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l: T h e use of low levels of visible o r n e a r i n f r a r e d l igh t f o r r e d u c i n g pa in , i n f l a m m a t i o n 
a n d e d e m a , p r o m o t i n g h e a l i n g of w o u n d s , d e e p e r t issues a n d nerves , a n d p r e v e n t i n g cell 
d e a t h a n d tissue d a m a g e h a s b e e n k n o w n f o r over fo r ty years s ince t h e i n v e n t i o n of lasers. 
Desp i t e m a n y r e p o r t s of posi t ive findings f r o m e x p e r i m e n t s c o n d u c t e d in vi t ro , in a n i m a l 
m o d e l s a n d in r a n d o m i z e d c o n t r o l l e d clinical trials, L L L T r e m a i n s con t rove r s i a l in m a i n -
s t r e a m m e d i c i n e . T h e b i o c h e m i c a l m e c h a n i s m s u n d e r l y i n g t h e positive e f f ec t s a r e i n c o m -
plete ly u n d e r s t o o d , a n d the c o m p l e x i t y of ra t ional ly c h o o s i n g a m o n g s t a l a rge n u m b e r of 
i l l u m i n a t i o n p a r a m e t e r s s u c h as wave length , f l u e n c e , p o w e r density, pulse s t r u c t u r e a n d 
t r e a t m e n t l i m i n g h a s led to t h e pub l i ca t i on of a n u m b e r of negat ive s tud ies as well as m a n y 
posit ive o n e s . A b i p h a s i c d o s e r e s p o n s e has b e e n f r e q u e n t l y o b s e r v e d w h e r e low levels of 
l ight have a m u c h b e t t e r e f f e c t o n s t imu la t i ng a n d r e p a i r i n g tissues t h a n h i g h e r levels of 
l ight . T h e so-cal led A r n d t - S c h u l z cu rve is f r e q u e n t l y used to desc r ibe this b i p h a s i c d o s e 
r e sponse . T h i s review will cove r t h e m o l e c u l a r a n d cel lu lar m e c h a n i s m s in LLLT, a n d 
desc r ibe s o m e of o u r r e c e n t resul ts in vitro a n d in vivo t h a t p rov ide sc ient i f ic e x p l a n a t i o n s 
f o r this b i p h a s i c d o s e r e s p o n s e . 

1. INTRODUCTION 

1.1. Brief history 

Low level l a se r t h e r a p y (LLLT) is t h e a p p l i c a t i o n of l igh t (usua l ly a 
low p o w e r l ase r o r L E D in t h e r a n g e of 1 m W - 5 0 0 m W ) to a p a t h o l o g y to 
p r o m o t e t issue r e g e n e r a t i o n , r e d u c e i n f l a m m a t i o n a n d re l ieve p a i n . T h e 
l i g h t is typically o f n a r r o w spec t r a l w id th in t h e r e d o r n e a r i n f r a r e d 
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(NIR) spectrum (600nm - lOOOnm), with a power density ( irradiance) 
between lmw-5W/cm 2 . It is typically applied to the injury for a minute or 
so, a few times a week for several weeks. Unlike o ther medical laser pro-
cedures, LLLT is no t an ablative or thermal mechanism, but ra ther a pho-
tochemical effect comparab le to photosynthesis in plants whereby the 
light is absorbed and exerts a chemical change. 

T h e p h e n o m e n o n was first published by Endre Mester at Semmelweis 
University, Budapest, H u n g a r y in 1967 a few years after the first working 
laser was invented (Mester et al. 1967). Mester conducted an exper iment 
to test if laser radiation might cause cancer in mice. He shaved the hair 
off their backs, divided them into two groups and irradiated one g roup 
with a low powered ruby laser (694-nm). The t rea tment g roup did not get 
cancer and to his surprise, the hair grew back more quickly than the 
unt rea ted group. He called this "Laser Biostimulation". 

1.2. Evidence for effectiveness of LLLT 

Since 1967 over 100 phase III, randomized, double-blind, placebo-
controlled, clinical trials (RCTs) have been published and suppor ted by 
over 1,000 laboratory studies investigating the primary mechanisms and 
the cascade of secondary effects that contr ibute to a range of local tissue 
and systemic effects. 

