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Abstract 

Palmar fascia fibrosis (Dupuytren’s disease or DD), can cause permanent palmar-digital 

contractures. There are currently no effective treatments for DD. We have previously 

reported a DD-associated increase in the expression of WT1, encoding a transcription factor, 

Wilms Tumor 1 (WT1). We demonstrate that fibroblasts derived from fibrotic palmar fascia 

of DD patients constantly express an isoform of WT1, AWT1, unlike syngeneic pre-fibrotic 

(PF) or allogeneic normal control (CT) fibroblasts that only express AWT1 in response to 

pro-inflammatory stimuli. Adenoviral transduction and constant expression of AWT1 in PF 

and CT fibroblasts induced the expression of genes encoding pro-inflammatory cytokines 

and cytokine receptors.  Co-culturing AWT1 expressing PF and CT fibroblasts with a 

monocyte cell line, THP-1, induced pro-inflammatory cytokine responses and the formation 

of a pro-inflammatory milieu. These data are consistent with the hypothesis that the constant 

expression of AWT1 in DD fibroblasts induces a local pro-inflammatory microenvironment 

that promotes fibrosis development. 
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Summary for Lay Audience 

The focus of this thesis is palmar fascia fibrosis, also known as Dupuytren’s Disease (DD). 

The palmar fascia is a layer of connective tissue that lies below the skin of the palm where it 

protects the underlying nerves, blood vessels and bones of the hands. DD is characterized by 

the formation of abnormal scar tissue (fibrosis) in the palmar fascia that can cause permanent 

contracture of the affected digits, resulting in loss of dexterity and reduced quality of life. 

Unfortunately, there are no truly effective treatments for DD, as current therapies are 

associated with high rates of disease recurrence. Previous work in the O’Gorman laboratory 

has identified an increase in the expression of a transcription factor, Wilms’ Tumor 1 (WT1), 

in contracture tissues from DD patients. Transcription factors are proteins that regulate the 

expression of genes, and abnormal transcription factor activity can lead to the development 

of diseases, such as cancers and fibroses. WT1 was first identified in a pediatric cancer but 

has since been identified in other cancers. Interestingly, WT1 appears to play multiple, even 

apparently contradictory, roles in the development of different cancers. This complexity may 

be explained by the existence of multiple versions (isoforms) of WT1, the results of 

alternative splicing in, and/or alternative start sites for, WT1 mRNA transcripts.  

Three major findings are described in this thesis: 1) hypercontractile cells that cause palmar 

fascia contractures, myofibroblasts, constantly express an isoform of WT1, AWT1, that can be 

induced in fibroblasts derived from visibly non-fibrotic palmar fascia by pro-inflammatory 

molecules, 2) constant expression of AWT1 in fibroblasts derived from visibly non-fibrotic 

palmar fascia promotes the expression of pro-inflammatory cytokines and cytokine receptors, 

and  3) co-cultures of fibroblasts expressing AWT1 with THP-1 cells, which are derived 

from human immune system cells called monocytes, modify THP-1 cell gene expression and 

the secretion of pro-inflammatory molecules. These findings are consistent with the 

hypothesis that constant expression of AWT1 in DD promotes chronic inflammation in the 

palmar fascia. As WT1 is currently a therapeutic target for various cancers, it may be 

possible to cross-purpose these drugs as a novel treatment for DD. 
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Chapter 1  

1 LITERATURE REVIEW 

 Wound Healing 

All organisms that interact with their environment risk being damaged by those 

interactions. If damaged, an organism can either die or, if biologically capable, undergo 

repair. The molecular mechanisms that facilitate organ and tissue repair are complex and, 

remarkably, still very poorly understood. Normal tissue repair can be envisaged to occur 

in three orderly but overlapping stages: haemostasis and inflammation, proliferation and 

remodeling (Fig. 1.1).1 The processes of haemostasis and coagulation occur immediately 

after tissue damage to cause the formation of provisional wound matrix. Fibrin forms a 

temporary wound closure to prevent blood loss. During this time, immune cells infiltrate 

the wound site.2 Some of the first immune cells that arrive at the wound site, such as 

neutrophils, release hormone-like molecules known as cytokines, that signal and exert 

context dependent effects on other cells. Cytokines have numerous roles in regulating 

host immune response and homeostatic mechanisms. Cytokines are classified based on 

several factors including their overall signalling effects, their cellular sources, and the 

receptors to which they bind.3  

In normal wound healing, pro-inflammatory cytokines such as tumor necrosis factor 

(TNF) and interleukin-1β (IL-1β) signal for the differentiation of monocytes into 

macrophages for clearing debris and pathogenic microorganisms.4 Furthermore, these 

pro-inflammatory molecules continue to signal for additional neutrophil recruitment. The 

accumulated neutrophils contribute to the clearing of foreign material in addition to 

debridement of necrotic tissue.5 The inflammatory phase begins to resolve when 

neutrophil infiltration stops and the accumulation of macrophages continues.6 

Inflammation eventually resolves by the release of anti-inflammatory cytokines, such as 

interleukin-10 (IL-10) and transforming growth factor-β (TGF-β). As inflammation 

resolves, this initiates the processes of angiogenesis and recruitment of fibroblasts to the 

wound site, indicating the start of the proliferation phase.  
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Figure 1.1. Phases of Wound Healing. 

Wound healing can be envisaged as occurring in three overlapping phases, as shown above. The molecular mechanisms 

that promote transition from one phase to the next are tightly controlled and regulated by a number of known and 

unknown mediators. Orderly and efficient transition between phases in hypothesized to promote high quality repair that 

approaches regeneration. 
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Release of fibroblast growth factors (FGF) and vascular endothelial growth factors 

(VEGF) by fibroblasts and macrophages promote cell proliferation and differentiation for 

the formation of new blood vessels and recruitment of stromal cells.7,8 In addition, 

fibroblasts and macrophages can promote re-epithelization in skin wounds.5 Finally, 

macrophages secrete cytokines such as interferon-γ (IFN-γ) and TGF-β which activate 

fibroblasts into alpha smooth muscle actin (αSMA) expressing myofibroblasts to contract 

the wound while secreting extracellular matrix molecules (ECM), such as collagens, for 

tissue remodeling during the remodeling phase.10 In addition to direct activation of 

fibroblasts to myofibroblasts through TGF- β signaling, myofibroblasts have been 

reported to be derived from many different cellular origins, including the differentiation 

of progenitor cells and through epithelial-mesenchymal transition. Once the remodeling 

of the wound site is complete, myofibroblasts and other immune cells are depleted by 

apoptosis, migration and other processes. 

Unfortunately, the factors that mediate the transition between pro-inflammatory (or 

“classically activated”, M1) and pro-resolving (“alternatively activated”, M2) 

macrophages are very poorly understood. Additionally, the current dichotomous model of 

M1 (IFN-γ or LPS induced)  and M2 (IL-4 induced) macrophages, both of which are 

largely based on in vitro models, have been challenged by recent findings.11 Studies in 

vivo have shown that the transcriptomic profiles of macrophages are dynamic and often 

don’t fall under M1 or M2 extremes.12-14 The phases of wound healing are complex and 

intertwined, and the oversimplified M1/M2 model reflects how poorly we understand this 

dynamic process. While they may not conform to a simple biphasic model, it is 

nonetheless clear that macrophages play essential roles in normal wound repair. Studies 

by Lucas et al, have shown that depletion of wound macrophages during the initial 

inflammatory response resulted in impaired tissue healing by reduction in 

vascularization, whereas depletion of macrophages during the proliferative phase resulted 

in severe hemorrhage of the wounded tissue.15 These data underline the importance of the 

normal sequential transition between overlapping phases and the maintenance of 

interactions between monocytes/macrophages and fibroblasts in promoting efficient 

repair that resembles tissue regeneration.  
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 Abnormal Wound Healing: Fibrosis 

In contrast to adults, wounds in embryos do not require αSMA expressing myofibroblasts 

to achieve closure and can heal without scar formation. However, this ability of embryos 

to heal scarlessly is lost by the third trimester.16 In adults, dysregulation or delay in 

completing any of the three major phases of wound healing, such as chronic exposure to 

inflammatory cytokines, can result in chronic wounds or fibrosis.17 Findings by Ferguson 

et al further suggest that the introduction of inflammation can over-ride scar-less fetal 

wound healing and induce scarring, known clinically as fibrosis.18 Fibrosis is 

characterized by the excessive deposition of extracellular matrix molecules, such as type 

III and other fibrillar collagens, enhanced ECM contraction by αSMA expressing 

myofibroblasts and loss of tissue/organ function.19,20 Major organs such as liver, kidney, 

lung and heart are all susceptible to fibrosis which, due to the current lack of effective 

treatments, often has fatal consequences.21-24 

Persistent myofibroblasts are the major cellular cause of fibrotic tissue formation, 

whereas in normal healing conditions, these highly contractile cells are mostly depleted 

by apoptosis, de-differentiation or migration away from the wound site.25 In embryos, the 

expression levels of TGF-β1 are generally lower relative to adults, inversely correlating 

with their capacity to achieve scar-less healing.26,27 Targeting and neutralizing TGF-β at 

the margins of healing wounds in adult rats by injection with neutralizing antibodies 

attenuated fibrotic healing when compared to rats without treatment.28 However, TGF-β 

in the myocardial muscle of mice was found to have protective effects against myocardial 

infarction. TGF-β was also found to prevent septic shock in the hearts, lung and liver of 

rats29,30, revealing the importance of TGF-β during wound repair and the difficulties 

associated with targeting it as a fibrosis treatment. Although much is known about 

myofibroblasts and fibrosis development, it is still unclear how or why myofibroblasts 

persist and cause fibrotic tissue repair. 
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 Inflammation and Fibrosis 

Adequate intensity and duration of the early inflammatory phase of wound healing is 

crucial to eliminate pathogens at the wound site. However, persistent inflammatory 

responses of either excessive or inadequate intensity, and/or that fail to resolve (i.e. 

chronic inflammation) can result in fibrosis. Leukocytes, such as macrophages, that 

secrete cytokines are key contributors to inflammation.31 Monocyte-derived macrophages 

express factors such as TGF-β and platelet derived growth factor (PDGF), which induce 

fibroblast activation into myofibroblasts, migration, and proliferation for contraction and 

collagen production.32 Myofibroblasts also contribute to the inflammatory response by 

secreting cytokines in addition to ECM molecules, such as fibronectin (FN), which has 

been shown to upregulate key pro-inflammatory cytokines such as interleukin-8 (IL-8) 

and tumor necrosis factor (TNF).33 The persistent expression of classical pro-

inflammatory cytokines such as IFN-γ, TNF and IL-6 in the liver and peritoneum of mice 

were shown to be pro-fibrotic; however, inhibition of any one these cytokines led to 

decreased fibrotic responses, illustrating causal links between persistent inflammation 

and fibrosis development.34,35 

Murine models of fibrosis also suggest that prolonged inflammation is key to fibrotic 

healing. The anti-cancer drug bleomycin, used to promote pulmonary fibrosis in mice, is 

pro-inflammatory and induces the expression of IL-8 in human pulmonary microvascular 

endothelial cells.36 Another pro-inflammatory cytokine, IL-1β, has also been shown to 

induce pulmonary fibrosis in mice.37 Pirfenidone, a non-steroidal anti-inflammatory drug, 

inhibited bleomycin-induced pulmonary fibrosis in mice by decreasing levels of IL-1β.38 

Although these and other studies suggest that prolonged pro-inflammatory processes 

contribute to fibrosis development, there are still many gaps in our knowledge of the 

molecular mechanisms that link these processes.  
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 Dupuytren’s Disease 

Dupuytren’s Disease (DD), also known as Dupuytren’s Contracture, palmar fibromatosis 

or palmar fascia fibrosis, was originally described by Felix Plater in 1614, but is named 

for the famous French surgeon who may have been the first to operate on patients with 

this condition, Baron Guillaume Dupuytren.39 DD is a common, heritable and benign 

fibrosis of the palmar fascia characterized by excessive ECM deposition into fibrotic 

palmar nodules that often develop into palmar-digital contractures (Fig. 1.2). The ulnar 

digits and middle finger most often develop contracture, whereas the thumb and index 

fingers are less frequently affected.40 Palmar-digital contractures, if left untreated, are 

permanent. Patients suffering from severe DD cannot extend their affected digits and this 

can severely impact their quality of life. DD is most prevalent in men over the age of 60 

who are also of eastern European, Irish or Scandinavian descent, where it can affect more 

than 30% of this population.41 The prevalence of DD in North America is believed to be 

as high as 7%.42 The development of DD is hypothesized to be the result of abnormal 

palmar fascia repair after injury, where amplified cellular responses to inflammatory 

cytokines promote the persistence of hyper-contractile myofibroblasts.43-46 In addition to 

the heritable (genomic) components of DD, lifestyle choices such as smoking and 

alcoholism have also been implicated in the development of this disease.47  

 

 DD Initiation and Progression 

DD is hypothesized to be initiated by abnormal wound healing processes after palmar 

fascia injury and severity of the disease is classified in several stages or categories. 

