62 million samples). Microarrays turn this problem on its

 
head, producing 

thousands of variables from a small number of
 

samples; the number of samples is 

significantly less compare to the number of observation (e.g. 1:10000). Hence the reason a 

number of different methods are employed in this study. In particular the puma method 

employs the multi-chip modified gamma Model Of Signal and noise-propagation in 

principal component analysis (NPPCA) method [164] which propagates the expression level 

uncertainty to improve the results of  PCA. Puma-PCA scores plot show clarity in 

observations than standard PCA due to the scale difference and the purity and compactness 

of the clusters observed. The large scale on PCA plots generally implies incorrect or 

unsuitable data preprocessing (large scale does not reveal differences within the data set as 

high intensity variables could be dominating low intensity variables). 

Because of the statistical issues raised by microarray technology,
 
it is necessary that 

findings be confirmed using independent
 
methodological criteria, preferably with samples 

from same RNA used to derive the original targets and a larger cohort followed.
  
A limitation 

of this study is that these alterations have not been confirmed or validated due to time 

constraints. An ideal, rapid, high through-put, method for confirmation
 
of microarray data 

would be quantitative (real time) RT-PCR using
 

the TaqMan 
 

LightCycler (Roche 

Diagnostics).
 
Alternatively, Northern blots may provide the benefit of direct quantification. 

This is
 
important, as significant gene expression changes detected on

 
a microarray may be 

related to a small fraction of the cells.
  

Because a microarray experiment may reveal putative changes
 
in the expression of 

hundreds of genes, it is practically
 
impossible to confirm all of the data. However, it is 

important to evaluate a reasonable number of genes.
 
That said, confirmational studies may 

raise other issues such that although
 
microarray experiments might indicate an increase or 

decrease
 
in the expression of a gene, an independent method might reveal

 
a greater or a 

lesser change which could then lead to further new plausible questions about the validity of 

the microarray
 
data.

 

The hypothesis behind using an exploratory tool of this kind is that clustered genes
 

may be coregulated and therefore may be involved in similar
 
functions. To make

 
sense of 

these data, and depict gene function the hypotheses that emerge from analysis
 
of systemic 

expression information must be tested empirically.
 

This requires integration of 
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transcriptomic knowledge with
 
metabolomics and other omics to test hypotheses within the

 

physiological integrity of the DD cell.  

 

5.3.3 Conclusion 

This study is the first to show that hypoxia elicits systematic transcriptional responses in DD 

and healthy palmar fascia cells. Global transcriptome profiling of the cellular response to 

hypoxia has revealed a multitude of novel mechanisms and functions which may be affected 

by hypoxia in DD and merit further study. The study has demonstrated a unique approach to 

the analysis of DD.  

 

 



 

 

Chapter 6 

Inferring the metabolic and transcriptional 
networks specific to Dupuytren’s disease 
tumours 
 

6.1 Introduction 

 

6.1.1 Metabolic Pathway analysis and Integration with transcriptomics data to 
aid biomarker discovery in Dupuytren’s Disease 
 

In Chapters 4 and 5 systematic studies investigating the changes the in metabolomes and 

transcriptomes of DD phenotypes and healthy fascia have been performed. Methods utilising 

cluster analyses or correlation of gene-expression profiles are common approaches to predict 

function based on the assumption that genes with similar functions are likely to be co-

expressed. This however cannot advance our understanding of the more complex system, 

consisting of many yet to be identified (unravel) network relationships between these 

molecules which in turn shall lead to better understanding the functionality of these cells and 

monitor situations to predict  DD progression. For this reason it is important to study the 

disease as a system and the many interacting components at the global level and also at the 

subcellular organisational levels. 

A full understanding of metabolic networks requires quantitative data about 

transcript levels, protein levels or enzyme activities, and metabolite levels. This information 

will then allow construction of probabilistic and mechanistic models to investigate effects of 

perturbations imposed on the system. For example,  investigating any changes in metabolite 
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levels that would contribute to the regulation of gene expression and any change in the levels 

of transcripts would then have an impact upon the levels of the encoded enzymes and the 

levels of subsequent metabolites and most likely on the DD metabolic phenotype. The 

proportion of metabolite-transcript correlations identified from the transcript-metabolic 

profiling of DD and control fibroblast will provide clues and give possible direction in 

understanding whether these correlations (between metabolites and transcripts) are due to 

regulation of gene expression by metabolites, or the metabolites being changed as a 

consequence of a change in gene expression.  

Because our metabolic and transcript profile data originates from the same biological 

samples in steady state growth rates and these data have been normalised and statistically 

analysed using stringent methods to select for statistically significant DE transcripts and 

dysregulated metabolites, it is anticipated that now a realistic determination of the 

congruence between the levels of certain metabolites, gene transcripts and their cognate 

protein product(s) can be inferred. However, as noted from the previous chapter the 

abundance of significantly DE genes alone (and now in combination with metabolites) 

makes their study a formidable yet challenging task. There is a clear need for methods that 

would allow sorting these molecules and their families and selecting the most important 

ones, i.e. prioritising the targets for experimental studies.  

In this study, we utilise the statistically significant filtered data sets generated from 

studies in Chapters 4 and 5 from DD and healthy cells in normal and perturbed conditions to 

construct 1) metabolic networks i.e. metabolic pathways based on topological analysis using 

MetPA 2) metabolic and transcriptional networks employing IPA to integrate molecules and 

construct networks from the focus molecules (network eligible molecules in Ingenuity 

knowledge base). Construction of networks in MetPA enabled identification of metabolic 

pathways from overrepresentation analysis, The construction of networks in IPA from the 

most statistically significant molecules facilitated data visualisation and identified key 

interactions between the molecules e.g. direct or indirect binding between the molecules 

residing in the cell including subcelluar locations i.e. nucleus, cytoplasm, plasma membrane 

and extracellular space (confirmed from literature; PubMed). Any molecules not specific to a 

subcelluar location for example, some endogenous chemicals (metabolites) were assigned to 

an unknown location.   
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Inferences are made from constructed networks where transcriptomics data has been 

superimposed on metabolite networks as well as mapping of perturbed state onto disease 

specific networks; e.g. trends of transcription factor binding site enrichment in the promoters 

of these gene groups led to the identification of regulatory metabolic and signaling pathways 

that implicate discrete metabolic-transcriptional networks associated with specific molecular 

subtypes of DD (i.e. nodule).  

This analysis indicates that approaches of this type can provide unique insights into 

the differential regulatory molecular studies associated with DD and connective tissue 

disorders and will aid in discovery / identification of specific transcriptional networks and 

pathways as potential targets for tumour subtype-specific therapeutic intervention. The 

detailed analysis of metabolomic and transcriptomic data using integrative pathway analysis 

in this study has identified a number of candidate metabolites and pathways that may be of 

potential importance in the pathophysiology of DD and with further studies may prove to be 

important as biomarkers of DD. The mapping of perturbed networks (from F1 vs. F21 

analysis) upon unperturbed networks (from N21 vs. F21 analysis) is suggestive that 

molecules (found from this study) under hypoxic stresses in transverse palmar fascia do not 

correlated with the statistically significant molecules in disease. Some correlation is present, 

but not prominent. A major observation from mapping perturbed networks (from N1 vs. N21 

analysis) upon disease networks (N21 vs. F21) was that upon hypoxic perturbation most if 

not all disease molecules under hypoxia became downregulated. The integration of 

metabolomics and transcriptomics data in the current study via integrative pathway analysis 

has also facilitated the contextualization of probable biomarkers related to DD. Future 

validation work is needed to assess the utility of potential novel biomarkers of DD and to 

determine their ability to characterise this disease.  

 

6.2 Results 

6.2.1 Metabolic Pathway enrichment and topological analysis using MetPA  

Pathway analyses in MetPA were conducted to construct metabolic pathways based on 

topological analysis for each of the candidate metabolite lists from the pairwise analyses 

generated in Table 6 in Chapter 4. The analyses were conducted through two routes: 1) 
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pathway enrichment analysis supporting both over-representation analysis as well as gene-

set enrichment analysis based approaches. The Fishers‟ exact test was applied to generate a 

list of significant matched pathways arranged by p-values from pathway enrichment 

analysis. 2) Pathway topological analysis was performed based on the centrality measures of 

a metabolite in a given metabolic network. Centrality is a local quantitative measure of the 

position of a node relative to the other nodes, and is used in analysis to estimate a node‟s 

relative importance or role in network organisation [139]. Since metabolic networks are 

directed graphs, relative betweenness centrality measures were selected to calculate 

compound importance. The pathway impact is calculated here as the sum of the importance 

measures of the matched metabolites normalised by the sum of the importance measures of 

all metabolites in each pathway.   

The results from pathway analysis are presented graphically as well as in a detailed 

table. The graphical output contains three levels of information to view; metabolome view 

(Figure 49), pathway view (Figure 50), and compound view. The first two were employed in 

this study, the latter is not as the analyses for this dataset have been performed and shown in 

Chapters 2 and 4. The metabolome view contains all the matched pathways (the 

metabolome) arranged by p-values (from pathway enrichment analysis) on y-axis, and 

pathway impact values (from pathway topology analysis) on x-axis. The node color is based 

on its p-value and the node radius is determined based on their pathway impact values. The 

pathway name is given in the table. From these nodes the metabolic pathway corresponding 

to the node on the metabolome view is selected. This pathway is essentially a simplified 

KEGG pathway map showing only chemical compounds. The default node color within the 

reference metabolome is light blue. The matched nodes display varied heat map colors based 

on their p-values. The common compound names (KEGG IDs) can be obtained from any 

node which reveals more detailed information as well as links to curated database. The 

results are presented below. Selected figures are only provided here. 

 For each analysis, a table containing detailed results from the pathway analysis was 

generated. The list of matched compounds from the F1 vs. F21 is given below. Since 

multiple pathways are tested at the same time, the statistical p-values from enrichment 

analysis are further adjusted for multiple testings. In particular, the Total is the total number 

of compounds in the pathway; the Hits is the actually matched number from the user 

uploaded data; the Raw p is the original p value calculated from the enrichment analysis; the 
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Holm p is the p-value adjusted by Holm-Bonferroni method; the FDR p is the p-value 

adjusted using False Discovery Rate; the Impact is the pathway impact value calculated 

from pathway topology analysis.  

Table 15 lists the significant pathways derived from the metabolome pathways 

summary for F1 vs. F21 analysis in Figure 48 where each node represents a pathway. 

Pantothenate and CoA biosynthesis and beta-Alanine metabolism are the top two pathways 

identified from the pathway topological analysis (impact 0.29 and 0.30 respectively) and are 

also significant in the pathway enrichment analysis (4.52E-3 after adjustment of multiple 

testing). Further checking of the metabolite concentrations by plotting the boxplot and 

investigating any significant downstream effect on metabolites/compounds in the pathways 

was explored. In the pathways below (Figure 49) the enriched endogenous compounds are 

Pantothenic acid (KEGG ID: C00864), Ureidopropionic acid (KEGG ID: C02642 1) and 

Beta-Alanine (KEGG ID: C00099).  

Table 16 lists the significant pathways derived from N1 vs. N21 analysis. Alanine, 

aspartate and glutamate metabolism, glycerolipid metabolism and pantothenate and CoA 

biosynthesis are the top three pathways from the pathway topological analysis (impact 0.21, 

0.20 and 0.18 respectively). Although the pathway enrichment analysis p-values after 

adjustment for multiple testing are not small, these are more likely to be significant than the 

Aminoacyl-tRNA biosynthesis pathway which has a relatively small p-value after multiple 

testing, but lower impact (0.11).  

Pantothenate and CoA biosynthesis was the only significant pathway derived from 

C1 vs. C21 analysis with impact 0.18 and FDR corrected p-value = 2.63E-01. For the S1 vs. 

S21 analysis beta-Alanine metabolism (impact 0.30, FDR p-value = 1.62E-01) and Glycine, 

serine and threonine metabolism pathways (impact 0.20, FDR p-value =  2.85E-01) were 

significant. For disease N21 vs. F21 analysis relatively fewer metabolites were identified and 

so the phenylalanine metabolism pathways was identified with a relatively low impact (0.12) 

but p-value = 1.07E-01. Aminoacyl-tRNA biosynthesis pathway had a raw p-value = 1.32E-

02 and 0 impact. For the C21 vs. F21 analysis Pantothenate and CoA biosynthesis impact 

0.18 and raw p-value = 4.41E-02 and FDR 7.59E-01. 
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Table 15 Result from Pathway Analysis with MetPA for F1 vs. F21 matched list of identifiers. 

 

 

 

 

Figure 49 Summary of Pathway Analysis from F1 vs. F21 metabolite list with MetPA. Topological pathway 

analysis in metabolome view. 
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Figure 50 Pathway view of the top two highest scoring pathways (Pantothenate and CoA biosynthesis and 

beta-Alanine metabolism).  
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Table 16 Result from Pathway Analysis with MetPA for N1 vs. N21 matched list of identifiers. 

 

 

 



Chapter 6                Inferring the metabolic and transcriptional networks specific to Dupuytren’s disease tumours 

184 

 

6.2.2 Metabolic and Signaling pathway analysis using IPA  

Integration of transcript and metabolite candidates 

„Core‟ and „Metabolomics Analyses‟ were performed in the IPA system using candidate 

gene and metabolites lists produced from data analyses from the pairwise analyses (F1 vs. 

F21, N21 vs. F21 and N1 vs. N21) in Chapters 4 and 5. Initial analysis using integrative 

pathway mapping (metabolite with transcript data) has shown several observed markers in 

DD (nodules) involved in key networks, biological functions and signaling and metabolic 

pathways are involved in amino acid metabolism and metabolism of cofactors and vitamins. 

The most significant biological functions and canonical pathways across multiple 

datasets (i.e. comparing results between gene/compound list from all three pairwise analyses; 

F1 vs. F21, N21 vs. F21 and N1 vs. N21), are shown in (Figures 51-54). The canonical 

pathways are displayed as bar charts across one axis. The other axis displays the ratio which 

is calculated as follows: the number of genes in a given pathway that meet cut-off criteria, 

divided by total number of genes that make up that pathway. Taller bars have more genes 

associated with the canonical pathway than shorter bars. For the single analysis (e.g. 

gene/compound list from the N21 vs. F21 analysis), a graph displaying the various pathways 

is presented from largest ratio to smallest ratio. For comparison analyses (i.e. 

gene/compound list from all three pairwise analyses F1 vs. F21, N21 vs. F21 and N1 vs. 

N21), various pathways are presented from largest ratio to smallest ratio according to the 

first experimental group. Canonical pathways that are associated with a particular network 

can be superimposed on molecules within the respective network. 

Based on Fishers exact test for top canonical pathways associated in disease (N21) 

resulted in nicotinate and nicotinamide metabolism (p-value = 7.98E-03), p38 MAPK 

signaling (p-value = 1.03E-02), ATM signaling (p-value = 2.88E-02), antiproliferative role 

of TOB in T cell signaling (p-value = 4.64E-02) and ERK5 signaling (p-value = 4.95E-02). 

The top molecules identified from this analysis include upregulated: amphiphysin (AMPH), 

ankyrin-3 (ANK3), ankyrin repeat domain 28 (ANKRD28), adaptor-related protein complex 

1, sigma 2 subunit (AP1S2), aryl hydrocarbon receptor nuclear translocator 2 (ARNT2), 

arylsulfatase D (ARSD), arsenite methyltransferase (AS3MT), activating transcription factor 

4 (ATF4), autism susceptibility candidate 2 (AUTS2), cell adhesion molecule 1 (CADM1) 

and downregulated:  zinc finger protein 423 (ZNF423), zinc finger protein 124 (ZNF124), 

wingless-type MMTV integration site family member 2 (WNT2), WNK lysine deficient 
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protein kinase 4 (WNK4), transient receptor potential cation channel, subfamily C, member 

6 (TRPC6), tissue factor pathway inhibitor 2 (TFPI2), tissue factor pathway inhibitor (TFPI),  

sulfotransferase family, cytosolic, 1C, member 4 (SULT1C4), solute carrier family 6 

(neurotransmitter transporter, taurine), member 6 (SLC6A6), and sema domain, 

immunoglobulin domain (Ig), short basic domain, secreted, (semaphorin) 3E (SEMA3E). 

 The top canonical pathways associated perturbation in healthy fascia (F1) analysis 

resulted in inositol metabolism (p-value = 7.41E-05), fructose and mannose metabolism (p-

value = 1.85E-04), glycolysis/gluconeogenesis (p-value = 2.48E-04), AMPK signaling (p-

value = 3.7E-03) and pentose phosphate pathway (p-value = 3.88E-03). The top molecules 

identified from this analysis include upregulated: ATP-binding cassette, sub-family B 

(MDR/TAP), member 10 (ABCB10), abl-interactor 2 (ABI2), A disintegrin and 

metalloproteinase with thrombospondin motifs 6 (ADAMTS6), adenylosuccinate synthase 

like 1 (ADSSL1), 1-acylglycerol-3-phosphate O-acyltransferase 5 (AGPAT5), adenylate 

kinase 2 (AK2), adenylate kinase 4 (AK4), v-akt murine thymoma viral oncogene homolog 3 

(AKT3), aldolase A, fructose-bisphosphate (ALDOA), aldolase C, fructose-bisphosphate 

(ALDOC) and downregulated: zinc finger protein 124 (ZNF124), WD repeat domain 78 

(WDR78), tRNA splicing endonuclease 2 homolog (TSEN2), tumor protein D52-like 1 

(TPD52L1), tumor necrosis factor receptor superfamily, member 21 (TNFRSF21) 

transmembrane protein 97 (TMEM97), toll-like receptor 3 (TLR3), sulfotransferase family, 

cytosolic, 1C, member 4 (SULT1C4), spermatid perinuclear RNA binding protein (STRBP), 

sulfide quinone reductase-like (SQRDL).  

