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13.1          Introduction 

 Many DD patients have a positive family history, 
and genetic factors play a far greater role in the 
etiology of this disease than is often acknowl-
edged. In 1963, Ling already showed that the rate 
of patients with a positive family history increased 
from 16 % reported by the patients themselves to 
68 % when the patient’s relatives were examined 
by the author (Ling  1963 ). Studies have deter-
mined varying family predisposition rates in 
patients, between 12.5 and 44 % (Brenner et al. 
 2001 ; Coert et al.  2006 ; Early  1962 ; Hakstian 
 1966 ; Hindocha et al.  2006a ,  b ; Lanting et al. 
 2013 ; Makela et al.  1991 ). The sibling recurrence 
risk  λ  s  has been determined as 2.9 based on a 
prevalence of 3.5 % in north-western England 
(Capstick et al.  2013 ; Hindocha et al.  2006a ). We 
have shown that DD patients who had a known 
family history for this disease are signifi cantly 
younger at the time of fi rst surgery (Becker et al. 
 2015 ). Moreover, a positive family history had a 
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far greater infl uence on the mean age of fi rst sur-
gery than other risk factors, namely, heavy smok-
ing. We clearly showed in this study that a 
positive family history, and with it the underlying 
genetic risk factors, strongly contributes to dis-
ease severity (time of fi rst surgical intervention). 
In a recent population-based twin study, the heri-
tability of DD was calculated to be 80 % (Larsen 
et al.  2015 ). Therefore we aim to identify the 
causal variants in the genome to understanding 
the genetic basis of this multifactorial disease.  

13.2     Previous GWAS Findings 

 The fi rst GWAS in DD (Dolmans et al.  2011 ) 
identifi ed nine genomic loci associated with this 
disease on genome-wide signifi cant level 
( p -value < 5 * 10 −8 ). Six of these nine loci harbor 
one gene each that codes for an upstream modu-
lator of the Wnt signaling pathway, e.g., Wnt 
ligands or inhibitors. This intriguing overrepre-
sentation of Wnt signaling-related genes in the 
GWAS loci led to the fi rst valuable insight into 
the possible genetic factors underlying DD. None 
of these genes have so far been further investi-
gated as the true culprit at a given loci. The com-
plex nature of common diseases makes it a 
diffi cult task to identify truly causative genetic 
variants by linking them to the disease pheno-
type. This is a well-known problem in complex 
genetic diseases and presents one of the major 
challenges of our age. 

 The majority of GWAS loci that have been 
identifi ed for complex diseases fall outside of cod-
ing genes, and they are supposed to refl ect altera-
tions in regulatory features (Schaub et al.  2012 ). 
Many of these regulatory effects will be small and 
diffi cult to detect individually (Civelek and Lusis 
 2014 ). On top of that, GWASs for common, com-
plex diseases (or traits) only explain a small pro-
portion of the genetic basis, and a lot true positives 
may be hidden in the statistical noise produced by 
GWAS. This necessitates a systems approach to 
analyze the pathways and networks involved in 
DD. In particular network modeling may help to 
uncover relationships between genes from top 
GWAS loci, allowing for the inclusion of suscepti-

bility loci with more subtle effects and increasing 
statistical power to detect them as they are viewed 
in context of each other.  

13.3     Network Analysis 

 Pathway and network analysis have been exten-
sively used in the analysis of expression data. 
But they are also useful tools to investigate com-
plex genetic diseases. In complex genetic dis-
eases, different genetic variants within an 
individual and different genetic variants between 
individuals contribute to the disease. Genetic 
variants can act additively and in concert with 
environmental factors. The same genetic variant 
in two individuals does not necessarily lead to 
the disease in both individuals, depending on the 
genomic background of each individual and the 
environment the individual was exposed to. 
Individual genetic variants in complex diseases 
can cover the whole spectrum of pathogenicity 
from fully penetrant to slight effects. By design 
only few of these variants are picked up by 
GWAS because the multiple testing of thousands 
of variants (SNPs, markers) requires a strict sig-
nifi cance threshold, in order to reduce the num-
ber of false positive fi ndings. Consequently only 
the very top loci are considered in a traditional 
GWAS approach. But although the genetic basis 
of a complex disease can be spread out over 
many genetic loci and genes, these genetic alter-
ations are not randomly distributed but affect a 
limited number of cellular functions and path-
ways. This consideration makes it possible to 
search for functional connections between genes 
in GWAS loci. In contrast to pathway analysis, 
network analysis does not require prior knowl-
edge about the function of a gene product or its 
affi liation to a pathway but relies on a network 
constructed from protein-protein interaction 
(PPI) data. The nature of the PPI data can either 
be physical interactions, classically generated by 
yeast two- hybrid screens, or other data sources, 
e.g., co- expression data. A network in this con-
text constitutes interaction data consisting of 
molecules (e.g., proteins), termed nodes, and 
their relationships with each other (e.g., physical 
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interactions, co-expression), termed edges. The 
aim in network analysis of GWAS data is to 
identify modules – groups of connected proteins/
genes that share characteristics under study – 
that are enriched in small  p -values. In this pro-
cess GWAS data can be integrated with whole 
transcriptome expression data, for instance, for 
the disease tissue. Considering genes that are co-
expressed in the affected tissue increases the 
power to detect true associations. 