Classifications are based on severity of the contracture relative to neutral (0°, extended): 

stage I (≤45°), stage II (46-90°), stage III (91-135°) and stage IV (>135°).44 Histological 

analyses of these stages by Dr. Robert M. McFarlane, a world-recognized Canadian 

surgeon, co-founder of the Roth McFarlane Hand and Upper Limb Centre and expert in 

the treatment of DD, was the first to confirm that DD is a condition of the palmar fascia 

and not of the tendons or palmar skin. The earliest stage of DD is typically the formation 

of nodules in the palm containing proliferative spindle shaped cells. While there is no 
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evidence of excessive collagen deposition or contracture during the nodule stage, the 

palmar fascia around nodules can progressively thicken as the disease extends along the 

fascia, culminating in the formation of dense, multi-nodular, collagenous “cords” that 

induce palmar-digital contractures and loss of hand function48.  
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Figure 1.2. Progression of Dupuytren’s Disease. 

The earliest stage of Dupuytren’s Disease is the formation of nodules. Nodules may be quiescent for years before 

extending along the palmar fascia into rope-like cords. Cords may extend across the metacarpal phalangeal (MCP), 

proximal interphalangeal (PIP) and distal interphalangeal (DIP) joints to induce debilitating palmar-digital contractures. 

Image by T. H. Trojian et al, Am Fam Physician (2007). 
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 Treatment of DD 

Fasciectomy, a form of invasive surgery to remove the contracted fascial tissues and 

restore palmar-digital extension, is often recommended to patients with debilitating 

contractures. Where operating room procedures are not warranted or are deemed too 

risky, other less invasive treatment modalities can be used. Two commonly utilized 

treatment options are percutaneous needle fasciotomy and collagenase clostridium 

histolyticum injections. Both involve the skilled use of a venipuncture needle to punch 

holes into the fibrotic palmar fascia tissue while avoiding adjacent nerves and blood 

vessels. Percutaneous needle fasciotomy physically dissects the contracture cord into 

sections, releasing the contracture tension and allowing extension of the digit. 

Collagenase clostridium histolyticum injections digest, instead of physically dissecting, 

the contracture cord to achieve contracture tension release and, typically 24 hours after 

treatment, extension of the affected digit.   

Non-invasive treatment options include topical vitamin E or steroids to reduce 

inflammation, and physical therapy (splinting, massage or joint stretching) to increase 

joint maneuverability of the affected site.49,50 Radiotherapy can also be employed, most 

effectively at the nodule stage, to reduce the development or activation of 

myofibroblasts.51 Non-invasive treatment options are less frequently utilized than 

invasive treatments,  potentially due to the lack of studies and evidence supporting their 

efficacy in “curing” or preventing disease recurrence.52  

All of the currently available interventions fail to prevent disease recurrence in at least 

30% of patients.53,54 Non-invasive options are widely considered ineffective and therefore 

not recommended to patients with advance DD, further limiting treatment options for 

those suffering with disabling contractures.52 Post-operative complications can include 

permanent joint stiffness and reflex sympathetic dystrophy which can result in lifelong 

pain in patients that have undergone invasive surgeries.55 In severe cases, ray amputation, 

where the entire finger and the corresponding metacarpal bones are removed, can be 

employed as a last resort. This approach does not prevent the formation of contractures in 

the remaining digits. In summary, there is a clear need for more effective, evidence-based 

treatments for this debilitating disease.  
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 Molecular Signatures of DD 

Fibrotic palmar fascia can be differentiated from healthy tissue by histopathology. Firstly, 

collagen type III is highly abundant when compared to collagen type I which correlates 

with higher myofibroblast density in DD palmar fascia relative to healthy.56 In addition to 

high cell density, these myofibroblasts persist and proliferate due to release of growth 

factors, such as PDGF, FGF 41 and possibly  Insulin-like Growth Factor-II (IGF-II).57 

IGF-II promotes cellular proliferation in a variety of cancers, however Raykha et al have 

shown that IGF-II can also enhance collagen contraction by myofibroblasts derived from 

fibrotic palmar fascia. Some pro-inflammatory cytokines are also considered to be 

molecular signatures of DD. Izadi et al have reported abnormally high levels of tumor 

necrosis factor receptor 2 (TNFR2) and interleukin-33 (IL-33) in DD, both of which are 

associated with TNF signaling, a classic pro-inflammatory molecule.58 As shown in Fig. 

1.3, TNF expression is significantly higher in fibrosis derived DD fibroblasts, relative to 

“healthy” syngeneic (PF) and allogeneic (CT) control fibroblasts, further implicating 

inflammation in the development of DD.  

Another molecular characteristic of DD is increased cytoplasmic and nuclear levels of ß-

catenin, a well-known cancer associated trans-activator of gene transcription.59 

Chromatin immunoprecipitation analyses of ß-catenin interactions in fibroblasts derived 

from DD revealed that ß-catenin interacts with factors that bind the Wilms’ Tumor 1 

(WT1) gene, another known cancer associated transcription factor. While the roles of ß-

catenin in regulating WT1 expression levels are currently being investigated,  Crawford et 

al reported that WT1 protein and WT1 gene transcript expression are abnormally high in 

fibrotic palmar fascia tissue and fibroblasts derived from this tissue, respectively (Fig. 1.4 

and 1.5).60 It is currently unclear what roles these cancer associated molecules, including 

WT1, play in the development of DD, or if any of these molecules have potential as 

therapeutic targets to prevent DD progression and/or recurrence.  
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Figure 1.3. TNF mRNA expression is increased in primary fibroblasts derived from 

Dupuytren's Disease tissues. 

TNF gene expression was assessed using Taqman primers (Thermofisher Scientific) in cDNAs derived from total RNA 

samples extracted from DD, PF and CT fibroblasts (each N=3, **p <0.001 as determined by ANOVA). Transcript 

levels were normalized to the expression of RPLPO as described in Chapter 2. 
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Figure 1.4. WT1 gene expression is increased in DD fibroblasts. 

WT1 gene expression was assessed using Taqman primers (Thermofisher Scientific) to amplify a region in exons 3 and 

4 (as shown as forward and reverse arrows) in cDNA derived from total RNA extracted from DD, PF and CT 

fibroblasts (N = 13, 13, and 6 respectively, * p < 0.05). From Crawford et al, JCCS 2015. 
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Figure 1.5. WT1 immunoreactivity in fibrotic and visibly unaffected palmar fascia 

tissues. 

WT1 immunoreactivity in fibrotic and normal palmar fascia: Paraffin embedded fibrotic (A, B and C) and 

macroscopically unaffected palmar fascia (D) tissues were sectioned and assessed for WT1 immunoreactivity. The 

antibody clone 6F-H2 used for these analyses is reported to recognize an epitope in exon 1 of canonical WT1. Tissues 

were counterstained with Gills hematoxylin to distinguish cell nuclei from palmar fascia tissue matrix. From Crawford 

et al, JCCS 2015. 
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 Wound Healing and Cancer 

Potential connection and similarities between cancers and wound healing were noted as 

early as in 1974 by Sir. Alexander Haddow, famous for discovering the Haddow effect, 

however widespread interest in this idea gained traction when Dr. Harold Dvorak 

published  “Tumors: wounds that do not heal” in 1986.61,62 Comparisons by Dr. Dvorak 

and other researchers indicated that cancer development and wound healing relied on 

similar processes at the molecular level, such as the production of vascularized 

connective tissue stroma, a process in which VEGF plays an essential role.63 In parallel 

with their roles in wound healing, inflammatory cells such as macrophages can contribute 

to an inflammatory microenvironment that promotes cancer cell growth and metastasis in 

osteosarcoma.64 Additionally, IGFs promote cellular proliferation during wound 

remodelling67 as well as promoting tumor invasion and chemoresistance.65,66 

Fibroblasts play central roles in wound healing that include facilitating wound closure 

and tissue remodelling. These cells are also key contributors to cancer development and 

progression. Recent findings suggest that activated fibroblasts are multipotent and 

capable of differentiating into adipocytes or chondrocytes which can contribute to the 

growth of tumors.67 Fibroblasts that are “cancer associated” (CAF) are capable of 

remodeling the extracellular matrix to promote resistance to chemotherapy, secreting 

growth factors that drive cancer growth and recruiting immune cells which are capable of 

modulating the tumor microenvironment.67 Bissel et al have shown that cancer formation 

at sites of injury requires an inflammatory response.68 These and other similarities 

between wound healing and cancer development are still being revealed as ongoing 

research provides additional evidence linking these processes. 

 

 WT1 in Cancers and Development 

One novel potential contributor to both cancer and DD development is Wilms Tumor 1 

(WT1). Originally identified in pediatric kidney (Wilms) tumors, the roles of WT1 in 
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cancer growth are context dependent, such that it is tumor growth suppressive or 

promoting in different cancers.69 WT1 transcripts are alternatively spliced and different 

splice variants encode regulatory proteins that can modify cancer cell growth and 

development.70 Amongst 30+ potential WT1 mRNA variants, there are four major splice 

variants which have been identified and well-studied in leukemia.71 These splice variants 

are differentiated by the inclusion or exclusion of exon 5, encoding a 17 amino acid insert 

between the trans-regulatory and zinc finger domains of WT1, and by the alternative 

splicing of a region at the end of exon 9 encoding a Lysine-Threonine-Serine (KTS) 

motif within the zinc finger DNA binding domain (Fig. 1.6A).72,73 Protein isoforms 

lacking the KTS motif (KTS-) are reported to bind DNA and act as transcription factors 

whereas KTS positive (KTS+) isoforms have diminished DNA binding and are proposed 

to have (as yet poorly defined) roles in RNA splicing.74  The functional domains of WT1 

include an RNA binding and repression domain located in regions of WT1 encoded by 

exon 1, an activation domain located in regions of WT1 encoded by exon 5, and zinc 

finger domains located in regions of WT1 encoded by exons 7 through 10 (Fig. 1.7).  

In addition to alternative splicing, WT1 variants can be transcribed from at least three 

alternative start sites. Relative to the transcriptional start site of “canonical” WT1 

transcripts, there is a 5’ “extended” (ExtWT1) transcript that initiates at a CUG encoded 

upstream of the canonical sequence AUG start site, an “alternative” (AWT1) transcript 

that initiates at an AUG encoded within intron 1,  and a truncated variant (TrWT1) that 

initiates from an AUG encoded within intron 5 (Fig. 1.6B).75-80 ExtWT1 transcripts are 

reportedly overexpressed in many different cancer cell lines and are causally linked to 

increased expression of several well-known cancer associated genes including C-myc, 

Bcl-2 and Egfr.76 Interestingly, AWT1, which encodes for a protein lacking the exon 1 

repression domain of canonical WT1, has been reported to be overexpressed in leukemias 

and to result in increased expression of CCNE1 and IGF1.78 The functional properties of 

TrWT1 transcripts are currently unknown. 

In addition to cancers, WT1 expression has also been implicated in organogenesis and 

homeostasis. Kreidberg et al demonstrated that WT1-/- null mice do not develop kidneys 

or gonads and die before birth, demonstrating the importance of Wt1 expression in the 
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developing fetus.117 WT1 may also have roles in the developing heart. Mouse embryos 

lacking expression of Wt1 in the epicardium lack coronary vasculature and also die 

before birth.118 The lack of vasculature may be explained by the proposed roles for WT1 

in angiogenesis. Wagner et al reported that conditional deletion of Wt1 in endothelial 

cells of mice and subsequent cancer cell injections resulted in reduced tumor 

vascularization.119 Although it is becoming clear that WT1expression is required during 

the development of several organs, WT1 expression in adulthood is not ubiquitous. In 

adults, WT1 expression is found mostly in glomerular podocytes and mesothelium of 

some organs.120 Conditional knock-out of Wt1 expression in podocytes of mice resulted in 

stunted kidney function and glomerulosclerosis.121 The roles of any specific WT1 

isoforms in wound healing or fibrosis development are essentially unknown.  
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Figure 1.6. WT1 gene structure, alternatively spliced and alternative start site 

mRNA transcripts 

The WT1 gene is located on p arm of chromosome 11 and contains 10 major exons with multiple alternative 

transcriptional start sites. Major sites of alternative mRNA splicing are exon 5 (Ex5) and the end of exon 9 (KTS), 

denoting a sequence that encodes a KTS motif previously reported to impact the DNA binding and transcriptional 

capacity of the translated protein. (A) The four major alternative splice variants are shown as A: Ex5-/KTS-, B: 

Ex5+/KTS-, C: Ex5-/KTS+, and D: Ex5+/KTS-. (B) Previously reported alternative transcriptional start sites relative to 

canonical WT1 mRNA transcripts include intron 1 (alternative WT1), intron 5 (truncated WT1) and the 5’ untranslated 

region (extended WT1). Each of these four transcript variants can also be alternatively spliced, and thus there are four 

possible canonical WT1 variants, four possible AWT1 variants, two possible TrWT1 variants and four possible 

ExtWT1 variants, accounting for 14 different WT1 isoforms. 
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Figure 1.7. Functional domains encoded by WT1 mRNA variants. 

Diagram of the 4 major canonical WT1 mRNA variants and the functional domains encoded. WT1 functional domains 

include RNA binding and repression domain encoded by exon 1, an activation domain encoded by exon 5, and zinc 

finger domains encoded by exons 7 through 10. Alternative splice sites are indicated by black boxes. This figure was 

adapted from K. Kramarzova et al Leukemia (2012).  