The top canonical pathways associated with perturbation in disease (N1) analysis 

identified were glycolysis/gluconeogenesis (p-value = 1.99E-06), inositol metabolism (p-

value = 5.18E-05), pentose phosphate pathway (p-value = 2.52E-03), PI3K/AKT signaling 

(p-value = 4.5E-03) and fructose and mannose metabolism (p-value = 6.65E-03). The top 

biofunctions associated were cell death, carbohydrate metabolism, small molecule 

biochemistry, cell morphology and cellular development with top molecules identified 

upregulated: aldolase C, fructose-bisphosphate (ALDOC), apelin (APLN), BCL2/adenovirus 

E1B 19kDa interacting protein 3 (BNIP3), aspartyl-tRNA synthetase  (DARS), egl nine 

homolog 1 (EGLN1), F-box protein (FBXO16), fibroblast growth factor 1 (FGF11), gamma-

glutamyl hydrolase (GGH), macrophage migration inhibitory factor (MIF), prolyl 4-

hydroxylase, alpha polypeptide I (P4HA1) and downregulated: zinc finger protein 654 
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(ZNF654), zinc finger protein 593 (ZNF593), Wilms tumor 1 associated protein (WTAP), 

WD repeat domain, phosphoinositide interacting 1 (WIPI1), WD repeat domain 78 

(WDR78), vascular endothelial growth factor A (VEGFA), tripeptidyl peptidase I (TPP1), 

triosephosphate isomerase 1 (TPI1), tumor protein D52-like 1 (TPD52L1) and thioredoxin-

related transmembrane protein 4 (TMX4). 

Figures 51 and 52 display the comparison analyses for the top canonical pathways. It 

can be seen that the perturbation effect has revealed other pathways than those identified for 

disease. The perturbation effect has many molecules associated with the glycolysis pathway 

or sugar metabolism, DE molecules in F1 score highest in cancer associated pathways, while 

top disease molecules (from N21) score the highest in pathways involved in vitamin B5 and 

signaling ways. 

 

 

Figure 51 A summary of the distribution of metabolite markers across top scoring pathways from N21 vs. F21 

analysis. This indicates that metabolite markers reflect CoA enzyme metabolism, key signaling pathways 

nicotinate and nicotinamide metabolism, p38 MAPK Signaling, antiproliferative Role of TOB in T Cell 

Signaling, ERK5 Signaling. 
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Figure 52 A summary of the distribution of metabolite markers across top scoring pathways from F1 vs. F21 

analysis. 
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Figure 53 A comparison analysis of top scoring pathways displaying a summary of the distribution of 

metabolite markers across top scoring pathways.  
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Figure 54 A comparison analysis across the top scoring biological functions in the three pairwise analyses.  
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Network analysis integrating candidate transcripts with candidate metabolites 

Following transcript analysis a list of networks were generated de novo based on the input 

data. These networks do not have directionality and contain molecules involved in several 

pathways. Table 17 shows the two most significant networks resulting from each analysis. 

Molecules of interest which interacted with other molecules in the Ingenuity Knowledge 

Base were identified as Network Eligible Molecules which served as "seeds" for generating 

networks. More details on The  Network Generation Algorithm can be found in [165]. All of 

the molecules that compose each network are listed. Network eligible molecules appear in 

bold, other molecules are in regular font. An asterisk appears next to any gene for which the 

input file contained more than one identifier. A score based on a p-value calculation is 

determined. This calculates the likelihood that the Network Eligible Molecules that are part 

of a network are found therein by random chance alone. Mathematically, the score is simply 

the negative exponent of the right-tailed Fisher's exact test result. For example, if the score is 

3, then there is a 1 in 1000 chance that the Network Eligible Molecules found in that 

network appeared there just by chance. The score is a measure of the number of Network 

Eligible Molecules in a network; the greater the number of Network Eligible Molecules in a 

network, the higher the score (lower the p-value) will be. The number of focus molecules 

indicates the number of Network Eligible Molecules per network. The maximum number of 

molecules per network is currently limited to 35.  The three most significant functions for 

each network are listed under the column Top Functions. Further analysis into the high-level 

functional categories for individual networks was performed. For the analysis N21 vs. F21, 

Network 1 revealed the three functions with 24 molecules associated with immunological 

disorder, 21 molecules associated with autoimmune disease and 15 molecules associated 

with rheumatoid arthritis. 

Network Explorer tool in IPA was used to visualise molecular relationships 

representing inter-relationships between molecules. Genes, proteins, and metabolites 

(endogenous chemicals) were displayed as various shapes. The shapes are indicative of the 

molecular class (protein family, or metabolite). Colouring is based on the expression values 

that were uploaded with the dataset. Red indicates up-regulation (positive values), green 

indicates down-regulation (negative values), gray indicates the molecule was part of the 

dataset but did not meet the specified cut-off value, and white indicates the molecule was 

added from the Ingenuity Knowledge Base. Lines connecting molecules indicate molecular 
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relationships. Dashed lines indicate indirect interactions; solid lines indicate direct 

interactions. The style of the arrow indicates specific molecular relationships and the 

directionality of the interaction (A acts on B). A legend is provided in Figure 55. Canonical 

Pathways that are associated with a particular network were then overlaid highlighting 

individual molecules that are involved in a specific canonical pathway. As visualising these 

networks becomes increasingly difficult, the list of canonical pathways most significant for 

disease (N21 vs. F21 analysis) is shown only; Figure 62. 

The networks generated displayed relevant relationships as specified by the filters 

applied. This may have excluded some of the relationships for every network eligible 

molecule. Also because some interactions present in the Ingenuity Knowledge Base were not 

used in the network generation process the molecules of interest and their relationships were 

reinserted as could be biologically important. For this reason the full complement of direct 

and indirect interactions for a molecule within the network are highlighted. Each network 

illustrates the molecules within their subcellular compartments i.e. nucleus, cytoplasm, 

plasma membrane and extracellular space. For molecules where no subcellular localisation 

information was currently available in the IPA knowledge database were categorized into an 

„unknown space.‟ 

Figures 56-60 illustrate the networks listed in Table 17. These are the top networks 

resulting from the combined candidate gene/metabolite identifiers. Table 18 displays an 

enhanced view of the top function and molecules from Network 1 that are generated from 

DD nodule candidate list of metabolites/transcripts. 
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Table 17 Top scoring networks from Core analysis (significant transcriptomic and metabolite data 

sets). 
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Table 18 Enhanced view of function and molecules from Network 1 generated from disease (N21 vs. F21 

analysis) candidate list of metabolites/transcripts. 

 
Function Annotation Molecules # Molecules

immunological disorder

ADK, AMPH, ANK3, ANKRD28, AR, ARHGDIB, ARNT2, 

AUTS2 (includes EG:26053), CADM1, CAMK1D, CD44, 

CDK2, CHRM3, DAPK1, DCHS1, DPF3, DUSP1, EIF1, 

ELL2, ERP29, ESD, FCHO2, FRMD3, FTH1

24

autoimmune disease

ADK, AMPH, ANK3, ANKRD28, ARHGDIB, AUTS2 

(includes EG:26053), CADM1, CAMK1D, CD44, CDK2, 

CHRM3, DAPK1, DCHS1, DPF3, DUSP1, ELL2, ERP29, 

ESD, FCHO2, FRMD3, FTH1

21

rheumatoid arthritis

ADK, AMPH, ANKRD28, ARHGDIB, AUTS2 (includes 

EG:26053), CADM1, CAMK1D, CD44, DAPK1, DCHS1, 

DUSP1, ESD, FCHO2, FRMD3, FTH1

15

 

 

 

 

Figure 55 a) Key for all networks. b) Relationship legend. 
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Network 1 – Effect of hypoxia on healthy fascia  

 

Figure 56 Top scoring Network 1 based on the significant differentially expression transcripts and metabolites 

from F1 vs. F21 gene/metabolite lists. Colour coding of the nodes corresponds to the direction of responses 

(up-regulation shown in red and down-regulation shown in green). Lines that connect two molecules represent 

relationships. Any two molecules that bind, act upon one another are orange.  
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Network 2 - F1 vs. F21 analysis 

 
Figure 57 Top scoring Network 2 based on the significant differentially expression transcripts and metabolites 

from F1 vs. F21 gene/metabolite lists. Color coding of the nodes corresponds to the direction of responses (up-

regulation shown in red and down-regulation shown in green. Any two molecules that bind, act upon one 

another, are shown in orange. 
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Network 1 – Top molecules highlighted from DD Nodules vs. healthy fascia analysis 

 

Figure 58 Top scoring network based on the significant differentially expression transcripts and metabolites 

From N21 vs. F21 gene/metabolite lists. Color coding of the nodes corresponds to the direction of responses 

(up-regulation shown in red and down-regulation shown in green). Lines that connect two molecules represent 

relationships. Any two molecules that bind, act upon one another, or that are involved with each other in any 

other manner would be considered to possess a relationship between them (orange). Each relationship between 

molecules is created using scientific information contained in the Ingenuity Knowledge Base. 
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Network 1 from N1 vs. N21 analysis 

 

Figure 59 Top scoring network based on the significant differentially expression transcripts and metabolites  

From N1 vs. N21 gene/metabolite lists. Colour coding of the nodes corresponds to the direction of responses 

(up-regulation shown in red and down-regulation shown in green). Lines that connect two molecules represent 

relationships. Any two molecules that bind, act upon one another are orange. 
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Network 2 from N1 vs. N21 analysis 

 

Figure 60 Top scoring Network 2 based on the significant differentially expression transcripts and metabolites 

From N1 vs. N21 gene/metabolite lists. Colour coding of the nodes corresponds to the direction of responses 

(up-regulation shown in red and down-regulation shown in green). Lines that connect two molecules represent 

relationships. Any two molecules that bind, act upon one another are shown in orange. Dashed lines are 

indicative of indirect binding and/or relationships with confirmed literature references. 
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6.2.3 Metabolite and gene mapping 

One of the aims of the DD metabolomics work was to provide putative biomarkers of 

disease phenotype that can be monitored to determine the effect of hypoxia and discover 

novel metabolite entities and possibly translate a metabolic network for in vitro studies. To 

gain additional confidence that these metabolite changes are associated with transcriptional 

changes, rather than just a product of altered phenotype based upon induced perturbation 

transcriptomics data were overlaid on the metabolite-centric networks and pathways. Table 

19 shows the two most significant networks resulting from metabolomics analysis. Top 

transcriptomics information from Network 1 was overlaid on the metabolic network shown  

in Figures 61 - 65 to illustrate the analysis of disease (N21) and for effect of hypoxia on 

networks molecules upon perturbation in disease cells (N1). This now provides smaller 

networks from which key molecules can be used to depict our components which may be 

used for modeling; in silico studies for further experimentation and validation. The networks 

were then overlaid with the most significant canonical pathways specific for molecules with 

individual network (e.g. Figure 62). Figures 66 and 67 mapped the top scoring molecules 

from F1 and N1 upon N21 Network 1. A notable switching in direction (up or 

downregulated) of some molecules is observed.   
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Table 19 Top scoring networks from metabolomics analysis (significant metabolite data sets). 
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Transcript data superimposed on metabolite Network 1 - N21 (disease molecules) 

 
Figure 61 Transcriptomics data superimposed on the metabolite network 1 generated from molecules in the 

analysis of N21 vs. F21. 
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Figure 62 Transcriptomics data superimposed on the metabolite network (1) generated with analysis of N21 v 

F21 with top scoring canonical pathways overlaid. These are: role of cytokines in mediating communication 

between immune cells, glucocorticoid receptor signaling, role of macrophages, fibroblasts and endothelial cells 

in rheumatoid arthritis and signaling and production in macrophages.  
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Transcript data superimposed on metabolite Network 2 - N21 vs. F21 

 
Figure 63 Transcriptomics data superimposed on the metabolite network (2) generated from molecules in the 

analysis of N21 vs. F21. 
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Transcript data superimposed on metabolite-centric Network 1 - N1 vs. N21  

 
Figure 64 Transcriptomics data superimposed on the metabolite network (1) generated from molecules in N1 

vs. N21 analysis. 
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Transcript data superimposed on metabolite-centric Network 2 - N1 vs. N21   

 
Figure 65 Transcriptomics data superimposed on the metabolite network (2) generated from molecules in N1 

vs. N21 analysis. 
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F1 molecules mapped onto N21 network (superimposed on Figure 58) 

 

Figure 66 Molecules from F1 transcript-metabolite network superimposed on the N21 network (1).  
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N1 molecules mapped onto N21 (superimposed on Figure 58) 

 

Figure 67 Molecules from N1 transcript-metabolite network superimposed on the N21 network (1).  
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6.3 Discussion 

6.3.1 Principal Findings 

In this study we analysed the transcriptome and metabolome profiles representing specific 

signatures of DD that have been shown in studies Chapter 4 and 5. The analysis identified 

several transcriptional pathways and implicated multiple regulatory networks that 

characterise and classify the different molecular subtypes. 

Among the networks identified for the disease vs. healthy analysis (N21 vs. F21), two 

notable ones were found to be associated with molecular subtypes of autoimmune disease, 

connective tissue disorder and rheumatic disease. Network 1 revealed the three biological 

functions with 24 molecules associated with immunological disorder, 21 molecules 

associated with autoimmune disease and 15 molecules associated with rheumatoid arthritis. 

The first network, characterised by the SATB1, TNF, CSF2, TGFβ2, MMP1, TGFβ2 and 

molecules dominated by molecular signaling and possible cross-talking interactions (direct 

and indirect relationships) between transcriptional pathways. Landmark genes identified in 

previous studies associated or thought to be involved in DD and were also validated in this 

study (Table 20). In addition, other genes not previously described in the study following 

perturbation in disease are reported in Table 21.  

The first goal of this study was to determine key metabolic pathways based on 

topological pathway analysis. The result from this analysis is a list of canonical pathways 

and gene sets relevant to progression in DD. In addition, the analysis indicates in which 

stage of progression a pathway is relevant: i.e. cord development pathways, response to 

hypoxia, and nodule development and also its response to hypoxia and pathways that are 

activated when normal cells are induced with hypoxia. 

Mapping of the molecules associated with perturbation effect in healthy fascia (F1) 

and disease (N1) on to the network constructed for N21 vs. F21 analysis (disease) have 

highlighted some key switching  patterns i.e. changes in molecules. Notably, upon 

perturbation of disease, key molecules that were identified as upregulated were either down 

regulated or no change in those molecules was observed.  These opposing trends suggest 

(perhaps an ambitious statement) that careful and effective decrease of oxygen in nodules, 

may be indicative that some of these molecule can be restored to normal activity. Mapping 

of transcript data on metabolite networks has shown some good correlation at the two 
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subcelluar levels depicting a change in transcriptome has a downstream effect on 

metabolome networks (and perhaps vice versa too). 

 

Table 20 18 key molecules identified in this study previously confirmed in literature to affect connective tissue 

disorders including rheumatic disease. 

 

 
Function Annotation Molecules in disease (N21) networks # Molecules

affects connective tissue disorder (18/18)

ADK, AMPH, ANKRD28, ARHGDIB, AUTS2 

(includes EG:26053), CADM1, CAMK1D, CD44, 

CDK2, COL12A1, COL5A3, DAPK1, DCHS1, 

DUSP1, ESD, FCHO2, FRMD3, FTH1

18

affects rheumatic disease (16/16)

ADK, AMPH, ANKRD28, ARHGDIB, AUTS2 

(includes EG:26053), CADM1, CAMK1D, CD44, 

CDK2, DAPK1, DCHS1, DUSP1, ESD, FCHO2, 

FRMD3, FTH1

16

 

 

 

 

 

Table 21 Previously reported functions of molecules highlighted to be of significantly DE upon perturbation in 

nodule. 

 

Function Annotation Molecules perturbed in disease  network - N1 # 

Molecules

affects apoptosis of 

connective tissue 

cells (18/31)

BCL2, CASP3, CASP8, CDKN1A, CEBPB, DDIT3, 

DUSP1, FASLG, FN1, GAB1, JUN, MAPK14, MMP9, 

NSMAF, RAF1, RELA, TGFB1, TNF

18

decreases apoptosis 

of connective tissue 

cells (15/31)

BCL2, CD44, DUSP1, EP300, FN1, IL13, IL1A, IL1B, 

INS, RELA, SAA1, TGFB1, TGFB2, TIMP1, TNF

15

increases apoptosis 

of connective tissue 

cells (12/31)

CD44, CD40LG, EP300, FASLG, IFNG, JUN, LGALS8, 

MMP9, RAF1, TGFB1, TNF, VEGFA

12

 
 

 

6.3.2 Strengths and weaknesses of the study  

The metabolites are interconnected through metabolic reactions, generally grouped into 

metabolic pathways [166]. Classical metabolic maps provide a relational context to interpret 

metabolomics experiments and a wide range of tools have been developed to locate 

metabolites within metabolic pathways. However, the representation of metabolites within 

separate disconnected pathways overlooks most of the connectivity of the metabolome 

[166]. By definition, the reference pathways cannot integrate novel pathways nor show 

relationships between metabolites that may be linked by common neighbors without being 
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considered as joint members of a classical biochemical pathway [166]. The IPA is a proof of 

knowledge based comprehensive software of data analysis that can help researchers model, 

analyse, and understand the complex biological and chemical systems at the core of life 

science research [67]. By metabolomics analysis in the IPA, the phenotypic data of the 

metabolites can be validated and correlated with the targeted metabolites with the potential 

metabolic pathways, and related to biochemical functions. 

