GENERATION OF CONTRACTILE FORCE BY CULTURED DUPUYTREN’S DISEASE AND NORMAL PALMAR FIBROBLASTS

Keywords: Dupuytren’s disease, myofibroblast, collagen lattice, fibroblast, tissue culture

ABSTRACT. Contractile fibroblasts are believed to be responsible for palmar fascia contracture in Dupuytren’s Disease. An in vitro collagen lattice model was used to examine the contractile properties of Dupuytren’s fibroblasts from 10 patients undergoing partial fasciectomy, and palmar fascia fibroblasts from 6 patients undergoing carpal tunnel release. Dupuytren’s and palmar fascia fibroblasts cultured within a stabilized collagen lattice acquired morphological characteristics similar to those of ‘myofibroblasts’ in Dupuytren’s diseased fascia. Both types of fibroblasts generated contractile forces that resulted in rapid collagen lattice contraction after release of the lattice from points of stabilization. Generation of contractile force by the fibroblasts was inhibited by disruption of the actin cytoskeleton, lack of cells, or serum removal. Afferent neuropeptides (substance P, galanin and neurokinin A) did not promote lattice contraction. These results demonstrate that normal palmar fascia fibroblasts can modulate into Dupuytren’s-like fibroblasts and that cultured fibroblasts, from either Dupuytren’s diseased or normal palmar fascia, can generate contractile forces that are transmitted to extracellular matrix. In addition, fibroblast contraction is an actin based process which requires specific factor(s) present in serum. It is suggested that in Dupuytren’s disease extracellular cues trigger the modulation of fibroblasts to Dupuytren’s fibroblasts and the promotion of contractile forces responsible for palmar fascia contracture.

Introduction

Dupuytren’s disease is characterized by shortening of the palmar fascia leading to progressive, digital flexion deformity (review: McFarlane, McGregor, and Flint, 1991). Studies have demonstrated that the disease has three histological stages; proliferative, involuton, and scar formation (Luck, 1959). Fibroblasts during the proliferative stage of the disease appear to modulate into specialized cells termed ‘myofibroblasts’ which by the involution stage of the disease appear to comprise most of the nodule (Gabbiani and Majno, 1972; Chiu and McFarlane, 1978; Tomasek, et al., 1986). These specialized fibroblasts acquire specific morphological characteristics including bundles of intracellular actin microfilaments, a wrinkled nucleus, extracellular fibronectin fibrils at the cell surface, and a specialized transmembrane association linking intracellular actin filaments and extracellular fibronectin fibrils (Gabbiani and Majno, 1972; Tomasek, Schultz and Haaksma, 1987; Tomasek and Haaksma, 1991). Based on the presence of these specialized fibroblasts during active shortening of the palmar fascia and their histological characteristics, it has been proposed that contractile forces generated by these cells play an important role in the shortening of the palmar fascia (Schultz and Tomasek, 1990; Schurch, Skalli and Gabbiani, 1990).

Fibroblasts obtained from Dupuytren’s diseased tissue can generate and transmit...
force to a substratum as demonstrated by their ability to wrinkle a deformable rubber substratum (Hurst et al., 1986). Recently, in vitro collagen lattice contraction models have been used to demonstrate that a variety of different fibroblasts can generate contractile force (Mochitate, Pawelek and Grinnell, 1991; Kolodney and Wysolmerski, 1992; Tomasek, et al., 1992). Fibroblasts cultured within a stabilized collagen matrix will generate contractile force resulting in the development of isometric tension or stress (Mochitate, Pawelek and Grinnell, 1991; Kolodney and Wysolmerski, 1992; Tomasek et al., 1992). If the stabilized collagen lattice is released from its points of attachment, thereby releasing the developed tension, the fibroblasts within the lattice will undergo isotonic contraction resulting in a rapid reduction in the diameter of the collagen lattice. We have previously used rapid reduction in the diameter of collagen lattices as a means to evaluate the amount of contractile force generated by fibroblasts (Tomasek et al., 1992). In the present study an in vitro collagen lattice model system was utilized to compare fibroblasts isolated from Dupuytren’s diseased tissue with palmar fascia fibroblasts from carpal tunnel release. We have examined: (1) the organization of the actin cytoskeleton and extracellular matrix attachments in these fibroblasts in a stabilized collagen lattice; (2) whether these fibroblasts can generate contractile force, as demonstrated by their ability to rapidly contract a collagen lattice once released from its points of attachment; (3) whether the generation of contractile force by these fibroblasts is an actin-mediated process; and (4) what factors may promote these fibroblasts to generate contractile forces. An understanding of the cellular mechanisms underlying the generation of contractile force by Dupuytren’s diseased fibroblasts should provide information about their role in Dupuytren’s contracture.