 

 

 

 

 

 

 

 



19 

 

 WT1 in Fibroses 

Crawford et al was the first report of increased WT1 mRNA levels and WT1 

immunoreactivity in DD.60 Potential roles for WT1 in the development of other fibroses 

have been proposed. Increased WT1 transcript expression has been reported in lung and 

liver fibroses, indicating potential roles for WT1 in the development of fibrosis in 

different tissue and organs.81,82 However, the roles of WT1 in lung fibrosis development 

are controversial and, currently, contradictory. Sontake et al have demonstrated that WT1 

expression was exclusive to idiopathic pulmonary fibrosis (IPF), and that no evidence of 

WT1 expression was evident in healthy lungs.82 Consistent with pro-fibrotic roles for 

WT1, they showed that knock down of WT1 in murine models of IPF attenuated the 

expression of extracellular matrix molecules and αSMA by fibroblasts. In contrast, Karki 

et al provided evidence that WT1 expression was required for the integrity of healthy 

lungs and that the loss of WT1 expression led to IPF development.83 These discrepancies 

are currently unresolved. WT1 has recently been assessed (unpublished data) as a 

potential biomarker of fibrosis in murine models of Duchenne Muscular Dystrophy, a 

debilitating disease resulting in skeletal muscle atrophy and fibrosis. Conflicting reports 

and the inherent complexity of multiple WT1 isoforms with (potentially) different, 

context dependent roles in normal or abnormal tissue repair, make this a complex but 

intriguing research focus.  Therefore, the objectives of this study were to investigate the 

roles of specific WT1 isoforms in DD, and by extension, other connective tissue fibroses.  

 

 Rationale 

To study DD, primary human fibroblasts were derived from resected DD tissue (DD 

fibroblasts), visibly non-fibrotic tissue from the adjacent palmar fascia (PF fibroblasts 

from the same DD patient) as genetically matched (syngeneic) controls and normal 

palmar fascia from patients with no prior history for Dupuytren’s Disease (CT 

fibroblasts) as allogeneic controls. Where possible, these cells were cultured in 3D 

collagen-based hydrogels to more closely replicate tissue repair-associated processes 

such as 3D proliferation, migration and tissue remodeling/contraction in vivo. Surgical 
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resections to obtain palmar fascia tissues for cell derivation were performed by surgeons 

of the Roth McFarlane Hand and Upper Limb Clinic at St. Joseph’s Hospital in London, 

Ontario in accordance with institutional ethics guidelines and approval (HSREB 104888). 

Prior to the commencement of this project, Crawford et al has determined that WT1 

mRNA levels and WT1 immunoreactivity were abnormally high in primary DD 

fibroblasts and contracture tissues relative to syngeneic PF controls (Fig. 1.4, Fig.1.5).60 

Expanding on these studies, the O’Gorman laboratory have also investigated the 

expression of alternatively spliced WT1 mRNA transcripts using PCR primers that 

spanned exon 5 and the KTS-encoding section of exon 9. Splice-transcript-specific PCR 

analyses determined that DD fibroblasts expressed all four splice options (Ex5-/KTS-, 

Ex5+/KTS-, Ex5-/KTS+, and Ex5+/KTS-), unlike syngeneic controls, which did not 

express any detectible WT1 mRNA transcripts using this approach (Fig. 1.8).  
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Figure 1.8. DD fibroblasts express alternatively spliced WT1 mRNA transcripts. 

Representative image of transcript-specific PCR amplification of reverse transcribed WT1 mRNAs with or without 

alternative splicing of exon 5 (Ex5) and/or the 3’ end of exon 9 (KTS).  Lanes A: Ex5-/KTS-, B: Ex5+/KTS-, C: Ex5-

/KTS+, and D: Ex5+/KTS- were assessed in DD fibroblasts and in syngeneic (PF) controls. cDNA derived from the 

OVCAR3 ovarian cancer cell line was used as a positive control. Data produced by Ana Pena Diaz prior to this project. 

Primer sequences were adapted from Kramarzova et al, Leukemia 2012. 
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To determine if the expression of WT1 transcripts in palmar fascia fibroblasts were 

regulated by the pro-inflammatory cytokines that characterize the early inflammation 

stage of tissue repair, DD, PF and CT fibroblasts were treated with a pro-inflammatory 

“cytomix” of TNF, IL-1ß and IFN-. DD, PF and CT fibroblasts treated with these 

cytokines for 24hrs (0.5 ng/ml) showed a significant (~10 fold) increase in WT1 mRNA 

levels based on amplification of sequences encoded in exons 3 and 4 (Fig. 1.9). 

Furthermore, the WT1 mRNA transcripts induced by pro-inflammatory cytokine stimuli 

in PF and CT fibroblast controls included the four major WT1 splice variants shown in 

Fig. 1.8 to be expressed in DD fibroblasts (i.e., Ex5-/KTS-, Ex5+/KTS-, Ex5-/KTS+, and 

Ex5+/KTS-) (Trisiah Tugade 4th year thesis, data not shown). These data were interpreted 

to suggest that DD fibroblasts are in a chronically cytokine-activated state, where WT1 

transcript expression is constantly induced, whereas PF and CT fibroblasts are in a 

relatively quiescent state in the absence of cytokine stimulus. These data are consistent 

with the hypotheses that a transient increase in WT1 transcript expression is a normal 

aspect of palmar fascia repair during the inflammation stage, and that sustained WT1 

expression in DD cells may be causally linked to fibrosis development.  
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Figure 1.9. WT1 mRNA expression in DD, PF and CT fibroblasts is induced by pro-

inflammatory cytokines.  

WT1 mRNA level were assessed by qPCR in DD, PF and CT fibroblasts, with (-Cyt) or without stimulation with a 

cytomix of TNF, IL-1ß and IFN- (0.5ng/ml for 24 hours). N = 3, n = 3, * p < 0.05, ** p < 0.01 by ANOVA). Forward 

and reverse arrows represent Taqman primers recognizing and binding exons 3 and 4 of WT1 mRNA respectively. Data 

produced by Trisiah Tugade (4th year student) prior to this project. 
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The central hypothesis of this thesis is that abnormally sustained expression of specific 

WT1 protein isoforms by DD myofibroblasts, induced by local chronic inflammation, 

promote fibrosis development. If this hypothesis is supported, these findings would 

implicate WT1 protein isoforms as potential therapeutic targets to prevent DD 

progression and recurrence. 

The specific goals of this thesis were to: 

1) Characterize the WT1 mRNA start site variants that DD, PF and CT fibroblasts 

express, with and without pro-inflammatory cytokine stimuli, using 5’RACE, 

transcript specific PCR and cDNA sequencing.  

2) Identify any DD fibroblasts specific WT1 mRNA transcripts that may encode 

fibrosis specific WT1 transcription factor isoforms. 

3) Express fibrosis specific WT1 transcripts in syngeneic and allogeneic control cells 

and assess any changes in gene expression using RNA sequencing and 

bioinformatic analysis. 

4) Determine if constant expression of DD-associated WT1 transcripts conferred a 

fibrosis-like phenotype on PF or CT fibroblasts. 

5) Determine if the constant expression of DD associated WT1 transcripts in PF and 

CT fibroblasts induced the secretion of factors that modified the expression of 

cytokine-encoding genes in THP-1 monocytes as an in vitro model of paracrine 

interactions during tissue repair. 
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Chapter 2  

2 METHODOLOGY 

 Derivation of Primary Fibroblasts and Cell Culture 

Palmar fascia tissue samples were surgically resected from patients with Dupuytren’s 

Disease (DD) and from patients undergoing hand surgery for unrelated conditions. 

Primary human fibroblasts were derived from visibly fibrotic palmar fascia tissue (DD 

fibroblasts) and from visibly non-fibrotic tissue from the same patient (PF fibroblasts) as 

syngeneic controls. Normal palmar fascia fibroblasts (CT fibroblasts) were derived from 

patients with no history of DD undergoing hand surgery for unrelated conditions, 

typically carpal tunnel release surgeries, and were utilized as allogeneic normal controls. 

Surgical resections to obtain palmar fascia tissues for cell derivation were performed by 

surgeons of the Roth McFarlane Hand and Upper Limb Clinic at St. Joseph’s Hospital in 

London, Ontario in accordance with institutional ethics guidelines and approval (HSREB 

104888).Cells were cultured in Dulbecco Modified Eagle Medium (DMEM) (Gibco) 

supplemented with 8% fetal bovine serum (FBS) (Gibco), L-glutamine and antibiotic-

antimycotic at 37 °C and under 5% CO2. All cell cultures were used up to a maximum of 

6 consecutive passages where possible to minimize any in vitro culture-induced changes 

in gene expression and/or phenotype. 

 

 RNA Extraction and First Strand Synthesis (cDNA) 

Total RNA was isolated from DD, PF and CT fibroblasts in TRIzol (Thermofisher 

Scientific) using Direct-zol RNA extraction kit (Zymo Research, Cat# R2072) according 

to manufacturer’s protocol. RNA isolates were DNase treated for 25 minutes to remove 

genomic or viral DNA contaminants and were assessed for quantity and quality (A260//280 

and A260/230) using a DeNovix DS-11 Spectrophotometer. High quality RNA (2g) was 

reversed transcribed into first strand cDNA using the High-Capacity cDNA Archive Kit 

(Applied Biosystems) according to manufacturer’s instructions. The following 
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thermocycle was utilized: 25 °C for 10 minutes, 37 °C for 2 hours, 85 °C for 5 minutes, 4 

°C. All cDNA samples were stored at -20 °C. 

 

 Quantitative Taqman Polymerase Chain Reaction (PCR) 

analyses  

One microlitre aliquots of first strand cDNA were assessed in triplicate for qPCR 

analyses using Taqman Primers (Thermofisher Scientific. See Appendix A) and Fast 

Advanced Taqman Master Mix (ThermoFisher Scientific) at a total volume of 10l. 

qPCR reaction was set for initial denaturation at 95 °C for 20 seconds followed by 40 

cycles of denaturation at 95 °C for 1 second and annealing/extension at 60 °C for 20 

seconds using Quantstudio 5 Thermocycler (ThermoFisher Scientific). The level of 

expression of target genes were calculated using ∆∆Ct method84, normalized to RPLP0 or 

GAPDH housekeeping gene and relative to CT controls or THP-1 monocultures. 

Negative controls included minus reverse transcriptase and minus cDNA. 

 

 Qualitative PCR 

First strand cDNA (100ng) was added into PCR master mix containing 10x PCR buffer 

(5l), 50mM MgCl2 (1.5l), 25mM dNTP (0.5l), forward primer (1l), reverse primer 

(1l), Platinum Taq Polymerase (0.4l) and ddH2O to a final volume of 50l. Forward 

and reverse primers were designed in house, synthesized by Sigma Aldrich, and 

reconstituted to a concentration of 10M in ddH2O. Forward and reverse primer pairs 

were chosen to cross exon-exon boundaries to avoid amplification of genomic DNA. 

Touchdown PCR was carried out with initial denaturation at 95 °C for 5 minutes 

followed by 35 cycles of 95 °C for 30 seconds, annealing of 68 °C for 25 seconds and 

extension of 72 °C for ≤1 minute. Final extension was carried out at 72 °C for 10 minutes 

and held at 4 °C or frozen at -20 °C until needed. Amplified products were separated on 

10% polyacrylamide gels at 90V for ~1.5 hours, stained with ethidium bromide and 

imaged using a gel imaging dock (Bio-Rad). Alternatively, amplified products were 
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separated in 1% agarose at 90V for ~1.5 hours, stained with ethidium bromide and bands 

were excised for cDNA extraction using QIAquick Gel Extraction Kit (Qiagen, Cat# 

28704). Amplified DNAs samples were sent to the London Regional Genomics Center at 

Robarts Research Institute for DNA sequencing. 

 

 5’ Rapid Amplification of cDNA Ends (5’RACE) 

DD fibroblasts were cultured as FPCLs and stimulated with TNF, IFN-γ and IL-1β 

(0.5ng/ml) for 24 hours. RNA was extracted from DD fibroblasts and 5g of total RNA 

was used for 5’RACE in accordance with manufacturer’s protocol (ThermoFisher 

Scientific, Cat# 18374058). In brief, mRNA was copied into cDNA using GSP1 

(Appendix 2) and superscript™ II reverse transcriptase and subsequently RNase treated 

to remove mRNA. TdT (terminal deoxynucleotidyl transferase) tailing of cDNA was then 

performed to create an abridged anchor primer binding site on the 3’-end of the cDNA 

for downstream amplification using abridged anchor primer (provided in kit) and GSP2 

(Appendix 2). Amplified products from 5’RACE were reamplified using nested primers 

to determine amplified WT1 transcripts (Appendix 2). Touchdown PCR was carried out 

with an initial denaturatio0n at 95 °C for 5 minutes followed by 35 cycles of 95 °C for 30 

seconds, annealing of 68 °C for 25 seconds and extension of 72 °C for ≤1 minute. 

 

 Protein Isolation and Quantification by Enzyme-Linked 

Immunosorbent Assay (ELISA) 

Fibroblasts were cultured in T75 flasks until 70% confluence. The cells were detached 

with trypsin (Gibco) for 5 mins at 37°C, and the detached cells were centrifuged at 700 x 

g. The cell pellets were isolated and resuspended in supplemented (0.1M NaF, 10mM 

PMSF and 10mM Na3VO4) RIPA buffer (Teknova), aspirated through a 27.5G needle to 

rupture the cells, and then centrifuged (12,000 x g) for 2 minutes. Supernatants 

containing protein lysate were quantified using the Bicinchoninic Acid (BCA) protein 

assay kit (Pierce BCA Protein Assay Kit, ThermoFisher Scientific, Cat# 23227) 
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according to manufacturer’s protocol. 1g of total protein lysate was used for WT1 

quantification by human Wilms tumor protein ELISA kit (Mybiosource, Cat# 

MBS761090) according to manufacturer’s protocol.  