An importantly successful application for metabolomics has been in diagnosing 

drugs-induced toxicities in kidney, liver and heart. Here we demonstrated the use of 

metabolomics screening combined with transcriptomics and IPA analysis as a novel usable 

strategy to characterise the biochemical perturbation induced by hypoxia, revealing several 

biomarkers resulting from this perturbation effect that could be suggestive of the potential 

metabolic pathways that can be targeted for future studies in higher, more complex systems 

i.e. primary cells from human samples with high biodiversity. This strategy confirms and 

strengthens the applicability of metabolomics analysis methodology to investigate the 

perturbation effect in DD phenotypes and it highlights the strong potential of the network 

analysis made possible by IPA.   

The strength of being able to visualise possible interactions between molecules at the 

cellular level can be seen as a step closer to building constraint based models, or kinetic 

models or even abstract models to generate novel yet directed hypotheses. Once assembled, 

the model provides a means to organise the data about the DD system, to rapidly and 

inexpensively test hypotheses through in silico experimentation and to generate new 

hypotheses which can be tested in the laboratory. Not only can this kind of modeling 

approach transform raw data into actionable insights, but it can be an invaluable addition to 

an experimental program, that will allow researchers to ask more pertinent questions and to 

plan and design more focused experiments that have a much higher chance of discovering 

meaningful knowledge adding to existing knowledge and may translate into directed 

research; a step closer to understanding and targeting mechanisms in DD. The ultimate goal 

would be to integrate and process all these measurements to formulate mathematical models 

that recapitulate all previous observations and predict new behaviour together with 

environmental perturbations. Unfortunately time constraints have prevented the 

implementation of this. 
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Chapters 2, 4 and 5 utilised numerous computational methods to identify trends and 

patterns of gene expression and small endogenous and exogenous chemicals (from 

metabolome) specific to different DD cells, and healthy cells. These have led to the 

discovery of several genetic patterns or molecular signatures that aid in distinguishing 

biologically relevant aspects of tumour behaviour, their identity and some functional 

knowledge. It should be stressed that data integration from different data sources imposes 

major tasks such as including careful assembly of similar and complementary information 

from heterogeneous data sources and deletion of duplicated data. Such requirements demand 

considerable hand coded programming efforts, as different data formats have to be combined 

into a common schema.  

 

6.3.3 Conclusions 

In a systems approach, the various cellular networks are perturbed by changing 

environmental conditions of disease and healthy cells. The impact of the perturbation is 

assessed in by constructing key networks from the most significantly dysregulated molecules 

to evaluate any changes as measured and the consequences of these changes as they present 

themselves throughout the cellular networks. Key molecules in DD nodules network have 

been identified. However, the data still requires the development and assistance of new 

software tools and algorithms that can extract meaningful biological insights which yield in 

systems level understanding of cellular responses. Furthermore, models (e.g. kinetic models) 

from these data should be initiated. The application of high-throughput gene expression and 

metabolic profiling to the study of DD will now broaden our thinking about the biology of 

this quasi–neoplasia by providing deeper insights into the mechanisms underlying tumour 

promotion and progression. 

 



 

 

Chapter 7 

Conclusion and outlook 

7.1 Thesis Summary 

The sequencing of multiple genomes and the concomitant parallel development of 

computational SB tools start to realise the promise of functional genomics has created an 

opportunity for investigating DD in a way that was hardly imaginable 10 years ago. Today 

SB studies together with advances in molecular biological techniques and instrumentation 

allow for a directed, systematic effort aimed at producing a complete catalogue of 

biochemical activities, biological functions and their interactions, at least for simple 

unicellular life forms (e.g. bacteria and yeast). 

In this thesis a major advancement to the application of functional genomics and 

metabolomics methodologies has been made to investigate human disease and this study for 

a higher organism is highly challenging, novel and original. The aim of this research thesis 

was to develop and test the hypothesis that DD is a network disease.  This hypothesis was 

tested in two parts with the following questions in mind: 

(i) The DD and corresponding healthy tissue differ in function through 

differences between their molecular and intercellular networks, rather than differences in a 

single molecule, or in a plethora of unrelated molecular species.    

(ii) DD can be caused by any of a variety of perturbations in the regulatory 

networks that lead to the network differences. 

With this in mind systematic studies were conducted employing a SB approach 

which involved making use of metabolomics and transcriptomics methodologies to enable 
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the profiling and characterisation of signatures from DD phenotypes. The major innovation 

presented in this thesis is the use of metabolites and gene (transcript) sets in a data-centric 

mechanistic modeling approach for the construction of potential networks that may be 

associated or involved in tumour progression rather than single genes. Previous research in 

the field of DD where single genes were studied have provided a wealth of important 

information and these molecules may now be regarded as markers of certain stages of 

disease progression. While it is important to identify these individual genes as biomarker 

landmarks, a broader understanding of the functional biological processes occurring during 

disease progression has been missing. 

 Before we can interpret any data related to physiological and pathological transitions 

in DD, a question one should answer is, “What is normal?” as for any system under study, 

there exists a requirement to understand the magnitude and diversity of its typical activity 

whether in metabolism, gene expression or influence of its environment in the unperturbed 

state. Recent research in DD progression has taken a step closer to gaining insight into 

biologically related gene sets from the transverse palmar fascia, but none to date have 

explored the profound detrimental effects of subcultivation on their unique molecular 

(biochemical) signatures.  

In Chapter 1 an introduction to this thesis is given presenting the approach and 

hypotheses tested in this study. Section 1.2; Appendix A reviews scientific literature 

available on DD and discusses the rationale to undertake a SB approach to investigate DD as 

it proposes it to be a disease of networks. The techniques, instruments and algorithms used 

to test these hypotheses are given in Chapter 2.   

As it is important for SB to be employed on defined and reproducible experimental 

(and computational) systems, Chapter 3 examined how DD and healthy cells changed 

following excision and cultured over a period of time. This highlighted the optimal 

conditions to further investigating the DD system, as a compromise between retaining in situ 

DD character and having sufficient cell numbers for analysis; the concept of a systems 

signature defined through FT-IR spectroscopy was applied. Using this procedure, the 

reproducibility in vitro of DD subsets (i.e. nodule, cord, fat & SON) was compared with 

internal control (transverse palmar fascia) and external controls (carpal ligamentous fascia) 

based on their unique biochemical signatures. The results indicated that different DD 

phenotypes exhibit marked variability in the overall pattern of metabolic fingerprints 
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(nodule, cord, skin and fat). The results from the metabolic fingerprinting based on PCA of 

DD nodule, cord and fascia has implied an early passage number (0-3) would faithfully 

represent the test subject as its phenotype would be closest to the in vivo state. Due to 

uneven sample size (and cellular content), certain supervised methods such as ANN could 

not be applied to the model to assess validity of the model, but PCA and PC-DFA indicated 

good clustering and separation between different sample types (from disease and healthy and 

also between samples from highly biodiverse individuals i.e. patients). The application of 

FT-IR spectroscopy conducted under carefully controlled conditions with appropriate 

chemometric techniques to differentiate phenotype between DD and control fibroblasts has 

been demonstrated to be a powerful tool for the rapid screening and discrimination between 

the anatomical cell types within individual DD patients as well as samples from controls. 

This study highlights early passage cultures are close representatives of the metabolic 

fingerprints of those in disease phenotype state in vivo and are more appropriate for further 

DD studies. However, PCA of FT-IR footprint spectra did not yield any statistically 

significant results. This may be because the culture medium in which secreted metabolites 

were collected was nutrient rich and contained undefined reagents including FBS. The study 

supports the hypothesis that the cell culture monolayer environment may alter the functional 

characteristics of the DD samples, possibly by abiotically selecting against a subpopulation 

of cells which survived the in vitro conditions, and result in degradation of the sample‟s 

phenotypic identity. 3D cultures may improve over cell monolayer culturing and should be 

considered in future studies. 

The classification achieved is encouraging, as FT-IR spectroscopy not only 

discriminates DD phenotypes from the two controls, but also between the two fibrotic 

elements i.e. nodules from cords, fat and SON. Despite high biodiversity in patients, this 

trend could be observed in most patients when examined alone, if not altogether in the PCA 

scores plots when combined. In addition this technique demonstrates internal fascia is an 

appropriate control and can be distinguished from diseased fibroblasts using chemometrics 

techniques. The use of internal transverse palmar fascia as the control will attribute to the 

homogeneity and consistency in future studies. 

One problem with the current implementation of the PCA model is its unsuitability to 

assess multiple influential trends (too many variables - as this could lead to poor 

generalisation performance of the model due to under fitting). Given the clinical nature of 
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this project, samples sets are often too few. Any experimental error reducing the already few 

numbers interferes with the chosen models applied and cluster analyses, making this a biased 

data set depicting an unbalanced sample number and experimental design. Alternatively, it 

may be necessary to apply other supervised methods that complement the existing in silico 

model if it is to be used on larger data sets. This may involve a slightly different optimisation 

technique.  

 Future studies should consider the following to improve and optimise the current cell 

culture methodology: culture and harvest a greater total amount and full sets of DD samples 

e.g. n = 20 nodules, n = 20 cords, n = 20 transverse palmar fascia. Initial confirmation of 

phenotypic identity, morphological assessment and fibroblast purity, should be obtained 

using immunocytochemistry and/or immunohistochemistry. Furthermore, alternative sample 

processing and extraction methods may be compared for future metabolomics studies e.g. 

snap freeze biopsies in methanol or subject samples to FT-IR spectroscopy immediately 

from culture flask and not thaw from frozen (but this would not be valid for different time 

points (days) as technical variation could be introduced) to make a comparison of current 

methods using chemical information from formalin fixed tissues. 

  To validate the current results, that a „passage effect‟ is one possible effect on the 

fibroblast cultures, an independent validation of the trypsin and passage effect should be 

applied where cells should be isolated from the test tissue from a minimum of three patients 

and passaged a total of six times (Passage 0 to Passage 6). Using qRT-PCR, expression of all 

genes of interest (approx 10-12 initially) selected from bioinformatics and text mining 

analysis should be quantitatively assessed (e.g. (collagen type I ligament/tendon‟s main 

matrix constituent), collagen type III, fibronectin, metalloprotease-13 [MMP-13], and tissue 

inhibitor of metallopreotease-1[TIMP-1]). An alternative approach could be to determine the 

passage effect by simultaneous growth of fibroblasts from two sets of biopsies cut in half 

arriving on the same day and grown in different sized culture flasks and passaged upon 

confluence. For example (one piece of nodule tissue, cut into two and processed for 

fibroblast cell culture. one pellet transferred into a T25cm
2
 flask and the other into a T75cm

2
.  

Here the use of natural language processing (NLP), text mining and machine learning 

methodologies would be of considerable utility if one could train these to represent more 

quantitative, effective and efficient ways to capture data generated from SB experiments. 

Due to advances in high-throughput -omics technologies, e.g. gene expression data from 
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microarray experiments and protein interaction databases, together with large volume of 

digital textural documents such as PubMed, an unprecedented opportunity is created to apply 

computational techniques for a comprehensive study of the structure and dynamics of the 

systems components, and thus provide a robust foundation to systems biologists. It must not 

be understated that despite the high quality obtained through manual curation, NLP and 

machine learning methodologies represent a more effective and efficient way to capture and 

curate large data sets resulting from iterative SB experiments. Though efficiencies can be 

built in to the manual curation systems, it cannot be compared to the speeds achieved by 

NLP tools. Automated extraction of data using NLP technologies is fast but the accuracy of 

the data captured and the data points that are omitted comprise major areas that need to be 

improved. In principle, the requirement is the discovery of new knowledge from hidden texts 

that will help with recognition of extracted relations from entities that are shown to be truly 

interesting and not merely erroneous trends that could occur from the processed data.  

In Appendix E2(3), a novel method (application) under construction which may later 

be incorporated into an existing text mining tool (FACTA) [167] is proposed. This addition 

to the existing tool would play a crucial role in SB research and should allow the end user to 

make decisions and perform text processing and clustering of selected categories of interest. 

Various discussions with Dr Philip J Day arising from this study, have led to the initial 

design and set-up of an application which may facilitate in quantitative and qualitative 

selection of candidate genes (following reproducibility study in Chapter 3) to validate from 

the literature. The project involves chunking/parsing/zoning of data sets from DD specific 

methodologies from which entities (proteins, genes, and chemicals) are retracted. The 

strategy involved retrieval of these entities from the literature based on an ordered ranking 

system that would specifically identify the technique (e.g. genes discovered through a 

microarray study or immunohistochemistry) from which the molecule was discovered. 

Furthermore, which group (authors, laboratories) report these findings and to gain a deeper 

understanding the sub sections in a given article e.g. abstract, method or results section of an 

article would enable the users to select and filter a sub group of entities based on their 

individual experimental predictions/queries as identification of entities from irrelevant 

sections in a article could be avoided e.g., molecules identified in the results section of a 

peer-reviewed journal than found by chance say in the methods which could lead to 

ambiguity in novel findings.  
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The workflow is briefly shown in Appendix E3 where I started to build the reference 

collections (libraries) from existing and known information retrieval sources such as 

PubMed, Scopus, Science direct etc. This consists of full articles on 1) DD scientific and 

literature, and 2) entities (i.e. techniques from which these proteins, genes, metabolites were 

discovered to obtain information directly from domain experts or from biological annotation 

databases. Here one of the challenges was to determine the optimal queries for selecting all 

relevant annotations from various biological resources, to cope with the different 

granularities of heterogeneous information types and the incompleteness of manually curated 

information. The idea is once the entities in sentences were parsed/chunked/curated etc the 

completed „mini tool‟ would then be connected with the larger tool, FACTA, to enable 

prediction and inference of entities relevant to DD biology, gene expression and specific 

techniques the genes were inferred from using this test model (in this case the idea was 

selection of candidate genes from text mining to validate results from Chapter 3).  

In Chapter 4 the above two hypotheses were tested with DD and corresponding 

healthy and normal metabolomes. One hypothesis was, whether the difference in disease cell 

types (nodule, cord and SON) and control cell type is the same as the difference in control 

fibroblasts (transverse palmer fascia) cultured in normoxia and hypoxia. Secondly, in which 

specific disease cell type (i.e. nodule or cord) is the difference with normal cells in 

intracellular metabolome the largest?  Thirdly, the Warburg effect was tested by inducing 

hypoxia in the disease cell types. The study employed GC-MS for metabolic profiling and 

identification revealed a few yet important metabolites that were significantly dysregulated 

in disease compared with fascia. Supervised analysis methodologies such as DFA and 

ANOVA-PCA were employed in addition to unsupervised methods (PCA) to make 

inferences from the mass spectral data. Metabolites involved in amino acid metabolism were 

significantly down-regulated in nodules including leucine, phenylalanine, cysteine, aspartic 

acid and a sugar. Leucine and a sugar were also significantly down-regulated in cords, in 

addition to these, metabolites from carbohydrate metabolism, cofactors and vitamin 

metabolism pathways i.e. glycerol-3-phosphate (up-regulated) and pantothenic acid (down-

regulated) respectively were identified.   

The question whether the metabolites dysregulated in fascia upon perturbation are the 

same as those dysregulated in nodule and cord is difficult to address from this analysis alone, 

as only cysteine and aspartic acid (both down-regulated) were common to both. Whether this 
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was a true correlation or by chance alone has been investigated in the transcriptomes of these 

subjects addressed in Chapter 5. Furthermore from Table 6, the perturbation effect caused by 

inducing hypoxia to disease cells revealed a large numbers of metabolites that were 

significantly up/down-regulated. These were mostly involved in amino acid metabolism and 

also carbohydrate metabolism. Whether this correlation could also be observed at the 

transcriptome level was then further investigated in Chapter 5.  Total RNA from DD nodules 

and fascia from 1% and 21% (from three patients) were used as the maximum difference in 

metabolites numbers was observed in nodules than cords. Since the SON samples were a 

different cell type from all others (fascia vs. epidermis in PCA analysis), it was excluded 

from the transcriptome analysis.  

One of the major strength of this study was the novel approach to harvest, extract 

both metabolites and RNA without affecting the RNA integrity. This method was previously 

attempted in neuroblastoma cells lines [132] but an improved method had been implemented 

here. The extraction steps were in total three (not four as previously described) at 4
o
C and 

the RNA quality was preserved. The co-extraction of transcripts and metabolites is believed 

to be important because the amount and integrity of both mRNA and metabolites are 

unaffected from the dual analyte extraction procedure.  

In Chapter 5 the DD nodules were compared with normal and perturbed fascia, to 

investigate the Warburg effect in the DD transcriptome. The study employed Affymetrix 

Human Genome U133 Plus 2.0 GeneChip oligonucleotide arrays to determine transcript 

profiles of fibroblasts cultured in normoxic and hypoxic conditions. The study revealed a 

small number of DE transcripts that were common in N21 vs. F21 and F1 vs. F21 analysis. 

These transcripts were involved in the following pathways: - MAPK signaling pathway, 

ECM-receptor interaction, p53 signals pathway, tyrosine metabolism, nicotinate and 

nicotinamide metabolism, phenylalanine metabolism and vitamin B6 metabolism. Since so 

many DE transcripts were identified from microarray analysis it is difficult to assess whether 

these correlations were true or by chance. This was further explored through network 

analysis using IPA in Chapter 6. The common DE genes can be seen in Figure 44b. 