Materials and Methods

Cells

Dupuytren’s fibroblast explant cultures from 10 patients undergoing surgery for Dupuytren’s contracture and palmar fascia fibroblast explant cultures from 6 patients undergoing carpal tunnel release were used. Dupuytren’s diseased tissue was placed in sterile Hank’s balanced salt solution (HBSS; GIBCO Laboratories, Grand Island, NY, USA) and the nodular tissue was dissected free from surrounding cord and normal appearing palmar fascia. Palmar fascia was also placed in HBSS and cut into pieces. Pieces of tissue were placed onto 60 mm culture dishes (Falcon, Oxnard, CA, USA), allowed to attach, and cultured in complete media containing M-199 media (GIBCO) supplemented with 10% fetal bovine serum (Irvine Scientific, Santa Ana, CA, USA), 2 mM glutamine, and 1% antibiotic-antimycotic solution. Dupuytren’s and palmar fascia fibroblasts were harvested using trypsin-EDTA (GIBCO) and subcultured in 75 cm² tissue culture flasks (Falcon). For these experiments, 10 cell strains of Dupuytren’s fibroblasts and 6 cell strains of palmar fascia fibroblasts were used. All cell strains used in these experiments were subcultured less than ten passages.

Preparation of collagen lattices

Fibroblasts were cultured within stabilized type I collagen lattices as previously described (Tomasek et al., 1982; Tomasek et al., 1992). The final collagen concentration was 0.65 mg/ml and the cell concentration was 1.25×10^5 cells/ml. A 250 µl drop of the collagen/cell suspension was placed on a 35 mm plastic tissue culture dish (Falcon). The placement of a drop of collagen/cell suspension onto a dry plastic tissue culture dish ensured that the lattice would remain attached to the underlying plastic substratum, thereby stabilizing the collagen lattice. After 1 hr incubation at 37°C, to allow for gelation of the collagen, 1.5 ml of complete media was placed over the collagen lattice. Care was taken not to detach the lattices from the underlying plastic substratum. The stabilized lattices were then incubated for 5 days.

Collagen lattice contraction assay

After 5 days of incubation, the stabilized lattices were mechanically released from the underlying substratum by freeing the edge of the collagen lattice with metal forceps and releasing the rest of the area by gently pipetting media at the lattice-dish interface (Tomasek et al., 1992). Culture dishes were then returned to the incubator. Rapid con-
traction was analyzed by measuring the diameter of the lattice before and at various times after release, using a Nikon SMZ-1 stereoscope. Lattice diameters were normalized due to variation in the initial diameter of the lattices which ranged from 14–16 mm. The relative lattice diameter was obtained by dividing the diameter of the collagen lattice at each time point by the initial diameter of the lattice. The percent contraction was obtained by subtracting the relative lattice diameter from 1. The percent contraction relative to that promoted by 10% fetal bovine serum was obtained by dividing the percent contraction by the percent contraction in the presence of 10% fetal bovine serum. All data are expressed as the mean ± standard deviation. For each individual cell strain the mean ± standard deviation is obtained by performing each experiment at least in duplicate with each experiment comprised of at least seven collagen lattices. Statistical analysis was done using an independent groups t-test (Crunch Software Corp., Oakland CA, USA).

Microscopy
For actin and fibronectin localization, stabilized collagen lattices after 5 days of incubation were fixed with paraformaldehyde (Tomasek et al., 1992). The actin cytoskeleton was visualized using bodipy phallacidin (Molecular Probes Inc., Eugene, OR; Barak et al., 1980) as previously described (Tomasek et al., 1992). To visualize fibronectin fibrils, fixed collagen lattices were incubated with an anti-human plasma fibronectin monoclonal antibody (mAb) (Millis et al., 1985) diluted 1:500 in phosphate buffered saline (PBS) followed by a biotinylated sheep anti-mouse IgG antibody diluted 1:200 in PBS (Amersham Corp., Arlington Heights, IL, USA) and subsequently a streptavidin peroxidase diluted 1:400 in PBS (Amersham Corp.). The peroxidase was visualized as previously described (Graham and Karnovsky, 1966). As a control, the primary mAb was replaced with PBS. All 10 cell strains of Dupuytren's fibroblasts and 6 cell strains of palmar fascia fibroblasts were examined for actin microfilaments and fibronectin fibrils.