 

 Adenoviral Amplification and Transduction 

HEK293 cells were cultured in DMEM supplemented with 8% FBS, L-glutamine and 

antibiotic-antimycotic until 60-70% confluency.  1mL viral stock solutions of containing 

either cDNA encoding AWT1 (Ex5+, KTS-) (Vigene Biosciences VH801783) or cDNA 

encoding green fluorescent protein (GFP) (Vigene Biosciences CV10001) was added to 

infect cells (Appendix 6). Infected HEK293 cells were cultured until 95% of the cells 

detached from the dishes, collected and subjected to 3 freeze/thaw cycles in -80 °C 

freezer and 37 °C water bath. Cellular debris was removed by centrifugation for 10 

minutes at 700 x g. Viral supernatant was collected, aliquoted and stored at -80 °C. CT 

and PF fibroblasts were transduced with adenovirus expressing either AWT1 (AdAWT1, 

Ex5+/KTS-) or GFP (AdGFP as viral control) at 1:3000 in DMEM in 30mm culture 

dishes for 24 hours. Exogenous expression of WT1 was maintained for 72 hours prior to 

RNA extraction for qPCR or RNA sequencing analyses. 

 

 Western Immunoblotting for AWT1 

Twenty micrograms of total protein lysate samples in RIPA buffer were derived from the 

OVCAR3 ovarian cancer cell line (positive control for WT1 protein)85 and from CT 

fibroblasts transduced with either AdAWT1 or AdGFP and loaded onto Mini-

PROTEAN® TGXTM Precast Gels (Bio-Rad, 4-15% SDS) for electrophoresis at 100V 

for ~1.5 hours. The polyacrylamide gels were transferred to an iBlotTM PVDF Transfer 

Stack (ThermoFisher Scientific, Cat# IB401002) and transferred to PVDF using an 

iBlotTM Dry Blotting System (ThermoFisher Scientific). After protein transfer, the PVDF 

membrane was incubated with blocking solution consisting of 1x Tris-buffered saline 

supplemented with 0.1% TWEEN-20 (TBS-T) and 5% w/v bovine serum albumin (BSA) 
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for 45 minutes at room temperature. Primary WT1 antibody (D6M6S Rabbit mAb, Cell 

Signalling, Cat# 13580) was diluted at 1:1000 in TBS-T (5% w/v BSA) and incubated 

with PVDF membranes at 4°C overnight. PVDF membranes were washed in TBS-T 3 

times for 5 minutes each and incubated with anti-rabbit-HRP conjugated secondary anti-

body for 1.5 hours at room temperature, washed in TBS-T 3 times for 5 minutes each and 

incubated briefly in peroxidase: luminol solution at a 1:1 ratio of. Chemiluminescent 

images were captured using a Gel Doc XR+ System (Bio-Rad).  

 

 RNA Sequencing  

Total RNA samples were further assessed for quantity and quality using Agilent 2100 

Bioanalyzer. 1g of high-quality RNA from each sample was submitted to London 

Genomics Sequencing Center at Robarts for RNA sequencing (RNA-seq) and library 

preparation using Illumina NextSeq Mid Output Kit (Vazyme VAHTS Total RNA-seq 

(H/M/R) Library Prep Kit for Illumina®). The raw data generated by library preparation 

was then analyzed using Partek Flow® data analysis software. Raw data was aligned to 

reference human genome (hg38) using Spliced Transcripts Alignment to a Reference 

(STAR) tool, normalized using Trimmed Mean of M values (TMM) and differential 

analysis was performed using Gene Specific Analysis (GSA). Inclusion criteria for 

downstream analysis were p <0.05 and a fold change in gene expression of ≥ 1.5 or ≤-1.5. 

Heat-map, gene set enrichment, and pathway enrichment analyses were performed and 

generated using Partek Flow® software.  

 

 Preparation of Fibroblast Populated Collagen Lattices (FPCL) 

Sterile rat tail collagen (1.8mg/ml) was mixed in 4:1 with a neutralizing solution 

containing 10x Waymouth media (Sigma, Cat# W1625) and 0.34M NaOH (Sigma, Cat# 

221465) to a total volume of 500L. 1x103 fibroblasts in 50l volumes were added to 

500L of collagen mixture and cultured in triplicate in 24-well plates for 30 minutes until 

collagen polymerization was achieved at a total volume of 550l. DMEM supplemented 
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with 2% FBS, 1% L-glutamine and 1% antibiotic-antimycotic was added to the top of the 

polymerized collagen and incubated at 37 °C and 5% CO2 for 72 hours. FPCL cultures 

were then used for RNA isolation or for collagen contraction assays. 

 

 Collagen Contraction Assays 

Modified versions of the collagen contraction assays as described by Bell et al were 

performed using CT and PF fibroblasts with and without transduction with adenoviral 

vector expressing AWT1 variant or GFP.86 Fibroblasts were cultured as FPCLs in 24-well 

culture trays (as described in the previous section) as quadruplicates and maintained in 

DMEM supplemented with 2% FBS, 1% L-glutamine and 1% antibiotic-antimycotic at 

37 °C in 5% CO2 for 72 hours. The 72-hour incubation period was performed to allow for 

fibroblasts to respond to the stressed collagen lattice for activation to a myofibroblast 

phenotype as described by Tomasek et al.87 Collagen lattices were subsequently released 

from adhering to the culture wells. Floating lattices were digitally scanned using Canon 

scanner and observed over 0.5, 1, 2, 4, 6- and 24-hour time points. Surface area of the 

FPCL was measured using a free hand tool in Image J software, where a decrease in 

surface area over time was indicative of an increase in contraction. Data was represented 

as a measure of percent reduction in lattice area prior lattice release.  

 

 THP-1 Co-Cultures 

Immortalized THP-1 monocytes were obtained from American Type Culture Collection 

(ATCC) which were derived from blood samples obtained from a patient diagnosed with 

acute monocytic leukemia.88 THP-1 monocytes were maintained in Roswell Park 

Memorial Institute (RPMI) supplemented with 10% FBS, 1% L-glutamine and 1% 

antibiotic-antimycotic at 37 °C in 5% CO2. THP-1 cultures were kept below 106 cells per 

ml as recommended by ATCC. Prior to the addition of THP-1 monocytes, 1x105 

fibroblasts were seeded in 6-well trays in DMEM supplemented with 8% FBS, 1% L-

glutamine and 1% antibiotic-antimycotic for 24 hours. Subsequently, to generate 
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conditioned media, fibroblasts were cultured for an additional 48 hours in serum free 

media consisting equal parts of DMEM and RPMI supplemented with 1% L-glutamine 

and 1% antibiotic-antimycotic. Co-cultures were maintained for 24 hours and RNA was 

subsequently isolated from monocytes in co-culture or monoculture in TRIzol 

(Thermofisher Scientific) using Direct-zol RNA extraction kit (Zymo Research, Cat# 

R2072) according to manufacturer’s protocol. RNA was reverse transcribed using the 

High-Capacity cDNA Archive Kit (Applied Biosystems) according to manufacturer’s 

instructions. Gene expression analyses were performed on THP-1 monocytes from co-

culture and was relative to THP-1 monocultures 

 

 Statistical Analysis 

Statistical analysis was conducted using Prism8 (GraphPad) software. For the FPCL 

collagen contraction data, one-way ANOVA was performed to identify significant 

changes in collagen contraction between PF and CT fibroblast cells without adenoviral 

transduction and with adenoviral transduction (AdAWT1 or AdGFP). One-way ANOVA 

was also performed to determine significant differences in WT1 concentration or target 

gene expression between DD, PF and CT fibroblasts cell lysate. Paired t-tests were used 

to determine significant changes in target gene expression between PF and CT fibroblasts 

with adenoviral transduction (AdAWT1 or AdGFP). Findings were considered 

statistically significant when p < 0.05. 
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Chapter 3  

3 RESULTS 

 5’ Rapid Amplification of cDNA Ends (RACE) Analysis 

Reveals Alternative WT1 Transcriptional Start Sites in DD 

Fibroblasts 

Previous data from the O’Gorman laboratory had demonstrated that WT1 mRNA levels 

were upregulated in DD fibroblasts relative to PF and CT fibroblasts60, and that WT1 

mRNA expression levels could be induced by pro-inflammatory cytokines (TNF, IL-1β, 

IFN-γ) in all three cell types (Fig. 1.4, Fig. 1.9). At the commencement of this thesis, it 

was unclear whether the WT1 mRNA transcripts expressed by DD, PF and CT fibroblasts 

had similar or differing transcriptional start sites. The qPCR (Taqman) primer set used to 

amplify the reverse transcribed WT1 mRNA transcripts described in Crawford et al 

targeted to a region spanning exons 3 and 4 of the canonical WT1 mRNA sequence (Fig. 

1.4). It was possible, therefore, that DD, PF or CT fibroblasts might express additional 

WT1 mRNA alternative start site isoforms that did not include the sequences targeted by 

this qPCR (Taqman) primer set and were therefore yet to be detected.   

To investigate this possibility, DD fibroblasts were treated with pro-inflammatory 

cytokine stimuli for 24 hours to maximize WT1 transcript expression before isolating 

total RNA and performing WT1 mRNA start site analyses using 5’ Rapid Amplification 

of cDNA ends (5’RACE). Using this approach, 5’RACE products were reamplified using 

nested primers (Appendix 2), designed for the detection of the WT1 transcripts start site 

variants previously reported in cancers.75-80 PCR amplicons consistent with WT1 mRNA 

transcribed from the canonical start site (canonical WT1, Fig. 3.1A), intron 1 (AWT1, Fig. 

3.1B) and 5’ untranslated region (ExtWT1, Fig. 3.1C), were all detected in DD fibroblasts 

after cytokine stimulus.  
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Figure 3.1. Cytokine stimulated DD fibroblasts express WT1 transcripts transcribed 

from alternative start sites. 

PCR reamplification of 5’RACE enriched WT1 transcripts. Lane A: Nested forward and reverse primers targeting 

exons 1 and 3 respectively of canonical WT1 sequence to enable the detection of WT1 transcripts containing exon 1 

(234bp amplicon). Lane B: Nested forward and reverse primers targeting intron 1 and exon 3 respectively of canonical 

WT1 sequence to enable AWT1 transcript detection (219bp amplicon). Lane C: Nested forward and reverse primers 

targeting a region encoding the 5’ untranslated region of canonical WT1 and exon 1 respectively to detect ExtWT1 

transcript amplification (152bp amplicon). Lane D: No reverse transcriptase control amplified with primer pairs for 

detecting ExtWT1. Red forward and reverse arrows represent WT1 exon/intron specific forward and reverse primer 

pairs for PCR reamplification. PCR amplification of canonical WT1 and AWT1 mRNA transcripts using in-house 

designed PCR primers resulted in amplicons that were 234bp and 219bp respectively.  The qPCR (Taqman) primer set 

used to detect WT1 mRNA transcripts in Crawford et al, which amplify a region between exons 3 and 4 (shown as blue 

forward and reverse arrows) in the canonical WT1 mRNA sequence, are shown for comparison.16 
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 AWT1 is Constantly Expressed by DD Fibroblasts 

In order to assess the expression of the WT1 mRNA start site variants detected in the 

5’RACE analyses, transcript specific PCR analyses of WT1 were performed using custom 

designed primers. PCR amplified cDNA products were separated by electrophoresis in 

agarose gels and amplicons were extracted for DNA sequencing to confirm their identity. 

The analyses were initially performed using total RNA isolates from unstimulated DD, 

PF, and CT fibroblasts. Amplicons consistent with AWT1 (Fig. 3.2B) were detected in 

unstimulated DD fibroblasts, whereas truncated WT1 (TrWT1) transcripts, but not AWT1 

transcripts, were detected at low frequency in unstimulated PF and CT fibroblasts (Fig. 

3.2C). Canonical WT1 expression was not detected in any unstimulated DD (Fig. 3.2A), 

PF and CT fibroblast RNA samples assessed.  

As mentioned previously, WT1 expression was found to be upregulated and inducible in 

palmar fascia derived fibroblasts. Therefore, additional transcript specific PCR analyses 

were performed to determine if specific WT1 transcript start site variants were induced in 

DD, PF, and CT fibroblasts after 24 hours of cytokine stimulus (TNF, IL-1β, IFN-γ). In 

contrast to unstimulated fibroblasts, amplicons consistent with canonical WT1 and AWT1 

transcripts were detected in a subset of cytokine stimulated PF and CT fibroblasts (Fig. 

3.3A-B). Canonical WT1 and AWT1 transcripts were readily detectable in all cytokine 

stimulated DD fibroblast RNA samples assessed (Fig. 3.3C). 
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Figure 3.2. Unstimulated DD fibroblasts expressed AWT1 transcripts, whereas PF 

and CT fibroblasts express TrWT1 transcripts. 