The perturbation effect in DD nodules caused by hypoxia was also examined to 

address whether the dysregulated metabolites also can be measured by this study to correlate 

at the transcriptome level. Further we would like to address which of the identified candidate 

DE transcripts/genes and metabolites from Chapter 4 show congruence across the various 
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levels of systemic description in the context of pathways i.e. the DD metabolome and 

transcriptome. Integration of these complex data sets has been a key challenge and is the 

objective of Chapter 6, which involved mapping molecules from one analysis onto disease 

networks of known genome wide pathway maps. Several methods for microarray data 

analysis and metabolite datasets were explored. As the vast number of results from the 

microarray study resulted in an abundance of DE transcripts, three normalization methods 

complemented by two Bayesian methods; limma and puma were used to make statistically 

significant inferences from the data. The limma method was found too stringent while the 

puma algorithm allowed for maximal inference from the data. Based on the puma method, 

little synchrony in DE transcripts were observed from N21 vs. F21 and F1 vs. F21 analysis 

gene lists. From the unique 119 DE probe lists identified in N21 vs. F21 analysis, the 

following pathways were highlighted:- cell adhesion molecules, ECM-receptor interaction, 

neurotrophin signaling pathway, nicotinate and nicotinamide metabolism, cysteine and 

methionine metabolism, ether lipid metabolism, selenoamino acid metabolism, tryptophan 

metabolism, tyrosine metabolism, valine, leucine and isoleucine degradation and vitamin B6 

metabolism. A number of these pathways are amino acid metabolism pathways, and so we 

can confirm there is a strong correlation in DD at both the transcriptome and downstream in 

the intracellular metabolome. From the perturbation effect in N1 vs. N21 fatty acid 

metabolism, toll-like receptor signaling pathway, biosynthesis of unsaturated fatty acids, 

PPAR signaling pathway, citrate cycle (TCA cycle), glycine, serine and threonine 

metabolism pathways were enriched. Again this strengthened our hypothesis that DD is a 

disease of networks, where molecules are interconnected and a number of amino acid 

metabolism molecules are actively DE in DD nodules and this perturbation effect is 

observed at both the transcriptome and metabolome levels within a cell. 

 The same analysis methods were not applicable to metabolomic data sets as by 

contrast the variables (metabolites) are far fewer and appropriate chemometrics approaches 

were employed. If both „omic data sets could be normalized using the same methods then 

statistical significance and congruence between the identified transcript and metabolites 

would be more powerful to facilitate interpretation in terms biological relationships. At 

present the two „omics studies must be analysed separately using different yet most suitable 

methods. 
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New data analysis methods need to be derived to integrate these heterogeneous data 

sets. A correlation between protein and metabolites is being made [168]; these molecules can 

be identified through mass spectrometry. This is not possible for transcripts. To enable data 

integration Ingenuity Systems now allow incorporation of small molecules (HMDB ID‟s and 

CAS registry numbers) in addition to gene/transcript/enzyme data for network analysis of 

network eligible molecules present in the Ingenuity Pathways Knowledge Base. In Chapter 6 

we first integrate the candidate metabolite with the candidate transcripts for each pairwise 

analysis, and then map these networks onto networks generated for N21 vs. F21 analysis.  

 Using the currently available technologies, we have intended to address the overlap 

between transcripts, and metabolic activity altered by oxidative stress using DD fibroblasts 

as an experimental system. As environmental factors are considered to play a role in the 

development of DD, data from proteome and epigenomes should also be studied within a SB 

framework.  

 A major conclusion from this correlation analysis is that (from Tables 6,7, 11 and 

Figures 44, 58, 66 and 67), it relatively few metabolites/transcripts identified as significantly 

dysregulated in F1 vs. F21 analysis were present in N21 vs. F21 analysis. From these 

systematic analyses it is now appropriate to challenge the first hypothesis that difference in 

disease and healthy cells maybe akin to the differences in healthy cells in normoxia and 

hypoxia. As only a very small number of significant molecules coincide in F1 and N21 

candidate lists. In Chapter 6 these significant candidates (i.e. metabolites and transcripts) 

from Chapters 4 and 5 were integrated to visualize relationships using network analysis (e.g. 

candidate metabolites and candidate (prominent) transcripts in F1 vs. F21 using IPA and 

these networks are mapped on the networks from significant molecules in N21 vs. F21 

analysis. From Figures 66 (F1 candidates) and 67 (N1 candidates) superimposed onto Figure 

58 (N21 vs. F21 candidate molecules), this can be observed and that hypoxia has an opposite 

effect, few molecules were in common and SATB1 being one of them, was upregulated in 

F1 as well as N21. 

 It should be emphasized, here that the above conclusion is based on a correlation 

analysis only and not considering the biological relationships between transcripts, proteins 

and their downstream metabolites. In depth knowledge of cell biology would greatly 

facilitate further examination of these molecules in the respective networks and also 

knowledge of which metabolites are related to certain proteins.  
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 In this study we have also validated the hypothesis that changes of metabolite levels 

upon perturbation would reveal changes at the transcript levels (or perhaps vice versa). This 

has been observed both in healthy and disease phenotypes. Large and quantitative transcript 

and metabolite data was acquired from techniques currently allowed. However until the 

relevant biology is uncovered there are concerns regarding the interpretation expressed 

above. Following-up with future experimental work will ratify these conclusions/hypotheses. 

Through this thesis some of the technical challenges associated with working with 

complex organisms (i.e. human cells) using a SB approach are addressed. These successfully 

addressed aspects are:- (i) system wide component identification and quantification (“omics” 

data) at the level of mRNA, and small molecular weight metabolites; (ii) experimental 

identification of physical component interactions, for information processing networks; (iii) 

and integration of heterogeneous data sets. The next major challenges are to address which 

computational inferences ought to be made from the structure, type, and quantity of 

component interactions from these data. This step is essentially required to achieve a 

holistic, quantitative, and predictive understanding through mathematical models that will 

enable an iterative cycle between prediction and experiments, the hallmark of systems 

biology. In addition a major challenge is to understand heterogeneity both at the biological 

and cellular levels (e.g. patient, technical, biological variability).   

 

Finally future work that could be pursued from this thesis would involve the following as 

illustrated in Figure 68 (i.e. the next steps from page 42):- 

1. Reconstruct integrated cellular networks into an in silico model. 

2. Reconcile the experimentally observed responses with those predicted by the model. 

3. Design and perform new perturbation experiments to distinguish between competing 

model hypotheses. 
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Figure 68 Future outlook for a DD systems roadmap. The comprehensive component concentrations identified 

in this thesis through omics studies provide input data for inferring component interactions using computational 

methods. The challenge is for computational modeling methods yet to be developed to enable prediction of the 

functional network state from the concentrations and to infer the information processing network that controls 

the functional state. 

 

In conclusion, it should be recognised that increasing sample replications is not always 

possible, particularly for clinical samples where patients are under treatment and any new 

diagnostic test is a secondary goal. Therefore, there needs to be greater emphasis on more 

robust experimental design. For example, to avoid sample bias, adequate matching of 

patients with disease to those who are healthy, in terms of gender, age, BMI, and ethnicity, 

as well as other extrinsic factors such as metabolic rates, pharmaceutical use and diet. In 

addition, if future studies include females or patients with pre-existing medical history of 

other disease e.g. diabetics then additional factors such as diurnal effects should be 

considered. All of these factors will significantly influence the subject‟s physiological 

profile, and these need to be carefully considered when generating a robust experimental 

design.  

This novel study has demonstrated a major advancement in understanding DD. 

Systematic hypothesis driven studies have been performed to investigate the DD state 

dynamics. A number of dysregulated metabolites and transcripts involved in amino acid 

metabolism, carbohydrate metabolism and also metabolism of cofactors and vitamins have 

been identified from these integrative analyses. Upon perturbation several of these 

transcripts and metabolites involved in the mentioned pathways were significantly 
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dysregulated. For the first time, early passage numbers are shown to provide representative 

metabolic and transcript fingerprinting for investigating DD. A parallel analysis of transcript 

and metabolic profiles of DD fibroblasts is performed and the parameters are correlated 

across the various levels of systemic description. This will now enable us to examine the 

extent to which systems biology helps investigate pathological mechanisms in DD other 

related connective tissue disorders. This thesis should provide a fundamental change in DD 

research.
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Abstract 

 

Dupuytren‟s disease (DD) is an ill-defined fibroproliferative disorder affecting the palms of 

the hands of some Northern Europeans.  Cellular components and processes associated with 

DD pathogenesis include cytokines, growth factors, adhesion molecules, and extracellular 

matrix components. Free radicals and localised ischemia may trigger the proliferation of DD 

tissue.   Histology has confirmed the presence of collagens, myofibroblast and myoglobin 

proteins in DD, but at widely varying abundances.   Several genes are over- or under- 

expressed in DD tissue.  Although the existing data sets contain potentially valuable (though 

largely un-interpreted) information, the precise aetiology of DD remains unknown.  We 

question whether seeking further information about DD in ways that assume the disease to 

be due to a single faulty gene, is likely to lead to a breakthrough.  Thus we propose that DD 

is in fact a disease of several networks rather than of a single molecule per se, and show that 

this accounts for the experimental observations.  We outline how DD may be investigated 

more effectively by employing systems biology which considers the disease process as a 

whole rather than focusing on specific molecules.   

 

Key words 

Dupuytren‟s disease/contracture, systems biology, transcriptomics, gene expression 

profiling, metabolomics, proteomics, modelling, free radicals, myofibroblast, multifactorial 

disease. 
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Introduction 

 

Although Dupuytren‟s disease (DD) is commonplace in General Practice and despite 

decades of both experimental and clinical investigations into the disease, its precise 

aetiology remains unclear.   DD resides within the poorly understood, yet important category 

of superficial quasi-neoplastic proliferative fibromatoses [1].  Phenotypically, it is a nodular 

palmar fibromatosis.  It often causes permanent flexion contracture of the 

metacarpophalangeal (MCP) and proximal interphalangeal joints (PIPJ) of the digits [2] 

(Figure 1) leading to loss of function, discomfort and deformity of the hand.  Ultimately, this 

then leads to a permanent contracture of the involved digits [2-6].  

DD is a non malignant disease as it does not metastasize [7]:  it may invade locally 

within the palmar aponeurosis of the hand (sparingly supplied with blood vessels as 

compared to other parts of the body) but it does not disseminate to other tissues.  DD 

behaves as a benign neoplastic disorder:   DD is progressive and irreversible with a high rate 

of recurrence after its main treatment, i.e. surgical excision [8].   The increasing severity and 

recurrence can lead to amputation of the affected digit [9-11].  A thorough understanding of 

the diagnostic, prognostic and theragnostic indicators affecting the disease is therefore 

important.    

The three stages of DD growth (proliferative, involutional, and residual) involve 

myofibroblasts [12-15].   DD is associated with abundance of collagen, fibronectin, 

integrins, cytokines and many other growth factors [2, 9, 16-18].  Differential gene 

expression microarray studies and biomarker identification strategies found the expression of 

several genes correlate with DD [19-28].  Nevertheless, none of these studies has established 

the molecular mechanism of DD formation and hence the molecular basis of its diagnosis 

and therapy is not in sight.  This is unlike diseases such as cancer, where at least the 

oncogenes have been identified, albeit not as single causes [29]. 

Systems biology is one of the most widely discussed fields among the emerging post-

genomic disciplines [30].  Its bottom-up variant combines mechanistic modelling with 

quantitative experimentation in studies of genetic networks, signal transduction pathways, 

metabolic networks and their integrations [30-37].  It aims at understanding how the 

interaction of multiple components within a cell, tissue, organ or indeed individual leads to 
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much of the biological function.   The mathematics and the quantitative experimentation are 

not aims in themselves but merely serve to address the full complexity and emergence of 

biological phenomena at all functional levels within the system being studied (from cell to 

ecosystem) [30].  

  Systems-level approaches are beginning to make some pace towards scientific 

comprehension of pathway control, regulation, and function [38-41].  This has improved the 

understanding of some diseases [42], and has provided new rationales for drug discovery 

[43-45]. More than 1800 publications on DD have appeared since the original publication by 

Guillaume Dupuytren in 1831. The field of Systems Biology is growing exponentially with 

more than 8500 papers to date. Many characteristics and the complex biological behaviour 

of DD fibroblasts may constitute an invitation to a systems level approach to DD at both the 

cellular and the molecular level.  In this review, we outline such an approach.    
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Review criteria 

PubMed and Scopus searches were conducted to identify all relevant scientific literature 

evaluating the pathogenesis of DD, published in English to in or before June 2010 (with the 

addition of early literature in French).  Studies were confined to cytogenetic studies, 

histological findings, genomic approaches and biomarker-related discoveries of 

biomolecular components involved in the pathogenesis of DD.  The keywords used in 

various combinations included (* used as wildcard truncation): Dupuytren* disease, 

contracture, gene expression, microarray*, chromosome, cytogenetic*, *array, treat*, 

therap*, manag*, surg*, excis* fibroblast*, tissue* biopsie*, cel* plus character searches for 

animal or in vitro studies and studies evaluating prophylactic treatment.   Review articles 

were used as additional sources for primary papers by cross-checking the reference sections 

with the master list of compiled articles.  Full text articles were retrieved for those studies in 

which subsequent findings had been reported from the same research group.  The 

methodological quality of each paper was examined (for example, whether statistical data 

analysis was sufficiently detailed to allow for reproducibility).   Each study was assessed in 

terms of the direction of the conclusions vis-à-vis the phenomenon investigated, whether 

positive, negative or inconclusive.   
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Dupuytren’s disease and its many faces  

Connective tissue fibrosis  

Human skin exhibits a remarkable diversity in structure and function across anatomic sites 

[46].  Fibroblasts are the principal cells of this stromal tissue.  They are responsible for 

extracellular matrix (ECM) synthesis in connective tissues and thereby play a vital role in 

tissue repair and wound healing [7, 47].   In the various connective tissues where they occur, 

they constitute a heterogeneous population of cells [47-49].   Many diseases are associated 

with fibroblasts, either through fibroblasts being implicated in their aetiology or because of 

the fibrosis consequent to damage to other cell types.  Fibrosis is a consequence of excessive 

synthesis and deposition of collagen by abnormal fibroblasts [27].  The ensuing excessive 

ECM accumulation is a common feature of many connective tissue diseases.  Fibrosis can 

affect not only the skin but also internal organs such as lungs and kidneys, leading to organ 

dysfunction and failure.   Clinical examples include renal interstitial fibrosis [50], 

scleroderma, sarcoidosis [51], idiopathic pulmonary fibrosis [52], retroperitoneal fibrosis 

[53] and DD [54].  A complex network of intercellular interactions involving a diverse range 

of molecules, including growth factors, cytokines, chemokines and endothelin may drive the 

pathological events that ultimately lead to uncontrolled connective tissue fibrosis.  

 

Pathophysiology 

The pathophysiology of DD is thought to arise either from a defect in the wound repair 

process or from an abnormal response to wounding.  These hypotheses are based upon 

biochemical characterisation of affected tissues showing increased deposition of collagen III 

relative to collagen I and increased levels of collagen hydroxylation and glycosylation [55].  

We note that these hypotheses are non-molecular and may associate the disease with effects, 

rather than with a single cause. The following sections will reflect upon the current 

understanding of DD pathophysiology. 
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The myofibroblast  

An early attempt at a functional interpretation of the histopathological changes observed in 

DD settled on the assumption that the cellularity (quantified as the cellular density) of the 

DD nodules (see below) was indicative of the activity of the disease [6].  Later, the disease 

was classified into three stages: proliferative, involutional and residual.  The diseased tissue 

was further subdivided into the essentially fibrous nodules, reactive tissue, and residual 

tissue.   

Normal palmar skin is similar to the skin of the sole, and differs from skin covering 

the rest of the body.  Essential to the dermis are the fibroblasts with spindle-shaped cell 

bodies and nuclei that produce fibres, which can be seen by light microscopy.  Collagen is 

the most abundant constituent of these filamentous components.  Further investigations into 

the ultrastructure of DD tissue revealed the presence of myofibroblasts at various 

abundances. These specialised mesenchymal cells express smooth muscle α-actin, in which 

an acquisition of a smooth muscle like function may explain the contractility observed in DD 

[13].  

 

Cell heterogeneity 

Fibroblasts are identified by their spindle-shaped morphology.  They possess the ability to 

adhere to plastic culture vessels, and are thus identifiable upon the absence of markers for 

other cell lineages.  The presence and role of myofibroblasts in DD have been studied by 

many independent authors, mostly revolving to similar conclusions, which are summarized 

below. 

Ultrastructural studies confirm that DD tissues can be classified into several stages 

according to their cellularity  [6].  These different stages may co-exist in the same specimen, 

with different cell populations at maximum density in each stage.  DD contains two 

structurally distinct fibrotic elements; the nodule and the cord.  The nodule is described as a 

highly vascularised tissue containing a large number of fibroblasts, with a high percentage 
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being recognised as myofibroblasts due to their expression of the α-smooth muscle actin.  

The cord is relatively avascular and acellular; collagen-rich with few myofibroblasts.  The 

haematoxylin and eosin stained DD sections shown in Figures 2(A) and 2(B) demonstrate 

large numbers of relatively cellular (nodules) and relatively a-cellular, tendon-like regions 

(cords).  There are different opinions regarding the origin and development of this aspect of 

the DD phenotype, viewing either the nodule as developing into the cord as the disease 

progresses over time or, the two structures representing independent stages of the disease.     