 As a complex disease, DD is well suited for a 
network-based approach (Fig.  13.1 ). DD has a 
strong genetic basis, disease tissue and healthy 
tissue are readily accessible, and some prior 
information about pathways likely involved in 
the development of this disease is available (in 
particular Wnt signaling but other pathways may 
also be similarly important). Moreover, the phe-
notype is clearly defi ned, although the severity of 
the disease differs between individuals.

13.3.1       Network Analysis Workfl ow 

 In the fi rst step SNP-based  p -values are translated 
into gene-based  p -values. For this, SNPs must be 
assigned to genes. The simplest method to do this 
is to defi ne a window around each gene and assign 
all SNPs within this window to this gene. But this 
is no trivial task as SNPs not necessarily act on the 
nearest gene and long-range interactions are pos-
sible. We used the software VEGAS2 (Mishra and 
Macgregor  2014 ), which also takes into account 
linkage information (e.g., from the 1000 Genomes 
Project reference population) and gene sizes. 
VEGAS2 combines the test statistics of all SNPs 
within ±50 kb of each gene. Based on SNP asso-
ciation  p -values, the software calculates empirical 
gene-based  p -values by a simulation procedure. 

 The next step is to search for modules 
enriched in small  p -values within a protein-pro-
tein interaction (PPI) dataset. The assumption 
behind is that in complex genetic settings, many 
different variants affecting several different 
genes may contribute to the disease, but these 
genes are assumed to act in a limited number of 
pathways or cellular functions. Because of the 
limited number of affected pathways/cellular 

functions, truly associated genes are expected to 
be more functionally connected to each other 
than random genes. The search for modules 
instead of individual genes increases statistical 
power since association does not rely on indi-
vidual genes but a module of functionally con-
nected genes. 

 To further increase the power to detect true 
associations in the statistical noise of GWAS, one 
can combine the GWAS data with tissue-specifi c 
whole-genome transcription data by considering 
only genes that are expressed or co-expressed in 
the tissue of interest when searching for connec-
tions between genes with small  p -values. 

 Network analysis results in lists of genes. The 
next logical step to do is to look for enrichment 
of functional annotations in these lists of genes 
(e.g., canonical pathways or gene ontology (GO) 
terms). Although the function of all genes in a 
sub-network may not be known, this constitutes 
the fi rst insight into which pathways may be 
affected by genetic alterations in DD. The ulti-
mate aim is to unravel which roles the specifi c 
genes in the detected sub-networks play in the 
pathway in the context of the disease and how 
genetic alterations change these functions in 
DD. For these more functional experimental, stud-
ies are necessary.   

13.4     Targeted Sequencing 

13.4.1     Ongoing Studies to Identify 
Genetic Variants in GWAS 
Loci by Targeted NGS 

 The SNPs tested in GWAS are selected as a set 
of informative single SNPs able to tag common 
haplotype blocks. To explicitly capture causative 
variants in GWAS-identifi ed DD susceptibility 
loci, it will be critical to sequence each candidate 
locus using targeted next-generation sequencing 
(NGS). By mapping NGS data to the human 
genome reference sequence, the variability of 
the entire locus can be exhaustively identifi ed, 
including both coding and noncoding regions 
and comprising all common and rare variants 
(Udler et al.  2010 ). 
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  Fig. 13.1    Overview network analysis. Simplifi ed work-
fl ow of the network analysis integrating GWAS and tran-
scriptome data to search for disease-specifi c sub-networks 
in DD. In the fi rst step SNP-based  p -values are translated 
into gene-based  p -values. Genes with  p -values are then 
imposed on protein-protein interaction ( PPI ) data, and a 
search for connections between genes with small  p -values 

is conducted. Once sub-networks (modules) enriched for 
genes with small  p -values are identifi ed, these can be vali-
dated and further analyzed for functional annotation in the 
context of the disease. To further increase the power to 
detect relevant sub-networks, tissue-specifi c expression 
data can also be integrated in the network analysis 
approach       
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 As a fi rst step, we have selected a 500 kb region 
containing the lead SNP rs16879765 (chromo-
some 7p14.1) for targeted sequencing (Fig.  13.2 ). 
DNA was isolated from peripheral blood of 96 DD 
patients. The DD-associated locus was enriched in 
these samples using a custom designed Agilent 
SureSelect XT2 kit and sequenced on the Illumina 
HiSeq 2000 platform. Sequencing data are ana-
lyzed with the Varbank pipeline (v2.13) (CCG, 
Cologne) and Ensembl Variant Effect Predictor 
(  http://www.ensembl.org/info/docs/variation/vep/
index.html    ).

