The association between frozen shoulder and Dupuytren’s disease

Simon P. Smith, FRCS, Vikram S. Devaraj, FRCS, and Tim D. Bunker, FRCS, Devon, United Kingdom

Fifty-eight patients with the diagnosis of primary frozen shoulder were independently examined by 3 surgeons for evidence of Dupuytren’s disease. The disease was found in 52% (30/58) of the patients reviewed. These figures were compared with previously reported figures for a population of similar age. This showed that Dupuytren’s disease is 8.27 (95% CI, 6.25-11.2) times more common in patients with frozen shoulder than in the general population; the difference between the two was highly statistically significant (P < .001, \(\chi^2 \) test). We discuss the literature on the association between frozen shoulder and Dupuytren’s disease and the implications of such a high proportion of patients sharing these two conditions. (J Shoulder Elbow Surg 2001;10:149-51.)

Frozen shoulder is a chronic fibrosing condition of the shoulder joint capsule.\(^7,17,21\) The predominant cells involved are fibroblasts and myofibroblasts.\(^2,10\) These cells lay down a dense type-III collagen matrix within the shoulder joint capsule, which subsequently contracts, leading to the typical clinical features of pain and stiffness. The histology is very similar to that of Dupuytren’s disease of the palm (Figure), a condition with which it has many other features in common. The goals of this study were to quantify the incidence of Dupuytren’s disease in a cohort of patients with a diagnosis of frozen shoulder and to discuss the implications of such an association.

METHODS

Of 2548 new patients with shoulder problems referred to the senior author, 163 had a diagnosis of primary frozen shoulder. Strict criteria were observed to come to such a diagnosis. Frozen shoulder was defined according to Codman’s criteria (Table I); although, because we do not accept that patients with frozen shoulder show wasting of the spinati, we accepted a diagnosis based upon the remaining criteria. All our patients fulfilled these criteria and also had limitation of both active and passive movement.\(^22\) Limitation of passive external rotation was an important clinical feature present in all our patients. Great care was taken to exclude other diagnoses, including secondary frozen shoulder, on both clinical and radiologic grounds. The study was carried out in a district general hospital.

One hundred patients with primary frozen shoulder, identified from our shoulder database, were invited to a review clinic that was specially set up. Fifty-eight patients were reviewed (mean age 54.9 years; 28 men, 30 women).

Each patient was reviewed independently by 3 surgeons: 2 orthopaedic surgeons with a special interest in upper-limb surgery and 1 hand surgeon. Two of the surgeons had no previous contact with the patients. Each patient was examined for evidence of Dupuytren’s disease of the hand, Garrod’s knuckle pads, and Ledderhose’s disease (plantar fibromatosis of the feet). In the patients with Dupuytren’s disease, the type (flexion deformity, pits, nodules, or bands) and distribution were recorded on hand charts. The patients were also asked about any history of epilepsy, thyroid disease, and diabetes mellitus, and any family history of frozen shoulder or Dupuytren’s disease.

RESULTS

Interobserver variation

The \(\kappa \) test was performed on the data to assess the interobserver variability to elicit the signs of Dupuytren’s disease (Table II). The results were similar to previously published figures for the interobserver variation in the diagnosis of Dupuytren’s disease\(^13\) and confirmed good interobserver correlation.
Incidence of Dupuytren’s disease

It was considered very likely that a patient had Dupuytren’s disease when all 3 examiners found evidence of it. Similarly, when 2 examiners found Dupuytren’s disease, with a close correlation in the distribution on the hand charts, it was concluded that the patient probably had Dupuytren’s disease.

Of the patients reviewed, 47% (27/58) were found to have evidence of Dupuytren’s disease by all 3 examiners, and in 5% (3/58), 2 examiners found evidence of Dupuytren’s disease, with a close correlation in the distribution on the hand charts. Therefore, the overall incidence of Dupuytren’s disease in our frozen shoulder patient group was 52% (30/58). This information is represented in Table III.

We compared our results with those of Early,8 who examined 2524 persons between the ages of 45 and 64 years and found an incidence of Dupuytren’s disease of 6.2% (156/2524). The difference between the two groups was highly statistically significant (P < .001, χ² test), with a relative risk ratio of 8.27 (95% CI, 6.25-11.2). Even when only the patients in whom all 3 examiners found Dupuytren’s disease were included (27/58), the relative risk ratio was 7.53 (95% CI, 5.50-10.32).