Representative images of RT-PCR amplification using intron/exon-specific primers of first strand cDNA for WT1 

variants in DD (N=5), PF (N=4) and CT (N=5) fibroblasts under basal culture conditions. Amplified PCR products 

were separated in 1% agarose gels, excised and purified for confirmatory DNA sequencing. (A) RT-PCR amplification 

of exons 1-3 (canonical WT1) in DD (N=5) samples (452bp). (B) RT-PCR amplification of intron 1 to exon 3 (AWT1) 

in DD, PF and CT samples (219bp). (C) RT-PCR amplification of exons 6 to exon 9 (KTS+) (TrWT1) in PF and CT 

samples (382bp). RT-cDNA from OVCAR3 was included as a positive control (+).  
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Figure 3.3. Canonical WT1 and AWT1 transcripts are cytokine inducible in palmar 

fascia fibroblasts. 

Representative images of RT-PCR amplification using intron/exon-specific primers of first strand cDNA for WT1 

variants in DD (N=5), PF (N=4) and CT (N=5) fibroblasts after pro-inflammatory cytokine stimulus (TNF, IL1β, IFNγ) 

for 24 hours. Amplified PCR products were separated in 1% agarose gels, excised and purified for confirmatory DNA 

sequencing. (A) RT-PCR amplification of exons 1-3 (canonical WT1) in PF and CT samples (452bp). (B) RT-PCR 

amplification of intron 1 to exon 3 (AWT1) in PF and CT samples (219bp). (C) RT-PCR amplification of exons 1-3 

(canonical WT1) in DD samples (452bp).  
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 WT1 Protein Levels are Significantly Increased in DD 

Fibroblasts Relative to PF and CT Fibroblasts 

The findings described in the previous sections indicated low level expression of trWT1 

mRNA transcripts in PF and CT fibroblasts, and moderate to high level expression of 

AWT1 mRNA transcripts specifically in DD fibroblasts.  It was unclear, however if any 

or all of these mRNA isoforms were translated into WT1 protein variants in these cells. 

A previous report by Crawford et al had shown that WT1 immunoreactivity was evident 

in DD contracture tissues, but not in adjacent, visibly non-fibrotic palmar fascia controls 

(Fig. 1.4).60 The antibody used for these analyses was reported (data provided by 

manufacturer, DAKO) to recognize an epitope encoded in exon 1 of the canonical WT1 

mRNA sequence. As this epitope was not predicted to be included in proteins encoded by 

TrWT1 or AWT1 mRNA transcripts (Fig 1.6B), these proteins, if present, would not have 

been detected in these IHC analyses. In the absence of WT1 variant-specific antibodies, a 

WT1 “sandwich” ELISA, which detects two different WT1 protein epitopes (details of 

which are proprietary information) was performed on cell lysates derived from DD, 

syngeneic PF and allogeneic CT fibroblasts. As shown in Fig. 3.4, WT1 

immunoreactivity was detected in all three cell types, and a significant increase (~25%, 

**p < 0.01) in WT1 immunoreactivity was evident in cell lysates derived from DD 

fibroblasts relative to CT controls. These data were interpreted to indicate that the TrWT1 

mRNA transcripts previously detected in PF and CT fibroblasts were translated into 

truncated WT1 proteins in these cells, and that the increase in WT1 immunoreactivity in 

DD fibroblasts was likely to represent translation of AWT1 mRNA transcripts into AWT1 

proteins.   
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Figure 3.4. Enzyme Linked ImmunoSorbent Assay (ELISA) analyses indicate 

increased immunoreactivity to WT1 variants in DD fibroblast lysates. 

WT1 protein levels were assessed by a “sandwich” ELISA, utilizing two antibodies detecting different WT1 epitopes, 

in DD, PF and CT fibroblast lysates (1 g, N=3/group, ** p < 0.01 by ANOVA). WT1 protein levels are shown as 

normalized values relative to CT fibroblast (allogeneic normal) controls. Error bars for DD samples were too small to 

be shown.   
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 Adenoviral Expression of AWT1 Transcripts in Syngeneic and 

Allogeneic Control Fibroblasts 

The data described in the previous sections revealed that AWT1 was exclusively 

expressed by DD fibroblasts under basal culture conditions, was cytokine inducible in 

syngeneic PF and allogeneic CT control fibroblasts and was likely to be translated into 

functional protein(s). These findings implicated AWT1 as fibrosis-specific and 

inflammation inducible in palmar fascia fibroblasts, and therefore of interest for 

understanding inflammation-inducible palmar fascia fibrosis (DD). To study the potential 

roles of AWT1 in Dupuytren’s Disease, adenoviral vector containing a cDNA encoding 

an ATW1 variant predicted to function as a transcription factor (Ex5+/KTS-) was 

transduced into PF and CT fibroblasts (see 2.7 for details). As shown in Fig. 3.2B, DD 

fibroblasts express this AWT1 mRNA variant. The same adenoviral vector backbone 

containing a cDNA encoding GFP was used as a control to detect any non-specific 

effects from viral transduction. As neither PF or CT fibroblasts express detectable levels 

of AWT1 in the absence of cytokine stimuli, three PF fibroblast isolates from the visibly 

non-fibrotic palmar fascia of patients with DD (assumed to be predisposed to fibrosis and 

therefore “pre-fibrotic”) and three normal allogeneic CT fibroblast isolates were 

transduced with these adenoviral constructs. Successful transductions were confirmed by 

qPCR (Fig. 3.5A) and Western immunoblotting with a WT1 antibody recognizing the C-

terminal domain (region surrounding amino acid 306 as reported by manufacturer, Cell 

Signal) of WT1 (Fig. 3.5B). 
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Figure 3.5. qPCR and Western immunoblotting to confirm successful adenoviral 

transduction of PF and CT fibroblasts.  

(A) qPCR analyses of WT1 gene expression in CT (N=3) and PF (N=3) fibroblasts transduced with DMEM only (Veh), 

adenoviral vector encoding green fluorescent protein (AdGFP) or adenoviral vector encoding AWT1. Forward and 

reverse arrows represent Taqman primers recognizing and binding exons 3 and 4 of WT1 mRNA respectively. (B) 

Western immunoblotting with a WT1 antibody (D6M6S, Cell Signaling Technology) against total protein lysates of CT 

fibroblasts transduced with adenovirus encoding GFP (CT-AdGFP), OVCAR3 total protein lysate (positive control) 

and CT fibroblasts transduced with adenovirus encoding AWT1 (CT-AdWT1). The band representing predicted AWT1 

isoform is highlighted by a black arrow. Based on AWT1 cDNA sequence data, the predicted MW of AWT1 is 34,447 

daltons (** p < 0.01 by ANOVA). 
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 Transcriptome Wide Changes Associated with Patients with 

Dupuytren’s Disease 

Having confirmed constant AWT1 expression and increased AWT1 levels in PF and CT 

fibroblasts, RNA-seq was utilized to assess transcriptome wide changes in AdAWT1 

transduced fibroblasts relative to AdGFP transduced fibroblast controls (for details, see 

2.2 and 2.9). Aligned RNA-seq data were normalized by TMM and differential analysis 

was performed by GSA. RNA-seq analysis identified 3017 gene transcripts that were 

differentially regulated in PF and CT fibroblasts (pooled, p < 0.05) expressing AWT1 

when compared to vector expressing fibroblasts (pooled, p < 0.05). Of the 3017 

significantly up-or down-regulated gene transcripts, 961 differentially regulated gene 

transcripts were identified as unique to AWT1 expressing PF fibroblasts relative to 

AWT1-expressing CT fibroblasts. To generate visual representations of the data, a 

heatmap and clustering analyses of the RNA-seq data were performed. These approaches 

revealed that a subset of gene transcripts identified by RNA-seq were differentially 

expressed in PF (AWT1 vs GFP) and in CT (AWT1 vs GFP) groups and that each group 

clustered distinctly from the others (Fig. 3.6).  
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Figure 3.6. Differences in transcript abundance induced by AWT1 expression in PF 

and CT fibroblasts. 

Heatmap and Clustering analysis of PF (N=3) and CT (N=3) fibroblasts transduced with adenoviral vector control (PF-

GFP and CT-GFP) or adenoviral vector encoding AWT1 (PF-AWT1 and CT-AWT1) respectively. Significant 

differential gene expression was indicated by green (negative fold-change) or red (positive fold-change) in AWT1 

expressing fibroblasts relative to vector controls. Inclusion criteria were p-values < 0.05 and fold changes in gene 

expression of ≥ 1.6 or <-1.6. 
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 Constant Expression of AWT1 Promotes a Pro-Inflammatory 

Milieu 

To further evaluate the transcriptome wide changes associated with AWT1 expression, 

gene set enrichment and pathway enrichment analyses were performed to identify 

overrepresented biological processes or pathways. Enrichment scores indicate the 

negative natural logarithm of the p-value, thereby identifying significant processes and 

pathways. The highest enrichment score from the pathway enrichment analysis was for 

cytokine driven pathways (Table 1), specifically involving pro-inflammatory processes. 

Focus was placed on cytokine driven pathways, as these pathways are integral in 

modulating the wound healing phases.4 As shown in Table 2, detailed analyses of the 

cytokine-cytokine receptor driven pathways revealed that ~69% of the modified gene 

transcripts, the majority of which exhibited increased expression, were categorized as 

contributing to pro-inflammatory, rather than inflammation resolving pathways. 

Additional top terms revealed that AWT1 play major roles in processes involved in 

response to stimuli, increased expression of cell surface receptors and in inflammation 

driven pathologies. 

High-throughput analyses such as RNA-seq can be a powerful tool in analyzing 

thousands of genes in a single experiment. Unfortunately, with most computational 

analyses, there are some draw backs. Notably type I errors can occur when an analysis 

involve hundreds to thousands of genes. Therefore, to account for type I errors, 

Benjamin-Hochberg procedure was often used to correct p-values and account for false 

discovery rates (FDR). However, due to the number of biological replicates used in this 

study (PF N=3, CT N=3), along with the high variability of real patient samples, the 

Benjamin-Hochberg procedure was not utilized in order to reduce type II errors. Instead, 

independent confirmation of the changes in gene expression identified by RNA-seq was 

performed by qPCR analyses of 6 representative genes (ICAM1, CXCL14, CXCR4, 

CXCL10, TNFSF4, IL-1B), all of which have been shown to be associated with fibroses. 

The expression levels of all of these genes were found to be significantly upregulated in 

AWT1 expressing PF fibroblasts. The expression levels of ICAM1, CXCR4, and TNFSF4 

were all significantly upregulated in AWT1 expressing CT fibroblasts (Fig. 3.7). Where 
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significance was not achieved in AWT1 expressing CT fibroblasts, a strong trend towards 

an increase in expression was evident, consistent with highly variable gene expression 

levels and/or insufficient statistical power (N=3 samples) to achieve significance (Fig. 

3.7).  AWT1-induced TNFSF4 expression was of particular interest, as parallel analyses 

in the O’Gorman laboratory had demonstrated that DD myofibroblasts in 3D collagen 

cultures exhibited a significant increase in TNFSF4 expression relative to PF and CT 

myofibroblasts (Fig. 3.8).  
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Table 1. AWT1 expression is associated with inflammation and inflammation driven 

pathologies. 

Pathway enrichment analysis identifying overrepresented biological pathways in AWT1 expressing PF and CT 

fibroblasts (pooled) relative to PF/CT fibroblasts GFP-expressing controls. Inclusion criteria were p-values < 0.05 and 

fold change in gene expression of > 1.5 or <-1.5. Enrichment scores indicate the negative natural logarithm of the p-

value. As shown, the highest enrichment score was associated with cytokine-cytokine receptor interactions.  

Path term Enrichment score

Cytokine-cytokine receptor interaction 21.47

MAPK signaling pathway 10.3

ABC transporters 7.35

Bile secretion 7.08

Gastric cancer 6.84

Neuroactive ligand-receptor interaction 6.65

Pathways in cancer 6.62

Transcriptional misregulation in cancer 6.43

Viral protein interaction with cytokine and cytokine receptor 6.34

MicroRNAs in cancer 6.29

Inflammatory bowel disease (IBD) 6.07

African trypanosomiasis 5.78

Systemic lupus erythematosus 5.74

Proximal tubule bicarbonate reclamation 5.69

Type I diabetes mellitus 5.68

Cell adhesion molecules (CAMs) 5.66

Toll-like receptor signaling pathway 5.59

Influenza A 5.34

Measles 5.31

NF -kappa B signaling pathway 5.21

RIG-I-like receptor signaling pathway 5.04

B cell receptor signaling pathway 4.85

Leishmaniasis 4.71

Hematopoietic cell lineage 4.58

Th17 cell differentiation 4.5

Rheumatoid arthritis 4.47

Aldosterone-regulated sodium reabsorption 4.42

Graft-versus-host disease 4.4

Carbohydrate digestion and absorption 4.23

Ras signaling pathway 4.22

Epstein-Barr virus infection 4.21

Fat digestion and absorption 4.19

Bladder cancer 4.13

JAK-STAT signaling pathway 3.95

Basal cell carcinoma 3.81

Protein digestion and absorption 3.78

cAMP signaling pathway 3.72

PI3K-Akt signaling pathway 3.71

Staphylococcus aureus infection 3.68

Allograft rejection 3.56

Arachidonic acid metabolism 3.54

IL-17 signaling pathway 3.53

ErbB signaling pathway 3.49

Apoptosis - multiple species 3.46

Intestinal immune network for IgA production 3.46

Mineral absorption 3.41

Hepatitis B 3.35

Steroid biosynthesis 3.32

p53 signaling pathway  3.28

EGFR tyrosine kinase inhibitor resistance 3.24
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Table 2. AWT1 enhances the expression of genes encoding pro-inflammatory 

cytokines and downregulates the expression of genes encoding anti-inflammatory 

cytokines. 