For light and electron microscopy, stabilized collagen lattices after 5 days of incubation were fixed, dehydrated and embedded in Polybed 812 (Polysciences, Warrington, PA, USA) as previously described (Tomasek, et al., 1992). One micrometer thick sections were stained with 1% toluidine blue and photographed with an Olympus Vanox photomicroscope. Thin sections were stained with uranyl acetate and lead citrate and photographed on a JEOL 100C transmission electron microscope. All 10 Dupuytren's and 6 palmar fascia fibroblasts strains were examined.

Treatment of collagen lattices
Cell concentration. Three concentrations were studied; collagen with no cells, 6.25 x 10^4 cells/ml and 1.25 x 10^5 cells/ml. The cell concentration used for all the rest of the studies was 1.25 x 10^5 cells/ml.

Cytochalasin D treatment. Stabilized collagen lattices, after 5 days in culture, were treated for 30 min with cytochalasin D prior to release. The rate of lattice contraction was determined as described above. Cytochalasin D (Sigma, St Louis, MO, USA) was kept as a 2 mM stock solution in dimethyl sulfoxide (DMSO) at -20°C and added to the culture media for a final concentration of 6 µM. Control lattices received an equivalent concentration of DMSO (0.3%).

Serum removal. Stabilized collagen lattices, after 5 days in culture, were washed twice over a 5 min period with unsupplemented M-199 previously warmed to 37°C. After the final wash, some of the lattices received 10% fetal bovine serum immediately prior to release; other lattices were released and subsequently received 10% fetal bovine serum 45 min after release. The rate of lattice contraction was determined as described above.

Addition of neuropeptides. Stabilized collagen lattices, after 5 days in culture, were washed twice over a 5 min period with unsupplemented M-199 previously warmed to 37°C. Experimental lattices received one of the following immediately prior to release: 10^-5 M substance P, 10^-5 M galanin, or 10^-5 M neurokinin A (Bachem California, Torrance, CA, USA). Control lattices received 10% fetal bovine serum immediately prior to release. The rate of lattice contraction was determined as described above.
In each of the above experiments, all 10 cell strains of Dupuytren’s fibroblasts and all 6 cell strains of palmar fascia fibroblasts were examined. Each cell strain was examined in at least duplicate experiments with each experiment comprised of at least four collagen lattices.

Results

Actin cytoskeleton and fibronectin fibrils in Dupuytren’s and palmar fascia fibroblasts

Dupuytren’s fibroblasts and palmar fascia fibroblasts cultured within stabilized collagen lattices for 5 days were examined for the...
acquisition of morphological characteristics which define the 'myofibroblast' in Dupuytren's diseased palmar fascia. The most dominant characteristic is the presence of large bundles of actin microfilaments. Fibroblasts, from all cell strains, contained numerous bundles of actin microfilaments, which stained brightly with the f-actin probe bodipy-phallacidin. Figure 1 illustrates a fibroblast from a Dupuytren's cell strain cultured for 5 days in an attached collagen lattice and stained with bodipy phallacidin. The presence of bundles of actin microfilaments was confirmed by electron microscopy (not illustrated). No differences in the organization of actin microfilaments in Dupuytren's fibroblasts and palmar fascia fibroblasts cultured for 5 days in a stabilized collagen lattice were observed in the cell strains examined.

Another characteristic of 'myofibroblasts' in Dupuytren's diseased palmar fascia is the presence of fibronectin fibrils at the cell surface (Tomasek et al., 1986; Tomasek and Haaksma, 1991). Fibroblasts, cultured within attached collagen lattices, assembled fibronectin into fibrils at the cell surface (Fig. 2); similar to 'myofibroblasts' in Dupuytren's diseased palmar fascia. No differences in the formation of fibronectin fibrils were observed in all of the cell strains examined.

Generation of contractile force
Dupuytren's fibroblasts and palmar fascia fibroblasts were examined for their ability to generate contractile force using an in vitro collagen lattice contraction assay. Fibroblasts, from all cell strains, could generate contractile force as determined by their ability to rapidly contract a collagen lattice after release from its points of stabilization. Figure 3 illustrates a 5-day collagen lattice containing fibroblasts from a Dupuytren's cell strain immediately prior to release and 10 min after release. Within 10 min after release of the stabilized collagen lattice from the underlying substratum, there is a visible reduction in its diameter from 15 mm to 9 mm (Fig. 3). Collagen lattice contraction was found to be a cell-mediated process dependent on the number of fibroblasts cultured within the stabilized collagen lattice (Fig. 4). Most of the rapid contraction occurred within the first 10 min after release.