The presence of myofibroblasts in DD has inspired the histopathological literature 

[56-58]:  Their morphologic characteristics of being both a fibroblast and a smooth muscle 

cell might be related to the contraction involved in DD.   In terms of their ultrastructure, DD 

myofibroblasts resemble myofibroblasts of granulation tissue thought to be responsible for 

contraction during wound healing.  The Dupuytren myofibroblast synthesizes fibronectin, an 

extracellular glycoprotein that connects myofibroblasts and connects them to the 

extracellular stromal matrix through an integrin.  In a study of 43 cases of DD tissue, 

histopathological changes suggested that certain growth factors may induce proliferation of 

such genetically abnormal myofibroblasts [15].   

Not all palmodigital aponeurotic structures are affected by DD.  The areas that are affected 

macroscopically, do so at an irregular depth and distribution, with the more superficial layers 

and ulnar side of the palm being affected most.  Macroscopically, neither the deep 

retinacular tissue that includes the transverse palmar ligament or fascia also known as 

“Skoog‟s fibres” nor the fibrous flexor tendon sheaths, appear to be involved in DD.   

Recent advances in microarray technology and bioinformatics have revealed an 

appreciable cell-to-cell heterogeneity:  According to genome-wide gene expression profiles, 

fibroblasts come in various subtypes [48].   In one study, fibroblast samples were clustered 

on the basis of the expression levels, using the Partitioning Around Medoids algorithm [59].  

This identified diverse sets of genes being expressed in the different subtypes.  The authors 

proposed that different anatomic sites have characteristic, distinct phenotypes, which 

persisted in vitro even when fibroblasts were isolated from the influence of other cell types.  

They termed this phenomenon „topographic differentiation‟.  We note that expression 

differences at the level of mRNA need not necessarily lead to functional differences, as 

control and regulation of cell function also involves other levels of cellular organisation such 

as translation and posttranslational modification [40].  Further substantiation that the 
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differences in mRNA expression correlate with differences at the proteomics, metabolomics, 

or morphological level should be welcome [60].  Chang et al. [48] did not find such 

differences when they evaluated cultured fibroblasts from diverse DD sites but all with the 

morphology of elongated, spindle-shaped cells.  Immunofluorescence microscopy showed 

that the fibroblast cultures were uniformly positive for a mesenchymal marker, but negative 

for markers of epithelial, smooth muscle, endothelial, perineural, and histiocytic cells.  The 

study revealed that the different passages of the same fibroblast culture clustered with each 

other, indicating that their in vitro phenotypes were stable.  One aspect of the topographic 

genomic program in fibroblasts may be the coordinate regulation and synthesis of the ECM 

proteins in a site-specific manner.  Taken together, the information suggests that fibroblasts 

with the morphology of elongated, spindle-shaped cells may themselves be more 

homogeneous and that the heterogeneity observed by Kaufman et al. [59] concerned 

fibroblasts differentiated to morphologically different subtypes. 

 

Growth factors  

Table 1 lists the components that have been implicated as modulators of the DD fibroblast 

transdifferentiation into myofibroblasts. Possible roles of these growth factors in DD 

pathogenesis  have been discussed in previous reviews [61] and we summarise just a few 

[62-70].  Among the cytokines, TGF-β is thought to be a significant inducer of 

myofibroblast transdifferentiation because of its  ability to up-regulate α-smooth muscle 

actin and collagen in fibroblasts, both in vivo and in vitro [66].   

 

Linkage analysis 

A study performed in a five generation Swedish family suggested that DD was inherited in 

an autosomal dominant pattern [71].  Mitochondrial and X-linked inheritance of this 

dominant factor in this family were ruled-out because of the male to female and male to 

male transmissions of DD.  Linkage analysis implicated a single region of approximately 

30cM on chromosome 16 bounded by microsatellite markers D16S3131 and D16S514, and 
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produced a logarithm of the odds (LOD) score >1.5.  Genotyping of individuals made up of 

four siblings affected by the disease but from another branch of the family together with the 

use of additional microsatellite markers supported linkage to that region and produced a 

maximal LOD score of 3.2 for D16S415, with four other markers producing LODs of >1.5.  

Linkage was further restricted to a single 6cM region between markers D16S419 and 

D16S3032 on chromosome 16.  

 When a disease is dominant, it is likely to be caused by a single allele of a single 

gene, and by the molecule it encodes.  From this perspective, the above findings would 

suggest that DD is a single gene disease.  However, to date, the linkage to a single gene has 

not been reported up to an LOD that is much more significant than the marginal value of 3 in 

this Swedish study and the penetrance in this study was incomplete.  In addition, the disease 

develops at an advanced age, there are many more sporadic cases of DD, and there are few 

such families for which the genetic analysis has been performed.  

 Other studies have shown assocation of the disease with other loci, including a 

positive association with HLA-DRB1*15 on chromosome 6 in Caucasians [72].   A study of 

20 British DD patients with a maternally transmitted inheritance pattern demonstrated a 

mutation within the mitochondrial genome (mitochondrial 16 S ribosomal RNA region) in 

90% of patients [73].  The defective mitochondria generated abnormally high levels of free 

radicals and induced defects in apoptotic mechanisms, and might hence directly participate 

in the pathogenesis of the disease.    

 

Free radicals  

Oxygen free radical production has been proposed to be one of the many factors contributing 

to tissue damage in DD [74].  A relation between localised ischaemia, superoxide free 

radicals, hydrogen peroxide, hydroxyl radicals and DD was projected from this study in 

which palmar fascia from 10 individuals who had DD were subjected to 0-60 minutes of 

tourniquet ischaemia.  Palmar fascia obtained from 10 suitable control patients (having 

carpal tunnel decompression) were subjected to the same insult.  The concentration of 

hypoxanthine was 6-fold higher in Dupuytren's palmar fascia as compared to the control 

palmar fascia.  The suggestion was that before the ischaemia and in DD patient tissue more 
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than in non-DD patient tissue, xanthine oxidase present in the endothelial cells around the 

small vessels was converting hypoxanthine into xanthine and perhaps further into uric acid, 

and this implies that measuring metabolites directly in tissue could be an important step to 

understanding the network of events involved in DD.  Both these steps are catalyzed by 

xanthine oxidase, with super oxide free radicals and hydrogen peroxide as by-products.  This 

mechanism is illustrated in Figure 3.  These free radicals would damage the perivascular 

connective tissue, with fibroblasts attempting to repair the damage.  The free radicals might 

directly stimulate proliferation of fibroblasts, as upon addition of free radicals to fibroblast 

cultures from DD palmar fascia, higher concentrations of free radicals led to toxicity, but 

lower concentrations stimulated fibroblast proliferation.  This group also suggested that the 

observed increase in collagen type III might be a result of fibroblast proliferation [74].   

Hypoxanthine was more abundant in nodular areas than in the tight fibrous cords.  

Based on these studies it is speculated that microvessel narrowing, leading to localised 

hypoxic conditions may be one cause of DD, secondary to age, smoking and other 

environmental factors.  Although this is a crisp hypothesis, most of the extensive histologic 

and biochemical studies on DD continue to be controversial.  Examples include studies on 

the types of collagen present in DD cell or tissue, the presence of the myofibroblast and 

factors such as vascularity including microvascular and macrovascular contributions.   

 

Animal models 

No animal model exists for the study of DD fibromatoses.  Yet, results of animal studies of 

possibly related diseases may be informative.  An attempt to explore the level of basic 

fibroblast growth factor (bFGF), a known angiogenic factor in dermal fibrosarcoma in 

transgenic mice, has revealed three stages of that disease, i.e. mild fibromatosis, aggressive 

fibromatosis, and fibrosarcoma.  The latter two stages were highly vascularised when 

compared with both the normal dermis and the initial mild lesion.  Analysis of cell cultures 

derived from biopsies of these lesions, revealed that bFGF synthesis occurred in all three 

stages as well as in normal dermal fibroblasts derived from the same mice.  However, the 

location of bFGF changed from its normal cell-associated state in the fibromatotic to 
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extracellular in the subsequent two stages.  In this multistep tumorigenesis pathway a 

discrete switch to the angiogenic phenotype may correlate with bFGF export [75]. 

Another study discussed the effects of electrical stimulation on joint contracture in 

rats [76, 77], while others have monitored loss of motion with time as well as myofibroblast 

numbers in a rabbit knee model of post-traumatic joint contractures [78].  The latter study 

revealed that myofibroblasts in the posterior joint capsules were elevated 4-5 times in the 

knees with contractures when compared with the contralateral knees.  The initial decrease in 

severity was followed by stabilisation of motion loss.  The association of motion loss with 

myofibroblast abundance mimics the human scenario of permanent post-traumatic joint 

contractures [78].   

 As a substitute for animal models for DD, in silico models using an integrated 

systems approach could ultimately investigate the effects caused by amplification or 

modification of various factors, such as determining change upon tensile force application.  

The creation of a virtual hand using in-silico modeling [79] would be of interest and may 

elucidate functional outcomes/behaviours of the proliferation of diseased cells.  Hereto it 

should be useful to map expression patterns onto such an anatomical model and to hook it up 

to in silico models of metabolism and gene expression [80].  The changes in diseased palmar 

fascia could be compared to the normal fascial state in the hand and allow detection of 

abnormal fibroblasts early on.  Such an approach could overcome the ethical issues in animal 

research studies [45].   

Hunting for the candidate gene by transcriptomics 

DNA microarray studies allow differential analysis of the expression of multiple genes [81].  

This should permit correlating gene-expression variations with DD.  Of course both effects 

and causes of DD would show up.  However, such microarray studies would test the 

proposal that (see above) DD is nothing more complictated than an (autosomal, dominant) 

single-gene disease.  In the simplest case, the DNA micro arrays should then show a strong 

correlation with a single such gene, which should moreover localize to a single 6cM region 

between markers D16S419 and D16S3032.  The genes localised on chromosome 16 listed in 

our previous study [21] are hemoglobin, alpha 2, cadherin 11, type 2, OB-cadherin 

(osteoblast), matrix metallopeptidase 2, hemoglobin, alpha 1, periplakin, tryptase alpha/beta 
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1, tryptase beta 2. However, the issue of bulk measurement caused by sample heterogeneity 

serves to raise the baseline signal of all transcripts and reduce the contribution of signal from 

the specifically targeted cells.  

Alterations of gene expression in Dupuytren‟s nodules [28], Peyronie‟s plaques [82], 

and cultured fibroblasts have been reported.  Subsequently, we optimized on unbiased 

experimental design, sample size, and on data sets to be large enough to elucidate the 

mechanisms underlying the disease process. The macroscopically distinct, fibrotic elements 

of the DD tissue, i.e. the nodule and the cord, were considered as two separate entities, as if 

arisen from separate precursor cells.  Gene-expression profiles were compared between 

diseased Dupuytren tissue biopsies (both nodules and cords) and corresponding healthy 

tissue (the transverse palmar fascia adjacent to the diseased site) from the same patients.  We 

also compared these gene-expression profiles with those from the palmar fascia of 

individuals not affected by DD [21].  This study confirmed the DD specific expression of 

many genes, some of which had been documented as such previously [16, 61].  Using a 

pathway orientated approach, several additional genes were found to be of statistical 

significance for DD.  The genes established as deregulated in DD belonged to a wide variety 

of categories, including immune response, angiogenesis, apoptosis, cell adhesion and cell-

matrix adhesion, cell cycle and proliferation, cell differentiation, transcription, development, 

signaling and signal transduction, protein synthesis and folding, oxygen transport, and 

carbohydrate metabolism (Figure 4). 

More recently, a study compared the gene expression profiles of fibroblasts isolated 

from Dupuytren patients and controls.  Here, the authors used two microarray platforms 

(Illumina™ and GE CodeLink™ Bioarray Systems) initiating a quantitative and comparable 

approach [83].  They again found tens of genes to be altered in mRNA expression level, 

which differed between the two platforms.  They confirmed the down regulation of three of 

the genes by QPCR, which included those encoding a proteoglycan, a fibulin and type XV 

collagen alpha 1 chain [83].  Again using PCR, Ulrich and colleagues found that DD tissue 

amplified mRNA encoding one metalloprotease and two tissue inhibitors of metalloproteases 

[84]. 

 The results are not particularly supportive of the hypothesis that altered expression of 

a single autosomal gene is solely responsible for DD.  Many more genes seem to correlate 

with the disease.  The possibility remains however that all these genes are downstream a 
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single key gene, the expression of which might have changed significantly but currently 

unnoticeably.   The observation that genes with fairly obvious functional connotations to 

DD, such as metalloproteases, proteoglycans and collagen components, have altered 

expression, brings home the message however that even if the disease were to have a single-

gene origin, its aetiology is likely to involve multiple regulatory pathways and genes 

downstream of such a key gene, the diversity of which in the human population would then 

cause appreciable dispersion in its pathology.  Up to now the hunt for the single DD gene 

has not only failed but also weakened its own motivation; there may be many genes 

involved.  The more definitive evidence of the effect of targeted knock outs or anti sense 

RNA is still lacking, in part because of the absence of a clear hypothesis on which gene 

would cause the disease, and the lack of animal models. 

 

Hunting for the candidate protein by proteomics 

Proteomics is the systematic, genome-wide analysis of protein identity, quantity, and 

function.  Proteins are closer to function than transcripts are, therefore proteomics has been 

thought to have more potential than genomics and transcriptomics for deriving clinically 

useful applications, in diagnostics, prognostics and therapeutics.  The DD proteome analysis 

venture began in 2006 with the study of protein expression profiles in an attempt to identify 

potential disease protein biomarkers [85, 86].  In one study, 2-D gel electrophoresis was 

performed to extract proteins from diseased tissue (nodule and cord), the Skoogs fibres, and 

normal control tissues.  MALDI-TOF-MS (matrix-assisted laser desorption ionization time-

of-flight mass spectrometry) was used to generate a peptide mass fingerprint that was used to 

search protein databases.  However, the authors did not report names of identified proteomic 

changes in their abstract. 

Another study employed Surface Enhanced Laser Desorption/Ionization Time-of-

Flight Mass Spectrometry (SELDI-TOF-MS) to analyse normal and disease palmar fascia 

from DD patients using Ciphergen's SELDI-TOF-MS Protein Biological System II (PBSII) 

ProteinChip reader [86].  The study revealed several differentially expressed low molecular 

weight (<20 kDa) tissue proteins and identified three disease-associated protein features 

(4600.8 Da, 10254.5 Da, and 11405.1 Da) that were elevated (5, 12, and 4-fold respectively).  
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Three potential low molecular weight protein markers (p4.6DC, p1ODC, p11.7DC) for DD 

were identified.   However, there has been some debate as to the reproducibility of SELDI-

TOF-MS [87], and this and perhaps the lack of overall coverage of the proteome means that 

the two studies are not comparable. 

More recently, a study using an integrative proteomic-interactomic approach [88] 

proposed several molecular processes (see below) to be involved in DD progression.  It 

coupled 2-D gel electrophoresis with MS and compared the proteomic profile of DD tissue 

with that of unaffected patient-matched palmar fasciae tissue.  Several proteins correlated 

with DD.  The findings were used to create a protein-protein interaction network 

(interactome) map on the basis of the proposed interactions in the Human Interactome Map 

(HiMAP) [89] and the Search Tool for the Retrieval of Interacting Proteins (STRING) [90]:  

Because it was not possible to design a complete interactome from the experimental data, 

several proteins were added to the experimental set to fill gaps so as to yield a complete 

network.  This integrated approach suggested several different pathways to be involved such 

as extra- and intra-cellular signalling, oxidative stress, cytoskeletal changes, and alterations 

in cellular metabolism.  In particular, ERBB-2 and IGF-1R receptors and Akt signalling 

pathway emerged as novel components of pro-survival signalling in Dupuytren‟s fibroblasts.  

One should exercise care however not to over-interpret these results, as they are partly based 

more on inference involving other protein interaction data obtained in different contexts.  In 

addition, increased activity of pathways need not involve increased protein levels [91] and 

increased pathway expression may be a homeostatic rather than a primary aetiological event. 

  

The dilemma: more or less data; less or more understanding 

With every paper about the genomics of DD, the enigma of the disease seems to increase.    

As more and more aspects associating with DD are spotted, we see less and less 

understanding of the disease for its many molecules [92].  The hypothesis that in DD a 

single gene is at fault, is likely to be false.  Even if the disease were set in motion by a single 

genetic factor, then it encounters so many diverse processes during its aetiology, that it will 

be co-determined by the many factors that regulate those processes.  Indeed, it is more likely 

that the networks governing differentiation of normal fibrocytes of the palm of the hand are 
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perturbed irreversibly such that they differentiate into muscle tissue without the proper 

controllers of contraction and relaxation.   It is also more likely then that there are a number 

of different sets of genetic perturbations that could cause the same type of perturbation that 

then leads to DD.  Here DD is much like cancer [42]. 

The dilemma is that although we now avail of an unprecedented set of methodologies 

for the identification and analysis of all the molecules in living cells, that methodology alone 

is not enough.  We need something substantially more to understand how all those molecules 

interact to create functional networks.  Seeing more molecules may not help our 

understanding.  Seeing the connections between them and more mechanism might.   
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Dupuytren’s disease and Systems Biology 

Where Systems Biology might come in 

Abnormal development of tissue such as in DD and cancer, stresses the surrounding tissue.  