The category with the highest enrichment score in Table 1, cytokine-cytokine receptor interaction, was reviewed at the 

level of individual gene expression and allocated to pro-inflammatory or anti-inflammatory categories based on 

literature review. As shown, 69% of the total number of gene transcripts could be readily categorized as classically pro- 

or anti-inflammatory, with ~82% of these (29/35) categorized as pro-inflammatory. 

 

Gene symbol P-value Fold change

Pro-inflammatory Genes

CCL1 4.34E-02 3.59E+00

CCL4 4.93E-02 2.56E+00

CCL11 3.63E-02 5.62E+00

CCL26 1.04E-02 -1.95E+00

CCL20 3.24E-03 1.75E+00

CXCL6 1.16E-03 5.38E+00

CXCL8 3.89E-02 2.58E+00

CXCL9 1.96E-03 8.75E+00

CXCL10 1.77E-08 1.27E+02

CXCL11 8.01E-04 4.27E+00

CXCL14 5.13E-05 5.93E+00

CXCR4 6.66E-04 6.17E+00

TSLP 1.02E-02 1.90E+00

IL12A 4.13E-03 -1.89E+00

IL12RB2 5.25E-05 5.89E+00

IL23A 2.57E+00 2.41E+00

IL19 1.13E-02 2.36E+00

IL20 1.81E-02 6.31E+00

IL1A 4.20E-03 2.37E+00

IL1B 7.66E-03 3.09E+00

FASLG 3.96E-02 2.33E+00

TNFSF15 1.20E-02 2.08E+00

TNFRSF21 3.60E-02 1.60E+00

TNFSFR8 5.45E-04 3.85E+00

TNFSF4 1.11E-04 2.88E+00

RELT 2.08E-02 1.53E+00

GDF15 1.66E-03 1.75E+00

ACVR1 2.16E-04 -1.81E+00

IL31RA 4.90E-02 1.82E+00

Anti-inflammatory Genes

CLCF1 8.86E-04 -2.02E+00

CNTFR 2.76E-02 2.73E+00

TGFB1 2.77E-04 -1.66E+00

TGFBR1 7.32E-03 -1.52E+00

BMP4 7.17E-03 -1.57E+00

GDF6 1.81E-03 3.86E+00
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Figure 3.7. Confirmatory qPCR analyses of AWT1-mediated changes in the 

expression of fibrosis associated genes identified by RNA-seq. 

qPCR analysis of TNFSF4, CXCL10, CXCL14, IL-1B, CXCR4, and ICAM1 mRNA expression levels in PF and CT  

fibroblasts transduced with AdAWT1 or AdGFP (N=3/group, * p < 0.05, ** p < 0.01 and *** p < 0.001 by t-test). 
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Figure 3.8. TNFSF4 mRNA expression is increased in primary myofibroblasts 

derived from Dupuytren's Disease tissues. 

TNFSF4 gene expression was assessed using Taqman primers (Thermofisher Scientific) in cDNAs derived from total 

RNA samples extracted from DD, PF and CT myofibroblasts (each N=3, **p <0.001 as determined by ANOVA). Data 

were normalized to CT myofibroblasts gene expression and produced by Ana Pena Diaz. 
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 Functional analyses of AWT1 Expressing Palmar Fascia 

Fibroblasts  

Stressed fibroblast populated collagen lattice (sFPCL) contraction assays were performed 

to assess the impacts of constant AWT1 expression in PF or CT myofibroblasts. As 

detailed in 2.8, AWT1 or vector expressing myofibroblasts were cultured in FPCLs for 72 

hours prior to releasing the collagen lattices from the walls and bottom of the culture 

wells, after which collagen contraction was assessed by changes in collagen volume over 

time. A statistically non-significant trend towards increased collagen contraction by CT 

fibroblasts (N=3) expressing AWT1 was evident over GFP-expressing and non-

transduced vehicle controls (Veh) (Fig. 3.9A), whereas PF fibroblasts (N=3) expressing 

AWT1 exhibited similar collagen contraction rates to controls (Fig. 3.9B). However, PF-

Veh controls were significantly more contractile than CT-Veh controls at 24 hrs time 

point (p-value < 0.01).  Additional analyses to increase the statistical power of these 

experiments were curtailed by COVID-19 associated research restrictions. 
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Figure 3.9. Collagen contraction analyses of AWT1-expressing CT and PF 

myofibroblasts. 

Stressed Fibroblast populated Collagen Lattice (sFPCL) assays were performed using (A) CT myofibroblasts or (B) PF 

myofibroblasts. The collagen lattice areas of AWT1-expressing myofibroblasts are shown in green, GFP-expressing 

myofibroblast controls are shown in red and non-transduced myofibroblast controls are shown in black. No significant 

differences in contraction over time were detected within sample groups as determined by ANOVA. A significant 

difference in lattice area between PF-Veh and CT-Veh samples was found at 24 hrs time point (p < 0.01).  
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 Palmar Fascia Fibroblast Secretomes Modify THP-1 Monocyte 

Cytokine Gene Expression Profiles 

The RNA-seq and independent qPCR analyses of gene expression revealed that AWT1 

promoted the expression of genes encoding pro-inflammatory cytokines and their 

receptors in PF and CT fibroblasts. To determine if these changes in gene expression 

induced corresponding changes in PF and/or CT fibroblast secretomes to induce a pro-

inflammatory environment, adenovirally transduced PF (N=3) and CT (N=3) 

myofibroblasts expressing AWT1 were co-cultured with THP-1 cells, an immortalized 

human monocyte cell line. DD myofibroblasts (N=3) were also co-cultured with THP-1 

monocytes to identify any impacts of their secretome on THP-1 monocyte gene 

expression that may correlate with the impacts of AWT1-expressing PF and CT 

myofibroblasts. Fibroblasts are adherent cells, whereas THP-1 monocytes are non-

adherent. This facilitated the isolation of adherent and non-adherent cells after co-culture 

for separate gene expression analyses. Gene expression levels in THP-1 monocytes in co-

culture with myofibroblasts were compared to THP-1 cells in monoculture THP-1 

monocytes as described in section 2.12. Select target genes were chosen to detect changes 

in TGFß expression levels and/or signaling (TGFB1, SERPINE1), fibronectin expression 

levels (FN1), pro-inflammatory (CXCL8, IL6, TNF, CCL2, IL1B) and anti-inflammatory 

(IL10) cytokine gene expression levels in THP-1 monocytes. As shown in Fig. 3.10, co-

cultures with myofibroblasts significantly increased the expression of SERPINE1, FN1, 

IL6, and CCL2 in THP-1 cells. Highly variable and statistically non-significant, but 

trends toward increased expression levels of SERPINE1, CCL2, IL1B, CXCL8, IL6, IL10, 

and FN1 were evident in THP-1 cells in co-culture with PF myofibroblasts expressing 

AWT1 relative to vector controls (Fig. 3.10). A trend toward an increase in IL6 mRNA 

levels was also evident in THP-1 cells in co-culture with CT myofibroblasts expressing 

AWT1 relative to the corresponding vector controls. 
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Figure 3.10. Palmar fascia myofibroblasts increase the expression of genes encoding 

cytokines and fibrosis-associated proteins in THP-1 cells in co-culture. 

Expression of SERPINE1, IL10, FN1, CXCL8, IL6, TNF, CCL2, IL1B and TGFB1 in THP-1 monocytes co-cultured 

with PF (N=3) or CT (N=3) myofibroblasts expressing AWT1 or vector control (GFP), or DD (N=3) fibroblasts relative 

to THP-1 monoculture. (* p <0.05 as determined by t-test). Additional analyses to assess N=6 THP-1 cultures/group 

were curtailed by COVID-19 associated restrictions. 
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 Results Summary  

The major findings described in this chapter can be summarized as follows: 

1) The WT1 mRNA start site variants expressed by DD fibroblasts differed from those 

expressed by PF and CT fibroblasts under the same basal culture conditions.  In the 

absence of cytokine stimuli, DD fibroblasts expressed readily detectible levels of AWT1 

mRNA transcripts, whereas their syngeneic controls did not, identifying constant AWT1 

expression as a fibrosis-associated event. PF and CT fibroblasts (and potentially, DD 

fibroblasts) were found to express trWT1 mRNA transcripts, and ELISA analyses were 

interpreted to suggest that both AWT1 and trWT1 mRNA transcripts were translated into 

proteins in these cells.  

2) The WT1 mRNA start site variants expressed by DD, PF and CT fibroblasts were 

modified by pro-inflammatory cytokine stimuli. In addition to AWT1 mRNA transcripts, 

cytokine stimuli induced the expression of canonical and ExtWT1 mRNA transcripts in 

DD fibroblasts.  Cytokine stimuli induced AWT1 and canonical WT1 mRNA transcript 

expression in PF and CT fibroblasts. 

3) Adenoviral expression and cellular translation of AWT1 mRNA transcripts 

(Ex5+/KTS-) in PF and CT fibroblasts significantly modified the expression of genes 

encoding cytokines and cytokine receptors. The gene expression changes induced by 

AWT1 expression in PF fibroblasts differed significantly from those induced by AWT1 

expression in CT fibroblasts, although there was also substantial overlap between these 

groups. No significant changes in the expression levels of established fibrosis-associated 

genes or fibrosis-associated function (collagen matrix contraction) were detected. The 

expression levels of TNFSF4, encoding a novel pro-fibrotic immunoregulatory protein, 

OX-40 ligand (OX-40L), were significantly increased in AWT1-expressing PF and CT 

fibroblasts, mimicking the increased expression levels of TNFSF4 in DD myofibroblasts.   

4)  Co-cultures of AWT1-expressing PF fibroblasts with THP-1 monocytes resulted in 

strong trends toward increased cytokine gene expression, indicating AWT1-induced 

changes in the PF fibroblast secretome that were additional to those induced by the vector 
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controls. Modest effects on THP-1 gene expression were also evident in co-cultures with 

AWT1-expressing CT fibroblasts relative to their vector controls.    
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Chapter 4  

4 DISCUSSION 

 Potential Roles for AWT1 in Palmar Fascia Repair 

The findings in this thesis reveal for the first time that primary fibroblasts derived from 

syngeneic fibrotic and non-fibrotic palmar fascia can be consistently distinguished by the 

WT1 mRNA transcript variants they express. Since these differences can be (at least 

partially) abolished by pro-inflammatory cytokine stimuli, these findings can be 

interpreted to suggest that DD-derived fibroblasts exhibit an epigenetic “memory” 

(epigenetic rather than genetic, since DD and PF fibroblasts are presumed to be 

syngeneic) of the chronic inflammatory environment from whence they were derived, and 

are “stuck” in this pro-inflammatory state. In a similar context, the RNA-seq data 

reported here can be interpreted to indicate the existence of a positive feedback loop, 

where a local pro-inflammatory environment induces AWT1 expression and translation 

in palmar fascia fibroblasts, resulting in the transcription of genes encoding pro-

inflammatory cytokines and receptors that induce a pro-inflammatory environment. 

Pro-inflammatory cytokine treatments were also shown to induce AWT1 expression in 

fibroblasts derived from normal palmar fascia (CT fibroblasts), suggesting that a transient 

increase in AWT1 expression may be a normal component of the first phase of tissue 

repair (Fig. 1.1). Inflammatory cytokines have been previously shown to induce WT1 

expression in HaCat cells, an aneuploid immortalized keratinocyte cell line widely used 

to model normal human keratinocytes in re-epithelialization studies.89  These findings 

suggest that cytokine-induced WT1 expression is not limited to fibroblasts, but may be a 

feature of epithelial cells and, potentially, many other cell types. Inflammation is known 

to induce epigenetic modifications such as demethylation and histone acetylation.64 As 

the region of the WT1 gene which functions as a promoter for AWT1 mRNA transcription 

is differentially methylated and genomically imprinted in normal human kidneys90, it is 

possible that inflammatory cytokine stimuli induce AWT1 mRNA expression in palmar 

fascia fibroblasts through an analogous  mechanism.  If this hypothesis proves to be 
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correct, it is also possible that cytokine-induced WT1 isoform expression is reversible in 

normal cells; i.e., that the expression of AWT1 and other cytokine-induced WT1 

isoforms ceases once cytokine levels are depleted and the AWT1 promotor region returns 

to a transcription repressive state. This contrasts with the findings in DD fibroblasts, 

where AWT1 expression is constant and maintained without exogenous cytokine stimuli, 

again possibly the result of more permanent epigenetic modifications. It is currently 

unclear if any of the cytokines, growth factors or other molecules known to facilitate the 

transition from the inflammation to the proliferation phases of wound healing do so by 

actively attenuating WT1 isoform expression, and if any of these factors are down 

regulated in DD fibroblasts.  