   Once the potential candidate variants are dis-
covered and validated, the next step will be to 
prioritize the candidates based on the following 
criteria: (1) exclude known, assumed harmless 
variations present in dbSNP databases (  http://
www.ncbi.nlm.nih.gov/SNP    ) and published stud-
ies; (2) select variants causing changes in protein- 
coding sequences and likely to compromise 
protein structure, function, or stability; and (3) 
select noncoding variants that may affect regula-
tion of gene expression.  

13.4.2     Functional Studies of Variants 
Within Coding Regions 

 All coding variants identifi ed in DD patients are 
validated by Sanger sequencing, in particular 
variants in regions that contain multiple and/or 
recurrent variants in patients as compared to 
controls. Then, replication of the results in an 
independent cohort is needed. The identifi ed 
variations are analyzed to predict the structure 
of the gene carrying variations and the function 
of the resulting protein by using tools such as 
SIFT (  http://sift.jcvi.org/www/SIFT_dbSNP.
html    ), PolyPhen-2 (  http://genetics.bwh.harvard.
edu/pph2    ), Mutation Profi ling (  http://profi le.
mutdb.org    ), and ModBase (  http://modbase.
compbio.ucsf.edu    ). After identifi cation of a set 
of DD-predisposing gene variants, in vitro stud-
ies to test the functional consequences of these 
candidates are crucial. 

 The primary functional studies will focus on 
the key molecular events in DD development – 

the aberrant proliferation of fi broblasts and their 
differentiation into myofi broblasts. After cloning 
and expression of mutated genes in DD and con-
trol cells, cell proliferation is assessed using, for 
instance, the CyQUANT® Cell Proliferation kits 
(Thermo), which measures the cellular DNA 
content. Furthermore, as the expression and orga-
nization of α-SMA are hallmarks of myofi bro-
blast differentiation (Tomasek et al.  2002 ), 
LightCycler® (Roche) qRT-PCR and Western 
blotting are employed to detect α-SMA expres-
sion. Additionally, myofi broblast contractile 
activity and migration will be investigated by 
collagen matrix contraction and in vitro wound 
healing assays separately.  

13.4.3     Functional Studies 
of Noncoding Regulatory 
Variants 

 Many variants associated with GWAS were iden-
tifi ed in noncoding regions of the genome, and 
this has increased the interest in the effect of 
genetic variants on regulation of gene expression. 
Recently, expression quantitative trait loci 
(eQTL) mapping has become a powerful tool to 
understand how noncoding variants in GWAS 
loci infl uence disease risk (Conde et al.  2013 ; Li 
et al.  2013 ). Identifi cation of an eQTL, a genomic 
locus which regulates transcript expression lev-
els, involves association analysis between genetic 
markers and gene expression levels typically 
measured in hundreds of individuals. Microarrays 
or RNA-seq are often used to measure the expres-
sion levels of genes in a genome simultaneously 
and map these phenotypes to genomic regions 
represented by genetic markers captured in 
GWAS. One important advantage of such an 
approach is that it allows identifi cation of regula-
tors of expression of disease-associated genes if 
there are variants affecting expression of that 
regulator (Steiling et al.  2013 ). 

 To identify noncoding variants that affect gene 
expression in DD-associated loci, we use pub-
lished eQTL and ENCODE data to prioritize 
genomic variants found by targeted NGS. Using 
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qPCR assays, we test the candidate eQTLs in DD 
tissues and primary cells derived from DD tissues. 
A number of bioinformatics tools will then be 
used to predict possible activities of noncoding 
variants using, for instance, Genomatix (  http://
www.genomatix.de    ), Transfac (  http://www.gene-
regulation.com/pub/databases.html    ), and Human 
Splicing Finder (  http://www.umd.be/HSF    ). Taken 
together, we expect to identify noncoding varia-
tions that underlie inherited differences in expres-
sion levels of genes, which is supposed to lead to 
the identifi cation of genes involved in the suscep-
tibility to DD.   

    Conclusions 

•     Dupuytren Disease has a strong genetic basis 
and unraveling this basis is challenging.  

•   Network analysis integrating GWAS and dif-
ferential transcriptome expression data with 
protein-protein interactions facilitates the 
identifi cation of modules and pathways per-
turbed by genetic alterations in DD.  

•   Targeted sequencing of GWAS loci aims to 
identify the underling causative genetic 
variants.  

•   Most causative genetic variants in DD are 
expected to lie outside coding regions, and 
efforts both in computational methods and 
functional study design must be undertaken to 
address them.        
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