The amount of contractile force generated by Dupuytren's fibroblasts and palmar fascia fibroblasts was compared using the in vitro collagen lattice contraction assay. For this experiment each cell strain was examined in at least duplicate experiments with each experiment comprised of at least seven collagen lattices. Mean percent contraction of collagen lattices by Dupuytren's fibroblasts and palmar fascia fibroblasts generate equivalent amounts of contractile force. The mean percent contraction of collagen lattices 10 min after release was illustrated. 10 strains of Dupuytren's fibroblasts and 6 strains of palmar fascia fibroblasts were used to determine mean percent contraction. There was no statistical difference in percent contraction between these two groups of cells at p < 0.05. Standard deviations are shown.
and palmar fascia fibroblasts 10 min after release were compared and analyzed using an independent groups T-test (Fig. 5). There was no statistical difference in percent contraction between these two groups of cells at a p value of less than or equal to 0.05. Other time points from 2-60 min after release were compared and showed a similar result with respect to amount of contraction.

The contraction of the collagen lattice is the result of contraction of the fibroblasts within the collagen lattice. Figure 6 illustrates Dupuytren’s fibroblasts cultured within collagen lattices and examined prior to release, 2 min, and 10 min after release. Prior to release, the fibroblasts had an elongate, bipolar shape and the surrounding collagen was oriented parallel with the long axis of the cell (Fig. 6a). 2 min after release, the fibroblasts had dramatically changed their shape, becoming shortened and rounded with numerous cell protrusions (Fig. 6b). 10 min after release, the fibroblasts appeared to have contracted further (Fig. 6c). Similar morphological changes were observed in all cell strains examined.
Fibroblast contraction is an actin based process
To determine whether the generation of contractile force by Dupuytren's and palmar fascia fibroblasts is an actin based process, fibroblasts were treated with cytochalasin D. Cytochalasin D disorganizes the actin cytoskeleton and inhibits actin based processes (Schliwa, 1982). Treatment of stabilized collagen lattices with cytochalasin D, 30 min prior to release, disrupted the actin cytoskeleton (not illustrated) and inhibited collagen lattice contraction by both Dupuytren's fibroblasts and palmar fibroblasts (Fig. 8). Each cell strain was examined in at least duplicate experiments with each experiment comprised of at least four collagen lattices.

Contractile force generation is promoted by serum factor(s)
The following set of experiments were done to determine if serum factors play a role in promoting the generation of contractile force by Dupuytren's and palmar fascia fibroblasts. Fetal bovine serum, which is present in the culture media and contains a variety of hormones and growth factors, was removed for 5 min prior to release of the collagen lattice from the substratum. This resulted in inhibition of collagen lattice contraction, which could be reversed by adding 10% fetal bovine serum either immediately prior to release, or 30 min after release (Fig. 7). Similar results were observed in all 10 cell strains of Dupuytren's fibroblasts and all 6 cell strains of palmar fascia fibroblasts (Figure 8). Each cell strain was examined in at least duplicate experiments with each experiment comprised of at least four collagen lattices.

Contractile force generation is not promoted by neuropeptides
The afferent neuropeptides substance P, galanin, and neurokinin A, which have efferent functions on smooth muscle cells (Shew, Papka and McNeili, 1991, 1992), were added in place of fetal bovine serum to collagen lattices just prior to release. None of these neuropeptides promoted collagen lattice contraction of Dupuytren's or palmar fascia fibroblast strains in the absence of fetal bovine serum (Fig. 8). Each cell strain was examined in at least duplicate experiments with each experiment comprised of at least four collagen lattices.
RAYAN AND TOMASEK

the critical importance of actin filaments in
this process. Large bundles of actin micro-
filaments are present in fibroblasts generating
contractile forces within the collagen lattices.
Similar bundles of actin microfilaments have
been observed in ‘myofibroblasts’ present in
Dupuytren’s diseased palmar fascia (Gab-
biani and Majno, 1972; Chiu and McFarlane,
1978; Tomasek et al., 1986; Tomasek and
Haaksma, 1991). Previous studies have
demonstrated that isolated actin micro-
filament bundles from fibroblasts, termed
stress fibers, are highly contractile (Isenberg
et al., 1976; Kreis and Birchmeier, 1980).
Whether these bundles of actin micro-
filaments are responsible for the generation
of contractile force in fibroblasts in collagen
lattices and in Dupuytren’s disease palmar
fascia remains to be determined.