 

 Potential Roles for TrWT1 in Palmar Fascia Homeostasis 

Unlike the mRNA transcripts encoding canonical, alternative and extended WT1 

isoforms that were induced de novo by pro-inflammatory cytokine treatments, truncated 

WT1 (TrWT1) mRNA transcripts were detectable in PF and CT fibroblasts under basal 

culture conditions. As the RT-qPCR (Taqman) assay used in this project amplifies a 

region upstream of trWT1 and therefore does not detect reverse transcribed trWT1 

mRNA transcripts, and qualitative RT-PCR analyses of exon sequences downstream of 

exon 6 cannot not distinguish between truncated and AWT1 mRNA transcripts, it is 

possible that DD fibroblasts express both TrWT1 and AWT1 mRNA transcripts 

simultaneously (see Fig. 1.6B). The detection of WT1 immunoreactivity in PF and CT 

fibroblast lysates by ELISA (Fig. 3.4) is consistent with the hypothesis that TrWT1 

mRNA transcripts are translated into proteins. This finding, that despite barely detectible 

TrWT1 transcript expression, PF and CT fibroblasts have readily detectible levels of WT1 

proteins, may imply that TrWT1 proteins are stably produced by these cells and may 

have other, non-tissue repair associated functions, such as maintaining tissue 

homeostasis. While almost nothing is known about the specific functions of TrWT1 

proteins, it is also tempting to speculate that at least some of the disease phenotypes 

associated with WT1 mutation/depletion in developing tissues might be attributed to loss 

of TrWT1 functions. 
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 AWT1 Expression Upregulates Novel, Fibrosis Associated 

Genes in PF and CT Fibroblasts 

Independent qPCR analyses were used to verify a subset of the AWT1-induced changes 

in PF and CT fibroblasts revealed by RNA-seq analyses. These genes were chosen from 

the 3017 gene transcripts that were significantly modified by AWT1 expression based on 

previous reports implicating their roles in inflammatory diseases associated with the 

development of fibroses. TNFSF4 encodes OX-40 ligand (OX-40L), a recently identified 

driver of inflammation and fibrosis development in systemic sclerosis that is being 

actively assessed as a therapeutic target.91 IL1B encodes interleukin-1β  (IL1β), a pro-

inflammatory cytokine and has been implicated in many inflammatory diseases and 

fibroses including DD.92 CXCL14 encodes a chemokine that attracts circulating 

monocytes, one of the two major sources of macrophages93, to wound sites. CXCL10, 

another chemokine encoding gene, and CXCR4 a gene encoding a chemokine receptor, 

are implicated in the development of pulmonary fibroses.94,95 ICAM1, encoding 

intercellular adhesion molecule 1, is expressed at abnormally high levels in mouse 

models of idiopathic pulmonary fibrosis (IPF), in the serum of patients with IPF96,97 and 

in mouse models of systemic sclerosis, where it has been proposed to mediate 

interactions between fibroblasts and immune cells.98 

The qPCR analyses shown in Fig. 3.7 confirmed significant increases in the expression of 

the majority of these target genes, and where significance was not achieved, a strong 

trend toward an increase in expression was evident. These data are consistent with the 

gene list shown in Appendix 8, (FDR < 0.05, fold-change of > 1.5 or <-1.5) and the 

hypothesis that sustained AWT1 expression promotes a pro-inflammatory and pro-

fibrotic response in palmar fascia fibroblasts.  
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 THP-1 Monocyte Gene Expression is Modified by AWT1 

Expressing PF Fibroblasts 

The RNA-seq and confirmatory qPCR analyses indicated that constant AWT1 expression 

by PF and CT fibroblasts induced a net increase in the expression of pro-inflammatory 

cytokines and cytokine receptors.  To assess if these transcriptome wide changes had 

functional consequences on fibroblast-immune cell interactions, PF or CT fibroblasts 

expressing AWT1 or GFP (viral transduction control), and DD fibroblasts were 

independently co-cultured with an immortalized monocyte cell line, THP-1. As shown in 

Fig. 3.10, relative to THP-1 cells in monoculture, the presence of palmar fascia 

fibroblasts of any subgroup potently and significantly induced the expression of many 

cytokine-encoding genes (e.g., SERPINE1, FN1, and IL6) in THP-1 cells in co-culture. 

While they are clearly extremely sensitive to paracrine signaling, THP-1 monocytes trend 

toward a pro-inflammatory phenotype and so are likely to provide more exaggerated 

“read-outs” than primary monocytes.99 THP-1 monocytes were chosen for these co-

culture analyses to provide a more consistent and simpler model of local immune cell 

infiltrate that could form the basis of additional, more physiologically relevant 

experiments using primary buffy coat isolates containing mixtures of neutrophils, 

monocytes, lymphocytes and other leucocytes.  

As shown in Fig. 3.10, THP-1 monocytes co-cultured with AWT1- expressing PF 

fibroblasts exhibited clear but non-significant trends towards increased expression of 

SERPINE1, CCL2, IL1B, CXCL8, IL6, IL10 and FN1 genes. These trends were less, or 

not at all, evident in CT fibroblasts expressing AWT1. The changes in THP-1 monocyte 

gene expression induced by co-culture were widely variable, explaining the lack of 

statistical significance despite changes in mean values that, in some cases, approximated 

100-fold. These included impacts on the expression levels of SERPINE1, encoding 

plasminogen activator inhibitor 1 (PAI-1), a phospho-SMAD3 activated gene that is 

routinely used as an indicator of TGFß1 signalling.100 The apparent increase in 

SERPINE1 expression induced by AWT1 expression in PF fibroblasts was over and 

above an already substantial background increase induced by all of the fibroblast 

subgroups tested, potentially indicating potent activation of this pathway.  Widely 
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variable changes in the expression of CCL2, encoding monocyte chemoattractant protein-

1 (MCP-1) with roles in immune cell attraction and fibrosis development101, were also 

evident, as were apparent increases in the expression levels of IL1B, CXCL8 and IL6. 

Apparent changes in the expression levels of IL10 and FN1 were also evident, a subset of 

genes that encode molecules that are classically considered to be anti-inflammatory. This 

mixture of pro-and anti-inflammatory gene expression responses may reflect the 

transitional roles played by some classically pro-inflammatory molecules.  For example, 

IL6, a well-known pro-inflammatory cytokine, has been shown to play key roles in 

modulating the transition from a classical “M1” (pro-inflammatory) to an “M2 (anti-

inflammatory, or pro-resolving) phenotype.102-104  

 

 Homeostasis, Fibrosis and “Pre”-Fibrosis 

As described in detail in sections 3.6 and 3.8, adenoviral expression and cellular 

translation of AWT1 in PF and CT fibroblasts induced significant transcriptome wide 

changes in these cells relative to their respective vector controls. Despite being derived 

from 6 randomly selected and presumably unrelated patients, the unbiased heatmap and 

clustering analyses of the RNA-seq data (Fig. 3.6, p-value < 0.05, fold-change > 1.6 or < 

-1.6) revealed that data from the three AWT1-expressing PF fibroblasts and data from the 

three AWT1-expressing CT fibroblasts clustered together into distinct groups. These 

findings are consistent with previous reports from the O’Gorman laboratory indicating 

that, despite being invariably derived from visibly non-fibrotic palmar fascia, PF 

fibroblasts and CT fibroblasts are transcriptionally and functionally distinct.105,106 These 

differences can be interpreted to indicate that PF fibroblast are in a state of prodromal or 

“pre”-fibrosis, a poorly characterized, third state that is distinct from palmar fascia 

fibroblasts in homeostasis and fibroblasts derived from active fibrosis. The characteristics 

that identify fibroblasts in a pre-fibrotic state include some that can be interpreted as 

“intermediate” between normal homeostasis and fibrosis, and some characteristics that 

are unique to the pre-fibrosis category. 105,106 The latter are of particular interest clinically, 

as they may include useful biomarkers of a predisposition to fibrosis development that 

could indicate a need for additional immunoregulatory or other therapies to enhance post-
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surgical outcomes for this patient subset. These biomarkers may include heritable genetic 

and/or epigenetic factors that can help us unravel some of the complexity associated with 

heritable fibroses such as DD. 

Of the 3017 gene transcripts with significantly altered expression levels in AWT1-

expressing palmar fascia fibroblasts, 961 (~ 1/3) were differentially expressed by AWT1 

expressing PF fibroblasts. The co-factors that modify the impacts of AWT1 expression in 

PF fibroblasts relative to AWT1-expressing CT fibroblasts are currently unknown, but 

are presumed to include molecules that are dysregulated in PF fibroblasts relative to CT 

fibroblasts as a result of heritable single nucleotide polymorphisms (SNPs) and/or 

epigenetic modifications that, in combination, predispose individuals to developing 

DD.107 

 

 AWT1-Expressing CT fibroblasts Exhibit a Modest Trend 

Toward Increased Collagen Contractility 

While the RNA-seq analyses strongly implicated roles for AWT1 in promoting 

inflammatory cytokine signalling, there was little or no evidence of changes in the 

expression of the “classical” fibrosis genes associated with myofibroblast activation and 

abnormal ECM remodeling. To confirm these findings, additional independent qPCR 

analyses were performed for an array of well-established myofibroblast associated genes 

(FN1, SMAD2, TNF, ACTA2, COL3A1, TGFB1, POSTN and COL1A1). FN1 encodes for 

fibronectin, an extracellular matrix molecule, which is typically increased in fibrotic 

tissues and have roles in the assembly of collagen matrix and cellular proliferation.108 

TGFB1 encodes for transforming growth factor 1, an anti-inflammatory cytokine and a 

classical pro-fibrotic gene that is regulated by SMAD2 proteins.109 Extracellular matrix 

components such as collagen type III (encoded by COL3A1) and periostin (encoded by 

POSTN) are hallmark features of fibroses such as DD and IPF.48,110 Finally, ACTA2 

encodes for alpha smooth muscle actin, the defining characteristic of myofibroblasts, the 

cell type that directly mediates contractile fibrosis development.10 
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Constant expression of AWT1 in PF fibroblasts had no discernible impact on the 

expression of the majority of these genes (Appendix C), with the exception of TGFB1, 

where a modest decrease in transcript levels were evident, consistent with findings by 

RNA-seq and a previous report of transcriptional repression of TGFB1 transcription by 

WT1.111 Similarly, the RNA-seq analyses did not identify any significant changes in a 

majority of these target genes in AWT1-expressing CT fibroblasts. These findings were 

interpreted to indicate that that AWT1 expression does not directly promote myofibroblast 

activation. To confirm this at a functional level, collagen contraction assays were 

performed on AWT1 or GFP-expressing palmar fascia myofibroblasts.  Enhanced 

collagen contractility is a hallmark feature of fibrosis-associated myofibroblasts that can 

be assessed in vitro using stressed Fibroblast Populated Collagen Lattice assays 

(sFPCLs).10,112  

Consistent with previous reports113, PF myofibroblast controls exhibited a significant 

increase in collagen contraction over CT fibroblast controls at the 24hr time point after 

lattice release (Fig. 3.9).  A modest but statistically non-significant trend towards 

increased collagen contraction by AWT1-expressing CT myofibroblasts was evident (Fig. 

3.9A), whereas AWT1 expressing PF fibroblasts exhibited unaltered FPCL contraction 

rates (Fig. 3.9B) relative to their respective controls. 

Collagen lattice contraction by fibroblasts is primarily regulated by two cellular 

processes: myofibroblast activation and cellular migration. Myofibroblast activation is 

typically associated with increased ACTA2 expression, encoding alpha smooth muscle 

actin, whereas increased cellular migration is often associated with increased expression 

of genes encoding migration-inducing factors such as platelet derived growth factor 

(PDGF) and epidermal growth factor (EGF). While the RNA-seq analyses did not 

identify any changes in ACTA2 or PDGF mRNA levels in AWT1 expressing palmar 

fascia fibroblasts, a significant increase in EGF mRNA levels was evident. EGF has been 

previously demonstrated to increase the migration and collagen contractility of primary 

human skin fibroblasts.114 Therefore, the modest effects on collagen contraction evident 

in AWT1 expression in CT fibroblasts were hypothesized to be due to a modest increase 

in 3D migration induced by EGF. It is plausible that similar changes in EGF expression 
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may have impacted AWT1-expressing PF fibroblasts, and that any additive effect of 

collagen contraction were too insignificant to be detected over the increased collagen 

contractility exhibited by these pre-fibrotic cells.   

 

 Limitations 

Some limitations in the experimental design of this project were evident. Firstly, the 

number of biological replicates used for this study were lower than optimal. Primary 

fibroblasts derived from explant tissues are substantially more variable than immortalized 

cell lines, making modest effects on gene or protein expression or cellular function 

difficult to discern. There are currently no commercially available immortalized palmar 

fascia cells lines, and the inherent variability between primary cells can be considered an 

advantage, as it may reflect real variability between unrelated individuals with or without 

DD. This inherent variability also impacted the statistical analyses in this project. 

Previous power analyses had indicated that N=6 fibroblast isolates/group is required to 

reach a power of 80% (see appendix 9).  N=3 fibroblast isolates/group were used for 

these analyses to accommodate the financial restraints in the laboratory. To accommodate 

this sub-optimal number of biological replicates for RNA-seq analyses, independent gene 

expression analyses were performed in additional primary cells. Additionally, although 

clear trends were observed in the collagen contraction assays and THP-1 co-cultures, 

statistical significance may have been achieved with the inclusion more biological 

replicates. Ideally, the latter analyses would have been complemented with multiplex 

analyses of the cytokines secreted by both cells types to more definitively determine if 

AWT1 expression induced a pro-inflammatory milieu. These analyses were not 

completed due to COVID-19 associated restrictions.  