It should be noted that, of the 30 patients found to have evidence of Dupuytren’s disease, only 3 had moderate or severe disease causing fixed joint contractures of the metacarpophalangeal or interphalangeal joints. The remaining patients had mild disease that affected the palmar fascia but did not cause joint contracture.

Other associations

Garrod’s pads were found in 16 patients (28%); whereas evidence of Ledderhose’s disease was only found in 1 patient (2%). Of the patients reviewed, there was no association with epilepsy or epilepsy treatment (0/58). Twelve percent (7/58) of patients gave a history of thyroid problems (5 hypothyroid, 1 hyperthyroid, 1 thyroid cyst). Thirty-one percent (18/58) had diabetes mellitus, of whom 15 patients were insulin dependent; the relative incidence of Dupuytren’s disease in those patients with and without diabetes mellitus is represented in Table IV. As would be expected, the incidence of Dupuytren’s disease in those with diabetes mellitus is higher than in those without. Twelve percent (7/58) of patients stated that they had a first-degree relative with a diagnosis of frozen shoulder, and 7% (4/58) had a first-degree relative with Dupuytren’s disease.

DISCUSSION

Schaer20 first noted the association between frozen shoulder and Dupuytren’s disease in 1936, finding Dupuytren’s disease in 25% of his patients with frozen shoulder (although he did not comment on patient numbers). In 1941, Lund14 found 14 patients with frozen shoulder in a review of 360 epileptic inpatients, and 12 of whom had Dupuytren’s disease. Meulengracht16 reviewed 78 patients with “frozen shoulder,” finding Dupuytren’s disease in 18% (14/78). It should be noted, however, that his patient mix was somewhat heterogeneous and included a group of patients with pyrexia, weight loss, and a raised erythrocyte sedimentation rate.

We found evidence of Dupuytren’s disease in 52% (30/58) of the patients with frozen shoulder that we reviewed. This is a considerably higher incidence than has been previously reported and, in comparison with an age-matched sample from the general population,8 is highly statistically significant (P < .001, χ² test).

Although the cause of frozen shoulder and Dupuytren’s disease remains on enigma, the two conditions do share a number of striking similarities. Histologically, both show deposition of type III collagen in nodules and bands, with a similar distribution of fibroblasts and myofibroblasts.2,12,15 Clinically, both may lead to joint contracture, and both may follow trauma. There are also metabolic associations, with a significantly increased incidence of diabetes mellitus and hyperlipidemia in both conditions as well as cytokine abnormalities, which have been shown to have a similar pattern in both diseases.1,4,19 Frozen shoulder is known to have abnormalities of matrix metalloproteinase and metalloproteinase inhibitors,4 and, interestingly, a recent trial that examined the use of a matrix metalloproteinase inhibitor as a treatment for inoperable stomach carcinoma noted the development of bilateral frozen shoulder in 6 of the 12 treated patients and of Dupuytren’s disease in 3.11 Finally, chromosomal studies have shown evidence of trisomy 7 and 8 syndrome in cell cultures of tissue taken from both conditions.9

The two conditions are generally understood to have very different natural histories—Dupuytren’s disease being a progressive condition, and frozen shoulder

Table I Codman’s criteria for frozen shoulder

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Condition comes on slowly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pain</td>
<td>Pain is felt near the insertion of deltoid</td>
</tr>
<tr>
<td>Inability to sleep</td>
<td>Inability to sleep on the affected side</td>
</tr>
<tr>
<td>Active and passive type</td>
<td>Able to continue daily habits and routines</td>
</tr>
<tr>
<td>Little local tenderness</td>
<td>Restricted restricted external rotation</td>
</tr>
</tbody>
</table>

Table II Kappa values for interobserver error

<table>
<thead>
<tr>
<th>Kappa value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examiners 1 and 2</td>
</tr>
<tr>
<td>Examiners 1 and 3</td>
</tr>
<tr>
<td>Examiners 2 and 3</td>
</tr>
</tbody>
</table>
being a self-limiting disorder that fully resolves with time. However, the available literature shows that although most frozen shoulder patients have little long-term functional disability, most do have ongoing discomfort and a measurable limitation of movement (particularly external rotation), 5, 7, 15, 16, 18, 21.

This study confirms that Dupuytren's disease is commonly seen in patients with frozen should and suggests that the two conditions may share a common biochemical pathway that leads to contracture.

REFERENCES