Hence an association of these diseases with normal tissue repair processes should be 

expected.  Such an assocation does not imply that repair processes are causally involved in 

the development of disease.  The same is true for other homeostatic processes.  Because 

persistence of the disease may depend on the success of the homeostatic response of the 

surrounding tissue, it is difficult to distinguish between the genes involved causally in the 

development of such a disease and the genes involved in the homeostatic response.   

In addition, a characteristic of tissue repair processes mediated by growth factors is 

that once the original tissue state has been re-achieved, the autocrine and/or paracrine 

mechanisms return to normal; the repair process tends to be transient and experiments with 

insufficient temporal resolution may miss it.  A classic example is wound healing [17].  In 

the temporarily differentiated state, some genes are active and others are repressed.  

Identification of mechanisms of differentiation then requires the identification of the 

temporal patterns of gene activity that are causally involved rather than just consequences 

without causal significance.  These patterns may depend on DNA and chromatin 

modification [93], as well as on the activity of multiple regulatory proteins [94].  In turn 

these modifications and activities are functions of the state of the cells and of their growth-

factor enriched environment [95].   Their regulation may occur at different levels (Table 1) 

and thus, cell lineage and cell types such as fat, skin, epidermal, dermal fibroblasts and the 

roles played by them in, for instance, differentiation, should be another aspect of the 

exploration of genes involved in DD pathogenesis.   

More generally, there may be no process in any living organism that stands alone 

[96].  Processes are linked extensively, if not through metabolic or gene expression 

networks, then through RNAs (sense, anti-sense or micro [97]), or though dynamic 

ultrastructure [93, 98, 99].  To understand how living cells function, one needs to have a way 

to look at the operation and integration of several simultaneous processes, as a function of 

time.  Since the sum of a negative and a positive effect is important, yet uncertain in the 
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absence of precise assessment of magnitudes, the required approach needs to be precise 

experimentally and quantitative in the analysis.  Since virtually all molecules of a living cell 

are connected, the approach needs to relate to molecular biology as well as functional 

genomics [30]. It is in appreciating these concertations of the various levels of cell 

functioning, that systems biology might come to the rescue. 

This systems biology activity should differ from the traditional molecular biological 

approach, where reductionist strategies assist in the characterization of the molecular 

components of the much larger cellular system [100].  In molecular biology a „favourite‟ 

candidate gene or gene product may be investigated on its own (e.g.  by 

immunohistochemistry) using some pre-existing knowledge of its function but without 

simultaneously looking at the pathway in which it is active.  Whilst this approach is useful 

when detailing the molecular mechanism of action, it does not automatically lead to 

understanding of how the protein or gene acts responsively so as to make the whole cell and 

ultimately the whole organism, function.  Organisms depend on many more than a single 

gene function [101, 102].  Unless one gene or its product were the single rate limiting step 

for the organism or cell function (e.g. survival, proliferation rate) of interest, more than one 

gene product must be considered. 

 The attractive and thereby rather persistent concept of „the‟ rate limiting step in a 

network process has been invalidated for metabolic pathways [103], for gene expression 

circuits [104-106], and for signal transduction [107, 108].  Already in Escherichia coli gene 

expression is under tight and subtle homeostatic control, involving gene-expression and 

metabolic regulation through topoisomerase I, DNA gyrase, the supercoiling state of the 

DNA itself, and ATP simultaneously [104].  For signal transduction pathways the subtleties 

in control are not much less [107, 109-111].  Much the same applies to regulation [40, 112].  

Accordingly, the default way of examining how the functioning and malfunctioning of 

network processes is controlled and regulated in DD should reckon with the likelihood that 

many more than one molecular process is involved.  The systems biology developed and 

tested in simpler organisms and systems offers various methodologies to do so [41, 98, 100]. 

 An immense number of studies have been conducted at the genome and 

transcriptome (set of all mRNA molecules, or „transcripts‟, produced in a cell or a tissue) 

levels.  More are now following at the levels of the proteome, (set of entire complement of 

proteins expressed by a genome, cell, tissue or organism), interactome (interactions between 
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all molecules within a cell), and metabolome (complete set of small-molecule metabolites).  

A priori this functional genomics may have seemed a promising approach.  It should show 

most if not all the factors involved in a disease such as DD.  However, it has not yet 

delivered on its promises, neither in any disease, nor (yet) in DD (see the above discussion).  

This might be attributed to the sheer number of molecules involved, but then bioinformatics 

should know how to deal with those numbers.   

 What is the key issue here?   Why might the direct accumulation of knowledge of 

ultimately all components of a living organism, or of a disease, without much further 

processing, not lead to understanding of function or malfunction, of physiology and 

pathology? The reason may be:  most functions depend on the concerted action of a number 

of processes the rates and efficiencies of which influence each other.  For instance the 

synthesis of a given protein (e.g. myosin) will depend on the synthesis of 20 aminoacyl 

tRNAs which again depends on the synthesis of the corresponding amino acids.  A stark 

example is that of the molecule cyclin D which is involved in the mechanism of the cell 

cycle by oscillating in terms of its activity [113].  Alone in a test tube, cyclin D activity 

would not oscillate and it is only because of its dynamic interaction with a dynamic network 

of other proteins that cyclin D cycles and the cell with it [114]. Moreover these oscillations 

are generally found at the single cell level and as such analyses should be aimed at these 

entities rather than averages of the population [115]. 

 Systems Biology specializes in understanding the roles such interactions play in 

bringing about biological function [116].  It thereby aims to complete the large part of the 

job molecular biology and genomics fail to accomplish, i.e. the job of understanding 

physiology and pathology.  This is more easily said than done however.  It is the activities of 

all the components of living systems and their relationships to each other that multiply or 

integrate rather than add up to the living organism.  In recognition of this complexity, 

systems biology attempts to harness the power of mathematics, engineering, and computer 

science to analyse and integrate data from all the „omics‟ [35], ultimately through the 

construction of experiment-based, in silico models [117]. 

Molecular biological components and the systems in which they function (e.g.  

substrates, enzymes, metabolites, genes in a cell, tissue or organism) and pathways 

mediating their functional outcome, are many times more complex than networks and 

circuits such as the London Underground.  Yet, the London Underground is already 
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complex: making sure that one particular station functions efficiently such that each minute 

one train could depart, does not guarantee that indeed one train will depart per minute.  

Mostly likely, many fewer trains will depart because further down the tube there are other 

stations that are less efficient, or because at some stations up the tube excessive numbers of 

people wish to board or leave the train, or because the train driver overslept.    Network 

studies reside at the crossroads of disciplines, from mathematics (graph theory, 

combinatorics, probability theory) to physics (statistical thermodynamics, macromolecular 

crowding), and from computer science (network generating algorithms, combinatorial 

optimisation) to the life sciences (metabolic and regulatory networks between proteins and 

nucleic acids).  The impact of network theory on understanding is strong in all natural 

sciences [118], especially in systems biology with gene networks [119], metabolic networks 

[41, 120, 121], plant systems biology [122], and even food webs [123].  Yet, biological 

systems will not be understood by existing network theory alone.  Their properties are much 

more complex than the properties of standard networks, for instance in that their networks 

adapt and change temporary [124], are hierarchical in terms of space, time and organization 

[98], and have been optimized through evolution for multiple properties that we do not yet 

understand [41, 100, 125].   New network theories are needed and will have to be more 

targeted towards understanding biological systems functionally [126].  These will have to 

integrate strongly with genomics and molecular data, because different biological networks 

may need somewhat different theories, if only because their objective (evolutionary purpose) 

is different.  The Flux Balance Analysis objective function of maximum growth yield for 

instance [127], is irrelevant for the human erythrocyte and muscle cell, which do not grow 

[100].  For the former, the objective functions of oxygen carrying capacity plus binding 

capacity in the lungs and delivery capacity in the tissues, without consuming the oxygen 

needed by those tissues, will make more sense; for the latter, performance independent of 

oxygen supply will do.  It remains to be seen whether in the development of DD the flux 

pattern adjusts to a new criterion of optimality, such as in some cases of tumorigenesis 

[128]. 

 

System diseases versus molecular diseases  
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Noting that molecular biology and genomics do not suffice for understanding living systems 

is one thing, but actually making a difference by applying systems approaches, may be quite 

another.  We shall here sketch how a systems approach to DD might make a difference.  The 

first role systems biology may have is that of clarifying that DD is a type of disease that, 

although common, is not engrailed in scientific tradition, and should not be approached by 

traditional methodologies alone. For this we first need to clarify what the difference is 

between a systems-biology disease and a single-molecule disease.    Figure 5  illustrates this 

difference.  A single-gene disease depends in principle on a single gene only, or at least that 

is how it is often approached.  But of course, a disease cannot depend on a gene (if defined 

as the corresponding DNA sequence) alone:  it will depend on its gene product (F in Figure 

5(A)), and in fact on the molecular function of the latter.  For instance a muscular dystrophy 

could result from a mutation in the gene encoding myosin, the molecular function of which 

is muscle contraction.  If that muscular dystrophy would only be found when the myosin 

gene has been mutated and if the severity of the disease would not be influenced by other 

factors, then that muscular dystrophy would be a single-gene disease.  In actuality there are 

many different genetic lesions that lead to similar muscular dystrophies, including lesions in 

mitochondrially encoded genes [129].   

A better candidate for a mono-gene disease may be phenylketonuria, an inherited 

(autosomal recessive) metabolic disease that is largely due to mutations in the phenylalanine 

hydroxylase (PAH) gene [130].  However, its therapy (dietary restriction) shows that the 

disease can be influenced by external factors.  Moreover, mutations in genes involved in the 

synthesis of a cofactor of the phenylalanine hydroxylation reaction also lead to the disease, 

and there are multiple alleles of the PAH gene with different implications for the severity of 

the disease.  Hence even this disease exhibits characteristics of systems biology diseases, and 

therapy could well benefit from a corresponding approach. 

The dubious concept that diseases are essentially due to the perturbation of a single 

gene is pervasive, be it mostly in an implicit sense.  The concept is recognized in the gene 

hunt approaches to diseases where a transcriptome analysis is aimed at the identification of a 

so-called „candidate gene‟, where the word „candidate‟ refers to the implicit expectation that 

a single molecular culprit may be found for a disease or other phenotypic feature.  The early 

molecular biology of cancer was an example, with a hunt for the oncogene and before that, 

for the single molecular processes (membrane fluidity for instance) that could be held 
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responsible for the disease.  Of course for cancer this concept has long faded, thanks to the 

demonstration that cancer development requires cooperativity between at least three 

oncogenes [29, 131].  Indeed, many more than 70 oncogenes and tumor suppressor genes 

have been identified, which are not all involved in all cancers [29].   

 Figure 5(A) may be judged a caricature of single-gene diseases then, as most diseases 

have multiple genes associated with them.  However, such diseases could be considered to 

be a group of single-molecule diseases; i.e. many diseases each caused by a different single 

gene lesion, but all with similar phenotypes [132].  This would explain the association of 

multiple genes with the disease and still essentially reduce it to single-gene diseases (Figure 

5(A)).    The difference between a disease being a group of single-gene diseases and being a 

systems biology disease is that the former should still only depend on the single molecule 

that is faulty.  In the case of a group of single gene diseases, there should be no other faulty 

molecules important for that individual disease and there should be no influences on the 

disease severity of other gene changes (e.g. polymorphisms) or conditions (e.g. diet) on that 

disease.  Notably, a single patient‟s transcriptome should then show only changes in the 

single molecular culprit and not in many factors controlling the network leading to the 

disease.  And in the transcriptomes of different patients suffering from the same disease 

group, that single molecular culprit should be different.    

The suspicion that single-gene diseases may be rare, mirrors the point made above 

that there are few completely rate-limiting steps in cell biology.  Indeed, dominance should 

be common and loss of function in heterozygous deletions rare:   The very fact that most 

pathways consist of many steps, strongly reduces the average effect a heterozygous deletion 

should have on their flux [133, 134].  The phenomenon of parallel pathways further reduces 

the effect of deletions [135].  Single gene perturbations would thereby rarely lead to disease.  

For disease to occur multiple genetic lesions are likely to be required. 

What then is a systems biology disease?  As illustrated by Figure 5(B), in a systems 

biology disease the function that is compromised depends cooperatively on a number of 

pathways, the functioning of each of which again depends on many cooperating molecular 

factors.  In systems biology diseases one would typically find multiple changes in the 

transcriptome of each patient, differing between individual patients but such that all have a 

very similar disabling effect on network function.   
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It might seem that the identification of the variety of transcriptome changes that lead 

to the same network change and hence to the same effect on function could be achieved by 

top-down systems biology, i.e. by measuring variations of transcriptomes and function and 

by then designing the linear combination of transcriptome changes that would 

computationally lead to the most extreme effect on function and malfunction [136].  

However, functional dependencies are frequently nonlinear in biological systems and 

therefore more mechanism, kinetics and topology of the network needs to be known to make 

this strategy effective.  Ultimately a dynamic model that is true-to-reality should be able to 

do this job, but that of course requires an enormous experimental effort before such a model 

would be reliable enough [137, 138].  Until that time, it would seem that an experimental 

diagnosis to see whether the observed changes in gene expression do cause the changes in 

function that are essential for the disease to occur, remains an essential components of 

systems biology. 

Identifying a disease as a systems biology disease does not dispel molecules from its 

pathology:  molecules are always involved.  The issue is whether the change in networking 

of the molecules is crucial for the disease, i.e. whether the disease is more a consequence of 

faulty networking than of malfunctioning of individual molecules.  If the disease is due to 

molecules defaulting at their own molecular function only because of changes inherent to 

those molecules (such as through mutations), it should perhaps be called a molecular disease.  

For every disease it may be useful to decide whether it is more molecular or more systems 

biological in the above sense. 

 Once a disease has been recognized as a systems biology disease, then what 

difference should this make for research, diagnosis and therapy?  The answer is 

straightforward:  When dealing with a network disease, one should deal with the network; 

when dealing with a molecular disease one should concentrate on the molecule.  For systems 

biology diseases, transcriptome patterns should be mapped onto the known cellular 

pathways.  One should not try to establish correlations between individual mRNAs and 

disease, but rather between the effects of mRNA changes on a pathway and the disease.  The 

concept „candidate pathway‟ or even „candidate network‟ should be substituted for 

„candidate gene‟.  In addition, cell function is only partly controlled and only partly 

regulated at the level of transcription [98]. Hence one should also involve the levels of the 

proteome, of the metabolome, and of function, and not each independently but all together; 
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then, one should ensure that the changes observed make collective sense.  For if some factors 

in a pathway change up and others down, this may not enhance function; the changes should 

be related to pathway kinetics or control and it should be checked whether together they 

affect the function or the malfunction that is of interest for the disease.  Figure 6 shows that 

the issue may be complicated further because a disease may readily involve more than one 

function.  Persistent malignant cancer for instance may involve proliferation, lack of 

apoptosis, metastasis and multiple drug resistance. 

 

Is DD a molecular or a systems biological disease? 

After defining the differences between molecular and systems diseases, we should now 

establish which of the two DD is.  One aspect comes to mind immediately:  DD has been 

identified as a disease inherited in an autosomal dominant pattern [71].  It was linked to a 

single 6cM region on chromosome 16.  This would suggest that all DD patients should have 

a mutation in this part of their genome, and that transcriptomes of DD patients should be 

altered in terms of the level of the transcripts encoded by this part of the genome, or in terms 

of the coding sequence of one of those transcripts.  However, the dominance was incomplete 

and has only been observed in a single Swedish family.  This suggests that the genes on 

chromosome 16 are only dominant when other genes in the genome are of certain allelic 

forms (i.e. the ones that happen to dominate in that particular Swedish family).  Moreover, in 

many other cases many other mRNAs were changed in expression levels, although it 

remains to be analyzed whether in those papers there was always a change in an mRNAs 

from the 6 cM region on chromosome 16. In our own studies, the DD-nodule transcriptomes 

of individual patients all exhibited multiple changes in mRNA levels and these changes 

overlapped, but were not identical between individuals. The proteome did not point at a 

single protein either.  The functional studies pointed at myofibroblast enrichment, but not 

clearly as the sole cause and neither was a causal relationship between a gene on 

chromosome 16 in the 6 cM region and differentiation of myofibroblasts established. This all 

shows that DD is not a single-gene disease and suggests that it is not just a group of pure 

single-gene diseases either. 
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 For further understanding of DD then, a hypothesis-driven systems biology approach 

should allow for selection of candidate pathways.  This could be based on a priori 

observations in human in vitro or in vivo (linkage and expression studies, for example), or on 

the basis of knowledge in related diseases (such as plantar fibromatosis, peyronies, musculo-

aponeurotic fibromatosis and even keloid disease).  Inter-relationships may be sought 

between hypothesized underlying mechanisms governing these fibrotic disorders and 

physiological changes predicted for changes in molecular and environmental changes 

impacting on those mechanisms.  This could then be extended to understand inter- vs. intra-

individual variability.   Such analysis should lead to hypotheses about mechanisms by which 

network changes would cause the DD phenotype.  By bringing about those network changes 

by multiple molecular interventions in a tissue culture model system for DD, the hypotheses 

could then be tested.  Such an approach should also help put into perspective existing 

inconclusive discoveries.  It would thereby maximize the utilization of data obtained in 

molecular approaches from molecular biology, which provide an extensive database.  Then 

systems biology would reduce this to a smaller but more implicative knowledge base, 

perhaps in the sense of a live model repository [117]. 