 

 Future Studies Beyond the Scope of this Thesis 

One of the more significantly increased gene transcripts induced by constant AWT1 

expression in PF and CT cells was TNFSF4, encoding OX40 ligand (OX-40L). OX-40L 
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is a newly recognized, potential therapeutic target for several different fibroses91, and 

linking its expression to AWT1 may reveal a novel pro-fibrotic role for this transcription 

factor. Since the TNFSF4 promoter contains a WT1 consensus binding site 

(GCGGGGGCG), chromatin immunoprecipitation and subsequent PCR amplification of 

the relevant section of the TNFSF4 promoter sequence could confirm direct roles for 

AWT1 in transcriptional regulation of this gene. Additionally, the RNA-seq data 

presented here were indicative of increased gene expression of pro-inflammatory 

cytokines. Therefore, confirmation of the RNA-seq data should be achieved by cytokine-

multiplex assay to assess the levels of target cytokine production.  

In order to identify the subset of gene transcripts identified in the RNA-seq data that were 

directly (rather than indirectly) regulated by AWT1, Chromatin-Immunoprecipitation 

Sequencing (ChIP-seq) of PF and CT fibroblasts transduced with AdAWT1 could be 

performed. AWT1 binding at WT1 consensus sites might imply transcriptional activation 

or repression by AWT1, and so these analyses would need to be performed in parallel 

with gene expression analyses. Finally, CRISPR-Cas9 or shRNA approaches could be 

used to silence all or specific WT1 variants, such as AWT1, in DD fibroblasts to provide a 

complementary loss of function approach to the over-expression studies described in this 

thesis. Loss of function analyses using CRISPR-Cas9 could be challenging due to the 

need to use primary human cells which have a finite proliferative capacity and exhibit 

phenotypic changes when cultured at high passage numbers. Therefore, it may be 

necessary to generate representative immortalized DD cell lines for CRISPR-Cas9 

manipulation, or to use shRNA-mediated (preferably inducible) approaches to feasibly 

achieve these studies.  

 

 Conclusions 

The data presented here are consistent with dynamic and complex roles for increased and 

sustained AWT1 expression in DD fibroblasts. The increase of pro-inflammatory 

cytokines and cytokine receptors in AWT1-expressing fibroblasts may increase their 

sensitivity to external cytokine and other molecular stimuli. AWT1 may also promote the 
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attraction and accumulation of immune cells, including monocytes, macrophages and 

other cells that are major sources of TGFß1, to damaged palmar fascia tissue to promote 

myofibroblast activation and fibrosis. In summary, the findings presented here are 

consistent with the hypothesis that constant AWT1 expression contributes to a pro-

inflammatory milieu in the palmar fascia that is ultimately pro-fibrotic.  As current 

treatments fail to prevent disease recurrence in about 30% of patients53,54, new treatments 

available to target WT1 in cancers are promising and can potentially be cross purposed 

for use in treating DD patients.115-116  
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Appendices  

Gene ID Cat # 

Amplicon Length 

(bp) 

SERPINE1 Hs00167155_m1 82 

CCL2 Hs00234140_m1 101 

RPLPO Hs99999902_m1 105 

FN1 Hs00356052_m1 82 

GAPDH Hs99999905_m1 122 

TGFB1 Hs00998133_m1 57 

IL6 Hs00174131_m1 95 

IL1B Hs01555410_m1 91 

CXCL8 Hs00174103_m1 101 

IL10 Hs00961622_m1 74 

ACTA2 Hs00426835_g1 105 

TNF Hs00174128_m1 80 

COL3A1 Hs00943785_g1 67 

COL1A1 Hs00164004_m1 66 

CXCL14 Hs01557413_m1 66 

TNFSF4 Hs00182411_m1 72 

CXCL6 Hs00605742_g1 125 

CXCL9 Hs00171065_m1 60 

CXCL10 Hs00171042_m1 98 

ICAM1 Hs00164932_m1 87 

CXCR4 Hs00237052_m1 78 

WT1 Hs01103751_m1 72 

Appendix 1. Table listing qPCR primers used throughout the project 

Table listing qPCR Taqman Primers (Thermofisher Scientific), gene ID, their corresponding catalog number and 

amplicon length (bp). All Taqman primers amplify gene products that cross exon-exon boundaries according to 

manufacturer.  
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Target Exon Sequence 5'-3'  

Exon 1 - Forward AGCCCGCTATTCGCAATCAG 

Exon 2 - Forward  TTACAGCACGGTCACCTTCG 

Exon 3 - Reverse TCCTCAGCAGCAAAGCCTGG 

Intron 1 - Forward GAGAAGGGTTACAGCACGGTC 

Intron 5 - Forward  GACAGAAGGGCAGAGCAA 

CUG - Forward  TACAGCAGCCAGAGCAGCAG 

CUG - Reverse GTCCCGCACGTCGGAGCCCAT 

GSP1 - Reverse GTGTGTATTCTGTATT 

GSP2 - Reverse CAACGCCCATCCTCTGCGGA 

Appendix 2. Table listing the custom designed primers used for detection of WT1 

mRNA transcripts. 

Table listing WT1 Primers designed in-house and verified by DNA sequencing. CUG primers were designed to 

recognize ExtWT1, upstream of exon 1 (CUG start site), whereas intron 1 forward primers recognize ATG start site 

found within intron 1 of WT1. Primers designed to recognize specific WT1 variants were also used as nested primers for 

5’RACE. Gene specific primers 1/2 (GSP1/2) were designed in-house to recognize exon 7 and 6 respectively to 

generate 5’RACE products.  
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Appendix 3. Relative to vector controls, AWT1 did not alter the gene expression of 

several "classical" pro-fibrotic genes. 

Expression of ACTA2, COL3A1, TGFB1, COL1A1, FN1, SMAD2, and POSTN in PF (N=3) cells transduced with viral 

GFP control or adenoviral vector encoding AWT1. (* p <0.05 as determined by t-test) 
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Appendix 4. Heatmap and clustering analysis demonstrating similarities between 

GFP expressing or AWT1 expressing PF and CT fibroblasts. 

Heatmap and Clustering analysis of PF (N=3) and CT (N=3) fibroblasts transduced with adenoviral vector control (PF-

GFP and CT-GFP) or adenoviral vector encoding AWT1 (PF-AWT1 and CT-AWT1) respectively. Differential 

expression was indicated as green representing a negative fold-change and red representing positive fold-change in 

AWT1 expressing fibroblasts relative to vector controls. Inclusion criteria were that p-value < 0.05 and fold change in 

gene expression of > 1.5 or <-1.5 for all significant genes as identified by RNA-seq. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



82 

 

Anti-WT1 

Antibody 

Specificity (amino 

acids) 

Anti-WT1 (D6M6S) Surrounding 306 

Anti-WT1 (H-1) 123-164 

Anti-WT1 

(ab15249) Surrounding 400 

Anti-WT1 (6F-H2) 1-173 

Appendix 5. List of anti-WT1 antibodies used throughout this project. 

WT1 antibodies and their specificity. Canonical sequence of WT1 encodes for a protein that is 449 amino acids in 

length (~50kDa). WT1 antibodies recognizing different epitopes of WT1 (specificity as reported by manufacturer) was 

utilized to identify/characterize different WT1 isoforms by Western immunoblotting and immunocytochemistry 

analyses on DD, PF and CT fibroblasts.  
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Appendix 6. Plasmid map for adenoviral vector encoding for AWT1 or GFP. 

First generation adenoviral vector (pAD) encoding for AWT1 (Ex5+/KTS-) was used to transduce syngeneic (PF) and 

allogeneic (CT) fibroblasts for constant expression of AWT1 or GFP. Adenoviral vector utilizes CMV promotor and 

encodes for AWT1 that is FLAG and His tagged at the C-terminus. 
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Appendix 7. AWT1 expression promotes cytokine activity and sensitivity to external 

signals. 

Gene set enrichment analysis identifying overrepresented biological processes in AWT1 expressing PF and CT 

fibroblasts (pooled). Inclusion criteria were that p-value < 0.05 and fold change in gene expression of >1.5 or <-1.5. 

Enrichment scores indicate the negative natural logarithm of the p-value. 

GO term Enrichment score

plasma membrane 34.03

regulation of multicellular organismal process 26.81

plasma membrane part 26.34

integral component of plasma membrane 25.01

intrinsic component of plasma membrane 24.95

extracellular space 24.55

regulation of ion transport 24.49

signaling receptor activator activity 24.16

receptor ligand activity 23.92

regulation of localization 23.64

receptor regulator activity 23.54

regulation of response to stimulus 23.00

cell surface receptor signaling pathway 21.70

system process 21.48

intrinsic component of membrane 19.16

signal transduction 19.13

defense response 18.65

response to stimulus 18.58

integral component of membrane 18.34

ion transport 18.08

positive regulation of response to stimulus 17.48

cytokine-mediated signaling pathway 17.71

multicellular organismal process 17.49

negative regulation of multicellular organismal process 16.92

signaling receptor binding 16.60

nervous system process 16.58

immune response 16.18

positive regulation of MAPK cascade 16.15

regulation of transport 15.74

positive regulation of intracellular signal transduction 15.72

positive regulation of anion transport 15.59

positive regulation of multicellular organismal process 15.51

regulation of cellular component movement 15.46

transmembrane signaling receptor activity 15.40

cytokine activity 15.17

signaling receptor activity 15.11

positive regulation of ion transport 15.01

response to external biotic stimulus 14.94

signaling 14.89

anion transport 14.65

regulation of signaling 14.64

regulation of cell population proliferation 14.61

membrane part 14.49

regulation of anion transport 14.29

positive regulation of protein kinase B signaling 14.21

regulation of response to external stimulus 14.15

receptor complex 14.00

inflammatory response 14.00

response to biotic stimulus 13.82

defense response to virus 13.80
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Appendix 8. AWT1 expression is associated with inflammation in palmar fascia 

derived fibroblasts. 

Representative table for gene set and pathway enrichment analyses identifying overrepresented biological processes in 

AWT1-expressing PF and CT fibroblasts (pooled) relative to PF/CT fibroblasts GFP-expressing controls. Inclusion 

criteria were FDR < 0.05 and fold change in gene expression of > 1.5 or <-1.5. As shown, enrichment terms such as 

interferon signalling, cytokine signalling and inflammatory response are associated with a pro-inflammatory response. 

 

 

 

 

 

 

 

 

 

 

 

Enrichment terms False Discovery Rate

Cell surface receptor signalling pathway 1.30E-07

Regulation of multicellular organismal process 3.83E-07

Cellular response to chemical stimulus 2.87E-06

Cellular response to organic substance 8.65E-06

Response to stimulus 8.65E-06

Interferon alpha/beta signalling 1.24E-05

Type I interferon signalling pathway 2.98E-05

Interferon signalling 0.0014

Cytokine signalling 0.0019

Inflammatory response 0.0031

MAPK signalling pathway 0.0032
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Appendix 9. Sample size estimation for downstream statistical analyses. 

Variability between samples is inherent to all analyses of primary cells derived from 

genetically distinct individuals.  To achieve sufficient statistical power for analyses of 

primary cells, we use the following calculation: 

N= (Zα + Zβ)2 {(Pe (1-Pe) + Pc (1-Pc)} 

(Pe-Pc)2 

for differences in proportions to analyze differences in expression or protein levels 

between disease and control samples. N is the sample size required and Z scores for  

and  error represent level of significance testing (0.05) and power (80%) respectively.  

Pe is the proportion in the experimental group and Pc is the proportion in the control 

groups.  We assume 80% expression in our disease group (Pe) with 20% expression in 

controls (Pc), resulting in a sample size requirement of N=6.  All experiments are 

therefore performed on a minimum of 6 DD, 6 PF and/or 6 CT cell lines, each assessed in 

triplicate.   
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Appendix 10. Approved HSREB protocol letter. 

 

Date: 27 April 2020 

To: Dr. David O'Gorman 

Project ID: 104888 

Study Title: Microenvironmental Regulation of Normal and Abnormal Connective Tissue Repair 

Application Type: Continuing Ethics Review (CER) Form 

Review Type: Delegated 

REB Meeting Date: 04/May/2020 

Date Approval Issued: 27/Apr/2020 

REB Approval Expiry Date: 28/Apr/2021 

____________________________________________________________________________ 

Dear Dr. David O'Gorman, 

The Western University Research Ethics Board has reviewed the application. This study, including all currently approved 

documents, has been re-approved until the 

expiry date noted above. 

REB members involved in the research project do not participate in the review, discussion or decision. 

Western University REB operates in compliance with, and is constituted in accordance with, the requirements of the 

TriCouncil Policy Statement: Ethical Conduct for 

Research Involving Humans (TCPS 2); the International Conference on Harmonisation Good Clinical Practice Consolidated 

Guideline (ICH GCP); Part C, Division 5 

of the Food and Drug Regulations; Part 4 of the Natural Health Products Regulations; Part 3 of the Medical Devices 

Regulations and the provisions of the Ontario 

Personal Health Information Protection Act (PHIPA 2004) and its applicable regulations. The REB is registered with the U.S. 

Department of Health & Human Services 

under the IRB registration number IRB 00000940. 

Please do not hesitate to contact us if you have any questions. 

Sincerely, 

Daniel Wyzynski, Research Ethics Coordinator, on behalf of Dr. Joseph Gilbert, HSREB Chair 

Note: This correspondence includes an electronic signature (validation and approval via an online system that is compliant 

with all regulations). 
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