The generation of contractile force by
fibroblasts is dramatically reduced on
removal of fetal bovine serum. This is not
an irreversible process since generation of
contractile force can be immediately restored
upon re-addition of fetal bovine serum to
the culture media. These results demonstrate
that the continuous presence of extracellular
factor(s) in fetal bovine serum are necessary
for active fibroblast contraction. In this
study, we examined a variety of afferent
neuropeptides known to have an efferent
role on smooth muscle (Shew, Papka, and
have no effect on the generation of con-
tractile force by either Dupuytren’s or palmar
fascia fibroblasts when added at concen-
trations known to elicit contraction of uterine
smooth muscle. The extracellular factor(s)
present in fetal bovine serum which promote
contraction are not known. Recently, we
have demonstrated that thrombin can pro-
mote fibroblast contraction by proteolytic
activation of its cell surface receptor (Pilcher
et al., 1994). However, thrombin does not
appear to be the primary agent in fetal bovine
serum responsible for promoting contrac-
tion. It is expected that other extracellular
factors will be identified that can promote or
inhibit fibroblast contraction.

The rapid contraction observed in the in
vitro collagen lattice contraction model is the
result of its design. The stabilization of the
collagen fibrils results in development of iso-
metric tension (Delvoye et al., 1991; Kol-
odney and Wysolmerski, 1992), which upon

Discussion

This study has demonstrated that fibroblasts
from both Dupuytren’s diseased fascia and
normal appearing palmar fascia, when cul-
tured within a stabilized collagen lattice, will
acquire similar morphologies and resemble the ‘myofibroblast’ observed in Dupuytren’s
diseased palmar fascia. Using an in vitro
collagen lattice contraction assay it was
demonstrated that these fibroblasts can gen-
erate contractile force and that the amount
of forces generated are similar in both cell
types. In addition, the generation of con-
tractile force was determined to be an actin-
based process requiring an organized actin
cytoskeleton. The generation of contractile
force was dependent upon the continuous
presence of a specific factor or factors present
in fetal bovine serum and contractile force
could not be promoted by afferent neuro-
peptides previously demonstrated to gen-
erate contractile force in smooth muscle cells.

Palmar fascia fibroblasts cultured in sta-
bilized collagen lattices acquire bundles of
actin microfilaments, fibronexus associa-
tions, and the ability to generate large
amounts of contractile force; similar to Du-
puytren’s fibroblasts. Previous studies have
demonstrated that fibroblasts, from a wide
variety of sources, when cultured on a planar
substratum acquire bundles of actin micro-
filaments characteristic of ‘myofibroblasts’
(Byers, White and Fujiwara, 1983). These
results are consistent with previous studies
on fibroblasts demonstrating that strong
adhesion to a stable substratum will promote
the acquisition of bundles of actin micro-
filaments and the development of isometric

Although Dupuytren’s and palmar fascia
fibroblasts are phenotypically different in
vitro, they respond similarly when cultured
within stabilized collagen lattices under iso-
metric tension. These results suggest that
aspects of the environment in which fibro-
blasts reside, such as the stability and
adhesivity of the extracellular matrix and/or
the presence of certain growth factors, can
regulate their behavior.

The ability of fibroblasts to rapidly contract
a collagen lattice is indicative of the gen-
eration of contractile force. The generation
of contractile force was abolished by the
addition of cytochalasin D, demonstrating

The rapid contraction observed in the in
vitro collagen lattice contraction model is the
result of its design. The stabilization of the
collagen fibrils results in development of iso-
metric tension (Delvoye et al., 1991; Kol-
odney and Wysolmerski, 1992), which upon
release of the lattice from its points of attachment results in its rapid isotonic contraction. The granulation tissue of healing wounds, if attached to a force transducer, can generate measurable amounts of isometric force (Higton and James, 1964). Similar to the release of an attached collagen lattice, granulation tissue of a wound splinted open for 10 days will dramatically reduce its size within 30 min after release from the splint (Abercrombie, James and Newcombe, 1960). Although rapid contraction does not normally occur during the shortening of the palmar fascia in Dupuytren's contracture or of granulation tissue during wound healing, the rapid contraction observed on release of an attached collagen lattice most likely represents an exaggeration of certain aspects of the normal tissue contraction.

Acknowledgements
The authors thank Mr Melville Vaughan for his technical assistance with this project, and N. Halliday and B. Pilcher for critical evaluation of manuscript. This research was supported by a grant from the Bennett Research Fund, Baptist Medical Center of Oklahoma, Oklahoma City, OK, USA.

References