 

Systems Biology advances  

Already, systems-level approaches are making a pace towards scientific understanding and 

biotechnological applications [30].  Recently, the National Heart, Lung and Blood Institute 

(NHLBI) of the US‟ NIH initiated the Program for Genomic Application (PGA) of 

advancing functional genomic research.  One such PGA is known as CardioGenomics in 

which the primary aim is to study how the transcriptional network of the cardiovascular 

system responds to genetic and environmental stresses and how the network is altered in 

disease conditions.  Research in CardioGenomics focuses on transcriptional profiling of 

murine models of cardiomyopathy, on the diseased versus normal human myocardium, and 

on identification of the gene mutations that cause familial hypertrophic cardiomyopathy and 

left-heart obstructive lesions.  Meanwhile studies using a CardioChip (a custom built cDNA 

microarray), have identified differentially expressed genes in diseased conditions as 

compared to the normal heart [139].  With this approach the limitations of molecular, genetic 
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and functional genomics research in gaining a complete understanding of a complex disease 

such as heart failure are again being highlighted. Many recent articles illustrate the use of 

proteomics technology to investigate the disease-state proteome using a multitude of 

experimental techniques and elucidate biomarkers that may be indicative of pathological 

network states [140, 141], and the same process is happening within the area of 

metabolomics [142]. However, the subject is in urgent need of a systems biology approach.  

There is an extensive and successful systems biology activity that focuses on the heart [143].  

The focus of that activity has however been on the electrophysiology and the relationships of 

its models with metabolism and gene expression is still in the making, e.g. in an important 

project, the virtual physiological human [144, 145].  

Cancer cannot be considered as a single molecule disease as so many oncogenes have 

been identified.  Because there is no cancer that is caused by a single mutation (even 

retinoblastoma is focal, i.e. does not occur in all cells of the individual with the responsible 

mutation), cancer is not just a collection of single-gene diseases either [29, 131]:  Complex 

networks of relationships between genes, gene products and/or proteins govern neoplastic 

processes [29, 42].  Cancer requires the simultaneous deregulation of a set of genes [29, 

131], which act in a cooperative mode.  In other words, cancer requires the deregulation of a 

network of genes or even of various networks of genes.  It is a systems biology disease 

therefore [42], or even a collection of systems biology diseases [132]. Whole-genome 

association scans and mutational screens of cancer genomes  identify gene interactions that 

associate with cancer [146].  It is now time to project these discoveries onto cancer 

pathways, or onto normal pathways that are essential for tumors to develop into malignancy 

[147]. 

Systems Biology as integrator of heterogeneous ¬omic datasets  

The ¬omics experiments generate heterogeneous data and meta data torrents.  Not only 

should this data be put to best use when studying the complex system of interest through 

systems biology, the modelling by systems biology would serve as a way to organize the 

data rationally.  These heterogeneous datasets are normally deposited in a broad spectrum of 

public and commercial databases and for them to be put into context it is important that both 

their own format and their annotation are standardized.   Emerging standard languages such 
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as the systems biology Markup Language (SBML) [148], Cell Markup Language (CellML) 

[149], Cell System Markup Language (CSML) [150],  Biological Pathway Exchange 

(BioPAX) [151] and Systems Biology Graphical Notation (SBGN) [152], and modelling 

tools such as COmplex PAthway SImulator (COPASI) [153], Cytoscape [154] and Pathway 

databases (e.g.  Ingenuity pathway analysis software) facilitate data representation and inter-

operability from leading multidisciplinary research groups [155].  Important also is the Java 

Web Simulation (JWS) facility which quality controls kinetic models and puts them into a 

live repository, enabling through-web experimentation in silico for scientists naive with 

respect to modeling but experiment prone [156].  BioModels is a parallel model repository 

not built for in silico experimentation but focusing on annotation [157]. 

Systems biology is gaining increasing support from a wide variety of sources.  To 

name but a few, UK‟s BBSRC and EPSRC have funded six Systems Biology research 

centres and three doctoral training centres dedicated to Systems Biology, the Wellcome 

Trust supports the Heart Physiome Project and the Integrative Animal and Human 

Physiology Initiative [158, 159].  Evidence from medical research charities [160] such as the 

Arthritis Research Campaign, British Heart Foundation and Cancer Research UK is 

indicative of systems biology becoming an increasingly important component of their 

research programmes.  The FP7 Marie Curie Training Network NucSys presents a 

nutrigenomic approach to aging-related diseases vis-a-vis the systems biology of nuclear 

receptors [161].  German BMBF‟s HepatoSys is focusing on quantitative understanding of 

complex and dynamic cellular processes in detoxification, endocytosis, iron regulation and 

regeneration in mammalian hepatocytes [162].  Switzerland and Luxembourg are the most 

active countries pro capita.  Other emerging Systems Biology includes the development of 

personalised medicine [163] and of the systems biology of ageing [164, 165] as well as 

integrative pharmacogenomics, biomarker discovery for disease prognoses, and therapy 

monitoring [166-171].  The field applies quantitative, mechanistic approaches to understand 

disease, cell, tissue or organism holistically from bottom up, top down and/or middle out 

[172] approaches.  There is great interest in biomarker discovery, and as many diseases are a 

result of genetic and/or metabolic disorders [173], it makes a great deal of sense to measure 

gene expression (transcriptome) and metabolites (metabolome) directly [142] at these 

functional levels with systems biology enabling  correct interpretation and prediction of 

functional outcomes [174]. 
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Imaging  

Finally, it would be incomplete to mention systems biology in medicine and not mention the 

advantages technological imaging has given us to capture disease [175].  Perhaps the biggest 

growth area in imaging technologies is fluorescence imaging, with various technologies 

being adapted for in vivo analysis; although recent advances in label-free methods such as 

Raman microspectrometry are also showing promise [176].  The development of imaging 

techniques, will allow researchers to address some of the questions in molecular oncology 

such as how the components of intracellular signalling pathways interact in real time (e.g. 

[177, 178]).  The current and developing instrument-based technological platforms 

(computed tomography (CT), magnetic resonance imaging (MRI), positron emission 

tomography (PET), confocal microscopy, and Raman microspectroscopy) already provide a 

platform for initiating a knowledgebase relationship between the clinician, patient and 

scientist.  However, a systematic analysis would fill missing gaps in this knowledge base, as 

illustrated in Figure 7.  Integration of the observation platform with dynamic-spatial models 

[79] has not yet been achieved much but should now raise the utility of the imaging 

approaches to new levels.  For DD the potential is to image the metabolic state of the various 

cells in the nodule and the cord as a function of contractile activity, in order to examine how 

that activity could be modulated.  At the cellular level the de- and re-differentiation of 

fibroblasts and myofibroblasts might be monitored and modelled. 

 

Discussion  

DD research has so far implicated a re-differentiation of fibroblasts into myofibroblasts.  

Functional genomics studies have highlighted multiple mRNAs of which the expression 

level differs between diseased and healthy tissue.  Extracellular matrix enzymes are involved 

in the disease.  High throughput and candidate-gene association studies have suggested 

multiple biomarkers for the disease, but these would require invasive sampling.   Association 

of the disease with a single gene has been inconclusive.  Thus in the absence of radically 

new findings, the present mainstream research paradigm is unlikely to lead to a full 
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understanding of the disease.  Progress is impressive in terms of collecting more data, but 

less so in terms of understanding these data and hence the disease. 

What is known about DD suggests that DD is neither a discrete single-gene disease 

nor a group of single-gene diseases.  The experimental data are much more consistent with 

DD being a systems biology disease.  Such diseases are determined much more by the 

malfunctioning of the network of the macromolecules rather than by the malfunctioning of 

the individual macromolecules themselves.  At present this is a suggestion only, because the 

data are inconclusive.  However, we have indicated how a progressive systems approach 

could test this hypothesis.  It would identify the network states that correlate with DD and 

then bring about changes in these network states with predicted outcomes in terms of disease 

progression, aggressiveness and the ability to reoccur after therapeutic intervention.  

Comparison with actual outcomes would serve as the test of the suggestion.  Experimentally 

the approach would not be much different from approaches that are being developed 

anyway, but the experimental design would be different, involving systems biology, multiple 

modulations and monitoring of time dependence.  

 If indeed DD turns out to be a systems biology disease, we propose that the approach 

to the disease should change drastically:  analysis, diagnosis and therapy should target 

pathways rather than genes or their products.  The concept of a „candidate gene‟ should be 

replaced with that of „candidate pathway(s)‟.  Studies should be aimed at elucidating cause-

effect chains, rather than correlating and thereby not being able to distinguish consequences 

of the diseased state from its causes.   To be more concrete, from the experimental data, 

alterations in pathways should be inferred.  Using transgenic and antisense approaches in 

cell lines, these pathway alterations should then be induced and the predicted development 

into a DD cellular phenotype tested.   The pathways are expected to be integrals of gene 

expression, signalling and metabolic networks and so should be the approach and data 

analysis.  At present DD research is not conducted in the required integrative manner.  

Consequently, what we propose has substantial ramifications for the organization of DD 

research.   

If we are right, the rewards would be substantial:  No longer will the data collected in 

this field disappear into the diasporas of the experimental literature; they will be analyzed in 

terms of network models and when informative connected to them with proper data 

annotation [179].  Once the network hypotheses turn out to be successful, they will underpin 
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the development of new rational biomarkers strategies, and become starting points for 

therapeutic intervention and prophylaxis.   

We suggest that adopting a systems biology approach to analyze DD has the 

potential to improve the knowledge gained in both in vivo and in vitro DD research.  This 

may be in the form of hypotheses generation in a carefully controlled experiment, or in the 

form of making experimental data address issues that limit DD understanding.   

Even though myofibroblasts obtained from different stages of DD may exhibit 

features that could trigger contraction and uncontrollable growth, neither the diversity of 

these cells nor the extent or nature of local specificity in situ in their differentiation has been 

examined systematically.  Remodeling of vascular connective tissue should be of 

fundamental importance as DD progresses over time and the ability of that tissue to be 

remodelled could be a gratuitous factor in the development of the disease.  Matrix 

remodeling and matrix turnover is controlled by a complex network of cell-cell and cell-

matrix interactions [180].  Mathematical modelling in a systems biology approach could 

help deduce the net outcome where the product would be a robust balance between 

proliferative and degradative processes.  This could extend the work from previous findings 

where the expressions of the family of enzymes and inhibitors are directly associated with 

matrix turnover (the matrix metalloproteinases (MMPs) and their natural inhibitors (TIMPs) 

[23]).  Furthermore, the constraints imposed by non-functional protein–protein interactions 

on gene expression and proteome size could be studied. 

Metabolomics alone can help identify metabolite markers and has many exciting 

clinical applications [163, 173, 181].  As well as genomics, transcriptomics and proteomics, 

the fluxomics, lipidomics, interactomics, glycomics and secretomics studies of biofluids 

within the Dupuytren‟s system together have the potential to improve our understanding 

immeasurably, especially if they are integrated, and full integration is only plausible through 

systems approaches.  Investigating this deforming complex fibromatosis as part of a systems 

biology approach (Figure 8) will benefit not only the understanding of the diseased sites, but 

will also address the effects on the ECM surroundings and excreted by-products, and could 

offer suggestions for early diagnosis.  This could then be extended to explore relations 

between DD, bone formation and mineralization, as many deregulated genes that co-exist 

may lead to further complications.  A novel systems approach along with existing 

knowledge will give a comprehensive view of the network of gene interactions played in 
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gene regulation and their functional properties involved in patterning DD from normal state.  

Systems biology approaches may provide clues for new diagnostic and prognostic markers 

for DD and as well as design of innovative novel therapeutic tools. 

Conclusions  

DD is likely to be a systems biology disease.  The corresponding mechanistic strategy 

offered by systems biology may lead to important new insights into DD tumorigenesis, 

based on the analysis of molecular interactions that become deregulated in the DD tumour 

phenotypes (nodule, cord).  This approach will not only extend but also integrate and 

complement existing methods and information.  The existing genomic data will serve as 

metadata for a systems oriented knowledgebase, partly in the form of experimentally tested 

mathematical models, which then lead to breakthroughs in prophylactic and therapeutic 

measures in DD.   
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Figure Legends 

 

Figure 1: Different stages of disease progression.  Stage A generally starts as a small lump 

in the palm of the hand often just under the digit on the palmar crease.  In Stage B the 

disease spreads up the fascia and into the fingers leading to the development of a cord.  

Following this, Stage C demonstrates that as the disease spreads up the fingers eventually 

creating a tight cord, the fingers are forced to progressively bend, and are unable to 

straighten, effecting an irreversible contracture. 

Figure 2: Haematoxylin and Eosin staining of DD tissue from (A) the nodule and (B) cord.  

The nodule is a focus of proliferating young fibroblasts having no particular orientation and 

associated with minimal collagen deposition.  Nodules slowly disappear leaving a dense 

contracted fibrous cord which becomes increasingly acellular and tendon-like. 

Figure 3: Hypoxia-induced mechanisms leading to production of reactive oxygen species 

triggering tissue damage at the cellular level.  A mechanistic drawing illustrating free radical 

production leading to tissue damage.  Reproduced from reference 73. 

Figure 4: The cellular components, molecular functions and biological processes derived 

from genes in expression studies using Gene Ontology.   
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Figure 5:  Molecular (A) versus Systems Biological (B) disease.  A: In the molecular, or 

single-gene disease, a mutation in or around a piece of DNA causes a change in function of 

the gene product F.  F is solely responsible (or the rate limiting step) for the physiological 

function that is impaired in the disease, or for the pathology itself.  B: In the Systems 

Biological or network disease, the biological function that is impaired in the disease, or the 

new pathological function, depends on many factors (called Z here) at the same time.  

Factors Z themselves depend on many other factors, on genes and environmental (e.g. 

nutritional, hormonal, age) factors, and ultimately even on the development of the pathology 

itself.   In terms of transcriptomics, changes in any factors shown could correlate somewhat 

with the disease, in either type of disease.  In the molecular disease (A) however, the 

correlation between the disease and changes in the single causative disease gene should be 

100 %.   When, as in Systems Biology the cause-effect relationships are investigated, the 

correlations should be time and perturbation dependent as consistent with the network drawn 

(e.g. a deletion of Y might not affect the disease totally, but should destroy the causal 

correlation between gene 2 and disease).   The Systems Biology paradigm is not soft 

however, as in that case the correlation between disease and network state should be 100 %.  

Figure 6:  The complex reality of most diseases, as proposed here for DD.  DD depends of 

the simultaneous occurrence of a number of malfunctions, each of which is controlled by a 

network of internal and environmental factors.  These networks also have other effects (Z) 

than DD.   In this case of a systems biology disease, only a careful dissection of the network 

changes on the basis of accurate experiments that involve (i) different points in 

time/progression of the disease and different genetic and environmental backgrounds, (ii) 

quantitative experimentation at the transcriptomic, proteomic, metabolomic and functional 

level, and (iii) computation assisted analysis and experimental design, can lead to 

understanding of the disease and rational and optimally effective therapies.  

Figure 7: A proposed information flow of DD research versus normal fibroblast biology 

research.  In the top-down branch of the systems biology effort, data maps generated by 

large scale experiments first need to be annotated and subjected to statistical analysis in 

order to extract biologically relevant information.  That information should then generate 

hypotheses concerning patterns of molecular behaviour or dynamic parameters of the 

networks.  Phenomenological or partly mechanistic mathematical modelling can already help 

here to weed the impossible from the possible and to enable one to put multiple complex 
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interactions into single testable hypotheses.  Then, predictions can be made and tested.   This 

may spiral through iterations of top-down systems biology into an ever improving set of 

hypotheses which may become more and more mechanistic.  A bottom-up Systems Biology 

branch of the research may begin with proposed mechanisms (such as stimulation of 

fibroblast growth because of enhanced ROS production) and make mathematical models of 

this in order to assist with experimental design.  By a spiral of testing and adjusting the 

hypothesis this will ultimately lead to a hypothesis that is better and better tested and 

involves more and more of the network.  At each step, data will be churned or sublimed into 

information with a reduction in the amount of unnecessary bits but an increase in accuracy, 

quality and usefulness to improve and generate stronger models of the DD cell.  A metabolic 

or signaling network can then be represented in silico and its properties studied using 

computer-simulated perturbations.  For instance, the flux balance model could be applied to 

predict the behaviour of metabolic networks upon perturbation of the optimised metabolites 

within a metabolic pathway. 

Figure 8: A Systems Biology approach to understanding DD.  An overview of the proposed 

integrative network-based analysis characterising DD tumorigenic versus  oncogenic and 

normal mechanisms and guiding therapeutic interventions.  Biological organisation has a 

nested, hierarchical structure.  Each hierarchy, however, is bounded to some epistemological 

degree due to the principles of biocomplexity.  Systems Biology takes an integrative 

approach and tries to synthesize the biological knowledge to understand how the molecules 

act together within the network of interaction that makes up Life (e.g.  the living cell).  

Classical systems biology approaches will focus on the characterisation and description of 

mechanisms of cellular control with an emphasis on genetic regulation and intracellular 

signaling through inferred information from omics experiments.  Translational systems 

biology attempts to extrapolate the knowledge generated at the subcellular level to the type 

of systemic behavior seen in the clinical setting e.g.  imaging and histopathology. Exploding 

amounts of unravelled biological data cannot be understood by simply drawing lines 

between interacting molecules, but requires a more organic approach where model building 

and simulations advance the understanding of DD.     
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Table Legends 

Table 1 Components implicated as modulators of the DD fibroblast transdifferentiation into myofibroblasts. 

Table 1. Components implicated as modulators of the 

DD fibroblast transdifferentiation into myofibroblasts

Adhesion molecules

Basic fibroblast growth factor 

Chemokines

Cytokines

Endothelin

Extracellular matrix components 

Granulocyte-macrophage colony stimulating factor

Growth factors

Interferons

Interleukin-1

Platelet-derived growth factor

Transforming growth factor beta (TGF-β) 

Tumor necrosis factor
 

Table 2 Multiple levels of regulation in the biocomplexed cellular system. 

Regulation may occur at different levels

Gene transcription level
Regulation of transcription of genes into RNA.

RNA processing level
Regulation of the transport of the RNA into the cytoplasm.

mRNA translation level
Regulation of the efficiency of translation of the mRNA into proteins.

Protein level
Modification of the translation product - Some proteins will loose their function.

Metabolic level
Intrinsic regulation - the metabolic pathway self-regulates to respond to changes in the 
levels of substrates or products. Extrinsic regulation - e.g. glucose metabolism by the 

hormone insulin.
Regulation of an enzyme in a pathway  and/or the control exerted by this enzyme affects 

changes in its activity have on the overall rate of the pathway (the flux through the 
pathway).
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Figure 3 
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Appendix B 

Table 22 Molecular bonds and their corresponding vibrational modes when molecular orbitals absorb photons 

certain infrared wavelengths. 

Group Mode Peak  (nm) 

O - H stretch 2800 

N - H stretch 3000 

C - H stretch 3400 

C = O stretch 5800 

C = C stretch 6100 

N - H rotation 6500 

C - H rotation 7300 

H - C - H scissors 6800 

 
 Table 23 Typical vibrational bonds and their wavenumbers. 

Bond Wavenumber/cm
-1 

C-H 2840 - 3095

C-C 1610 - 1680

C=O 1680 - 1750

C-O 1000 - 1300

C-Cl 700 - 800

3233 - 3550

2500 - 3300

N-H 3100 – 3500

C=C 2000 - 3000 

O-H

 

 
Figure 69 Four important regions of the IR spectrum. 
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Table 25 

Study ID Age Sex

DD8 77 M Nodule Cord Fascia

DD9 58 M Nodule Cord Fascia

DD10 76 M Nodule Cord Fascia

DD11 67 M Nodule Cord Fascia

DD12 52 M Nodule Cord Fascia

DD13 74 F Nodule Cord Fascia

STUDY 1A

Site

 
 
Table 26 

Study ID Age Sex

DD9 58 M Nodule Cord Fascia Fat Skin

DD11 67 M Nodule Cord Fascia Fat Skin

DD12 52 M Nodule Cord Fascia Fat Skin

DD13 74 F Nodule Cord Fascia Fat Skin

Site

STUDY 1B

 

Table 27 

Study ID Age Sex

DD16 46 M Cord Fascia

DD17 67 M Nodule Cord Fascia

DD2-R Nodule Cord Fascia

DD18 68 M Nodule Cord

Site

STUDY 2A

 

Table 28 

Study ID Age Sex

DD16 46 M Cord Fascia

DD17 67 M Nodule Cord Fascia Fat Skin

DD2-R Nodule Cord Fascia Fat Skin

DD18 68 M Nodule Cord Fat

Site

STUDY 2B

 

Figure 70 Left (I) cultured fibroblasts from nodules. Right (II) cultured fibroblasts from cord. 
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Table 29 

Study ID Age Sex Site

DD16 46 M Cord Fascia

DD17 67 M Nodule Cord Fascia

DD2-R Nodule Cord Fascia

DD18 68 M Nodule Cord

CT4 67 M Fascia*

CT5 78 M Fascia*

CT6 62 F Fascia*

CT7 50 F Fascia*

CT8 28 M Fascia*

*from CTD patient, external control

STUDY 2C

 

Table 30 

Study ID Age Sex

CT4 67 M Fascia* Fat* Skin*

CT5 78 M Fascia* Fat* Skin*

CT6 62 F Fascia* Fat* Skin*

CT7 50 F Fascia* Fat* Skin*

CT8 28 M Fascia* Fat* Skin*

*from CTD patient, external control

Site

STUDY 2D
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Appendix C 

FIGURES 71 (I)-(V) H&E Stains of DD tissue phenotypes.  

Figure 71 H&E Stains of DD tissue phenotypes and controls 
 

(i) Nodule from DD17           (ii) Cord from DD2       (iii) Palmar fascia from DD17-internal control 

          

(iv) Fat from DD17          (v) Skin over nodule from DD17 

     

 

 

FIGURE 71 (VI-VIII) H&E Stains of control tissue. 

(vi) Fascia from CT7- 
external control                       (vii) Fat from CT7                    (viii) Skin from CT6 
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Figure 72 EMSC processed spectra of the secreted metabolites (footprint). 
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Figure 73 PCA Plot of the FT-IR spectra of metabolic footprint from fibroblasts derived from the DD 

phenotypes onto the plane defined by PC1 and PC2. 
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Appendix D 

Date harvested Patient ID DD Tissue DOB Age DD History Gender Ethnicity Smoking

Jan 22 2010 DD60 Nodule, cord & transverse palmar fascia 21/09/1943 67 Primary Male White English 15 pack years

Jan 22 2010 DD61 Nodule, cord & transverse palmar fascia 19/09/1933 77 Recurrent Male White English NO

Nov 19 2009 DD55 Nodule, cord 15/05/1947 63 Recurrent Male White English NO

Nov 19 2009 DD56 Nodule 11/09/1953 57 Primary Male White English NO

Feb 19 2009 DD41 Nodule, cord, skin over nodule Aug-35 75 Primary Male White English NO

Feb 19 2009 DD42 Cord, skin over nodule Aug-49 61 Primary Male White English NO

Feb 19 2009 DD43 Nodule, cord, skin over nodule Oct-37 73 Primary Male White English NO

Feb 19 2009 DD44 Nodule, cord, skin over nodule & transverse palmar fascia Dec-46 64 Primary Male White English NO  

Table 31 KEGG pathways enriched with highest and lowest PPLR values in F1 vs. F21. 

Highest 1000 PPLR values Gene Lowest 1000 PPLR values Gene

Ribosome 26 Metabolic pathways 94

Huntington's disease 20 Lysosome 34

Oxidative phosphorylation 20 Vibrio cholerae infection 16

Alzheimer's disease 17 Aminoacyl-tRNA biosynthesis 12

Parkinson's disease 17 ECM-receptor interaction 12

Spliceosome 13 Epithelial cell signaling 11

Glycolysis / Gluconeogenesis 12 N-Glycan biosynthesis 9

Cardiac muscle contraction 10 Fatty acid metabolism 8

TGF-beta signaling pathway 10 Amino sugar and nucleotide sugar metabolism 7

ECM-receptor interaction 8 Citrate cycle (TCA cycle) 7

Melanoma 8 Collecting duct acid secretion 7

p53 signaling pathway 8 Proteasome 7

Colorectal cancer 7 Valine, leucine and isoleucine degradation 7

Fructose and mannose metabolism 7 Pyruvate metabolism 6

Neuroactive ligand-receptor interaction 7 Sphingolipid metabolism 6

RNA degradation 7 Tryptophan metabolism 6

Bladder cancer 5 beta-Alanine metabolism 5

Pentose phosphate pathway 5 Biosynthesis of unsaturated fatty acids 5

Folate biosynthesis 2 Porphyrin and chlorophyll metabolism 5

Jak-STAT signaling pathway 2 Propanoate metabolism 5

Protein export 5

Fatty acid elongation in mitochondria 4

Glycosaminoglycan degradation 4

Glycosphingolipid biosynthesis - ganglio series 4

Glycosphingolipid biosynthesis - globo series 4

Limonene and pinene degradation 4

Neuroactive ligand-receptor interaction 4

Proximal tubule bicarbonate reclamation 4

Natural killer cell mediated cytotoxicity 3

Other glycan degradation 3

Valine, leucine and isoleucine biosynthesis 3

Insulin signaling pathway 2

Vitamin B6 metabolism 2

KEGG Pathway analysis for differentially expressed genes in 1000 highest and 1000 lowest PPLR values 

F1 vs F21

Pathway Pathway
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Table 32 KEGG pathways enriched with highest and lowest PPLR values in N21 vs. F21 

Highest 1000 PPLR values Gene Lowest 1000 PPLR values Gene

Ribosome 39 Focal adhesion 37

Oxidative phosphorylation 32 Pathways in cancer 34

Alzheimer's disease 26 Regulation of actin cytoskeleton 23

Huntington's disease 26 ECM-receptor interaction 19

Parkinson's disease 25 Cell cycle 15

Cardiac muscle contraction 13 Oocyte meiosis 14

Lysosome 12 Vascular smooth muscle contraction 14

Spliceosome 11 Gap junction 13

Proteasome 6 p53 signaling pathway 13

Regulation of actin cytoskeleton 3 Pancreatic cancer 11

Thiamine metabolism 2 Small cell lung cancer 11

Lipoic acid metabolism 1 Adherens junction 10

Arrhythmogenic right ventricular cardiomyopathy (ARVC)10

Dilated cardiomyopathy 10

Pathogenic Escherichia coli infection 10

Progesterone-mediated oocyte maturation 10

Viral myocarditis 10

Bacterial invasion of epithelial cells 9

Glioma 9

Melanoma 9

Colorectal cancer 8

Aminoacyl-tRNA biosynthesis 7

Bladder cancer 7

Non-small cell lung cancer 7

Shigellosis 7

Malaria 6

Dorso-ventral axis formation 4

Pentose phosphate pathway 4

Thyroid cancer 4

Huntington's disease 3

Neuroactive ligand-receptor interaction 3

One carbon pool by folate 3

Valine, leucine and isoleucine biosynthesis 3

Vitamin B6 metabolism 2

Oxidative phosphorylation 1

KEGG Pathway analysis for differentially expressed genes in 1000 highest and 1000 lowest PPLR values 

in N21 vs F21

Pathway Pathway
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Table 33 KEGG pathways enriched with highest and lowest PPLR values in N1 vs. N21 

Highest 1000 PPLR values Gene Lowest 1000 PPLR values Gene

Focal adhesion 34 Metabolic pathways 75

Regulation of actin cytoskeleton 25 Oxidative phosphorylation 33

Cell cycle 16 Ribosome 33

ECM-receptor interaction 16 Huntington's disease 27

Oocyte meiosis 16 Alzheimer's disease 25

Gap junction 14 Parkinson's disease 25

Adherens junction 13 Lysosome 16

Glycolysis / Gluconeogenesis 13 Spliceosome 12

Neurotrophin signaling pathway 13 Cardiac muscle contraction 11

p53 signaling pathway 13 Pathways in cancer 10

Progesterone-mediated oocyte maturation13 PPAR signaling pathway 10

Leukocyte transendothelial migration 12 Proteasome 9

Melanoma 12 Neuroactive ligand-receptor interaction 5

Pancreatic cancer 12 Chemokine signaling pathway 4

Pathogenic Escherichia coli infection 12 Regulation of actin cytoskeleton 4

Dilated cardiomyopathy 11 Thiamine metabolism 3

Fc gamma R-mediated phagocytosis 10 Jak-STAT signaling pathway 2

Hypertrophic cardiomyopathy (HCM) 10 Natural killer cell mediated cytotoxicity 2

Prostate cancer 10 Lipoic acid metabolism 1

TGF-beta signaling pathway 10

VEGF signaling pathway 10

Arrhythmogenic right ventricular cardiomyopathy (ARVC)9

Bacterial invasion of epithelial cells 9

Bladder cancer 9

Colorectal cancer 9

Glioma 9

Renal cell carcinoma 9

Non-small cell lung cancer 7

Aminoacyl-tRNA biosynthesis 6

Neuroactive ligand-receptor interaction 5

Pentose phosphate pathway 5

Starch and sucrose metabolism 5

Huntington's disease 3

Valine, leucine and isoleucine biosynthesis 3

Vitamin B6 metabolism 3

KEGG Pathway analysis for differentially expressed genes in 1000 highest and 1000 lowest PPLR values 

N1 vsN21

Pathway Pathway
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Appendix E  

 

Awards and Grants Associated With This Work/PhD 

1. Doctoral Training Centre (BBSRC/EPSRC) Studentship, Oct 2006 - Sep 2010. 

 

2. Biochemical Society travel grant to attend 10th International Conference on Systems 

Biology, Stanford, USA, Aug 2009. 

 

3. Invitrogen award to present work at University of California, Irvine, USA, May 

2010. 

 

4. Analytical Chemistry Trust Fund of the Royal Society of Chemistry, Jan 2011. 

 

5. Federation of European Biochemical Societies Youth Travel Fund Award to present 

at FEBS-SystemsX-SysBio2011, Austria, Feb 2011.  

 

6. Keystone Symposia Future of Science Fund scholarship for Omics meets cell 

biology, Alpbach, Austria, May 2011. 

  

Publications and Presentations Arising From This Work 

E1 Published Abstracts and presentations  

1. “Inferring the metabolic and transcriptional networks specific to Dupuytren‟s disease 

tumours with omics”, Joint FEBS/SystemsX 4
th

 Advanced Lecture Course on 

Systems Biology; FEBS-SystemsX-SysBio2011: From Molecules to Function, 

Innsbruck, Austria, Feb 2011. 

 

2. “Parallel analysis of transcript and metabolic profiles of Dupuytren‟s Disease 

fibroblasts in response to altered O2 tension”, Systems Biology of Stem Cells 

Symposium, UC, Irvine, USA, May 2010.  

 

3.  “Systems Biology approaches for identifying cultured Dupuytren's Disease samples 

for analysis”, The 10th International Conference on Systems Biology, ICSB, 

Stanford, USA, Aug 2009.  

 

4. “Metabolic Fingerprint Analysis of Fibroblasts Derived from Differential 

Dupuytren's Disease Tissue Phenotypes”, Research & Innovation Exhibition, Central 

Manchester and Manchester Children's University Hospitals, NHS Trust, UK, Nov 

2008. 

 

5. “Computability in Biology: Metabolic Networks”, FEBS-SysBio2007 From 

Molecules to Life: March 2007, 2
nd

 FEBS Advanced Lecture Course on Systems 

Biology, Gosau, Austria.  
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E2 Published Work 

1.  Rehman S, Salway F, Stanley JK, et al. Molecular Phenotypic Descriptors of 

Dupuytren's Disease Defined Using Informatics Analysis of the Transcriptome. J 

Hand Surg Am. 2008;33:359-372. 

 

2. Bevilacqua A, Wilkinson SJ, Dimelow R, Murabito E, Rehman S, Nardelli M, van 

Eunen K, Rossell S, Bruggeman FJ, Blüthgen N, De Vos D, Bouwman J, Bakker 

BM, Westerhoff HV. SEB Exp Biol Ser. 2008; 61:65-91.Vertical systems biology: 

from DNA to flux and back. 

 

3.  Li K, Zhu W, Zeng K, Zhang Z, Ye J, Ou W, Rehman S, Heuer B, Chen S. 

Proteome characterization of cassava (Manihot esculenta Crantz) somatic embryos, 

plantlets and tuberous roots. Proteome Sci. 2010 Feb 27;8(1):10. 

 

 

E3 Submissions for Publication 

1. Rehman S, Goodacre R, Day PJ, Bayat A, Westerhoff HV. Dupuytren's - A Systems 

Biology Disease? - review paper submitted to Arthritis Research & Therapy Mar 

2011.  

 

2. Rehman S, Day PJ. Dupuytren's Depicting accurate relationships in bio-networks 

from natural language processing approaches –In preparation. See abstract and text 

mining workflow below. 

 

3. Rehman S, Day PJ, Xu. Y, Dunn WB, Westerhoff HV. Goodacre R, Bayat A, 

Metabolic Fingerprint Analysis of Fibroblasts Derived from Differential Dupuytren's 

Disease Tissue Phenotypes, In preparation. 

 

4. Rehman S, Day PJ, Xu. Y, Dunn WB. Goodacre R, Bayat A, Westerhoff HV – The 

effect of Hypoxia in DD metabolomes and transcriptomes investigated through a 

Systems Approach, In preparation. 
 



Appendix                                    

288 

 

E3(2)  

Abstract 

Effective use of published scientific literature plays a crucial role in all stages of research. 

High-throughput experimental techniques used in „omics and integrative systems biology are 

generating exponential yet unraveled complex data sets. One of the goals of systems biology 

is to obtain overall quantitative description of dynamic cellular systems. This is currently not 

achievable as the number of components and interactions involved in these systems is quite 

large resulting in a very large parameter space, thus the generation of quantitative data sets. 

The important role of accurate and crucial literature analysis would improve and direct a 

large number of experimental studies that are initiated by mechanistic and hypothesis driven 

approaches. Natural Language Processing techniques combined with text mining have been 

propose as potential new elements for knowledge discovery as part of an application to 

biological investigation. Nevertheless, current text mining tools do not provide correlations 

within scientific entities (e.g. gene1-gene2) on the basis of biological relevance but are due 

to statistical recognition only. Text mining should now play a crucial role not only retrieving 

commonalities across entities on the basis of co-occurrence but also during a research study 

itself where the aim would be to validate, annotate and interpret the discovery results 

generated from analysing the experimentally generated data. In this article we describe our 

efforts in developing literature analysis and text mining solutions for extracting and 

documenting known entity-entity (e.g. gene-tissue) interactions by keywords searches based 

on the experimental methods they are discovered through with respect to the study.  We 

describe an abstract algorithm/pipeline and show how it can be mapped upon our existing 

workflow FACTA, a concrete service-based text mining workflow using a mix of text 

processing and data mining components. 
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