RCTs with positive ou tcomes have been published on pathologies as 
diverse as osteoarthritis (Bertolucci and Grey 1995; Ozdemir et al. 2001; 
Stelian et al. 1992), t endonopa th ies (Bjordal et al. 2006b; Stergioulas et al. 
2008; Vasseljen et al. 1992), wounds (Caetano et al. 2009; Gupta et al. 1998; 
Ozcelik et al 2008; Schuber t et al. 2007), back pain (Basford et al. 1999), 
neck pain (Chow et al. 2006; Gur et al. 2004), muscle fatigue (Leal Junior 
et al. 2008a; Leal J u n i o r et al. 2008b), peripheral nerve injuries (Rochkind 
et al. 2007) and strokes (Lampl et al. 2007; Zivin et al. 2009); nevertheless 
results have not always been positive. This failure in certain circumstances 
can be at tr ibuted to several factors including dosimetry ( inadequate or 
too much energy delivered, inadequate or too much irradiance, inap-
propr ia te pulse s t ructure , irradiation of insufficient area of the patholo-
gy), inappropr ia te anatomical t rea tment location and concur ren t pat ient 
medicat ion (such as steroidal and non-steroidal anti-inflammatories 
which can inhibit healing) (Aimbire et al. 2006; Goncalves et al. 2007). 

1.3. The medicine and the dose 

As with o ther fo rms of medicat ion, LLLT has its active ingredients or 
"medicine" (irradiation parameters) and a "dose" (the irradiation t ime). 
Table 1 lists the key paramete rs that define the medicine and Table 2 
defines the dose. It is beyond the scope of this paper to exhaustively list 
and discuss every conceivable aspect of laser radiation or o the r light 
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TABLE 1. Parameters involved in de t e rmin ing she LLLT "medic ine" 

IRRADIATION PARAMETERS {The Medicine) 

Irradiat ion 
Paramete r 

Unit of 
m e a s u r e m e n t Comment . 

Wavelength 

I r radiance 

Pulse s t ructure 

C o h e r e n c e 

Polarisation 

nin Light is e lec t romagnet ic energy which travels in discrete 
packets that also have a wave-like property. Wavelength is 
measure in n a n o m e t r e s ( n m ) and is visible in the 400-700 nra 
range. 

W / c m 2 Of t en called Intensity, o r Power Density and is calculated as 
I r radiance = Power ( W ) / A r e a (cm2) 

Peak Power (W) If the beam is pulsed then the Power should be the Average 
Pulse f req (Hz) Power a n d calculated as follows: 
Pulse Width (s) Average Power (W) - Peak Power (W) x pulse width (s) x 
Duty cycle (%) pulse f requency (II/,) 

C o h e r e n c e length C o h e r e n t light p roduces laser speckle, which has been 
d e p e n d s on postulated to play a role in the pho tob iomoduia t ion 
spectral bandwidth interact ion with ceils and subcel lular organelles. 

Linear polarized Polarized light may have d i f fe ren t effects than otherwise 
or circular identical non-polar ized Sight (or even 90-degree rotated 
polarized polarized light). However, it is known that polarized light is 

rapidly scrambled in highly scattering media such as tissue 
(probably in the first few h u n d r e d fim). 

sources however we believe we have cap tured the main elements with 
some c o m m e n t on others. 

Energy (J) or energy density ( J / c n r ) is o f t en used as an impor tant 
descriptor of LLLT dose, bu t this neglects the fact that energy has two 
components , power and time, 

Energy (J) - Power (W) x T ime (s) 

and it has been demons t ra ted that there is no t necessarily reciprocity 
between them; in o the r words, if the power doubled and the time is 
halved then the same energy is delivered bu t a di f ferent biological 
response is of ten observed. 

It is our view LLLT is best described as two separate sets of parameters; 

(a) T h e medicine (irradiation parameters) 
(b) T h e dose (time) 

This paper will mainly focus on i r radiance and time, as it is beyond 
the scope of this paper to repor t in detail on the response to all aspects 
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TABLE 2. Parameters involved in d e t e r m i n i n g the LLLT "dose" 

IRRADIATION TIME OR ENERGY DELIVERED {The Dose) 

I r radia t ion 
Pa rame te r 

Unit of 
measu remen t C o m m e n t 

Energy (Joules) J Calculated as: 
Energy (J) = Power (W) x t ime (s) 

This mixes medic ine a n d dose into a single expression a n d 
ignores I r radiance. U s i n g j o u l e s as an express ion of dose is 
potentially unrel iable as it assumes reciprocity ( the inverse 
re la t ionship between power a n d t ime) . 

Energy Density J / c m 2 C o m m o n expression of LLLT "dose" is Energy Density 
This expression of dose again mixes med ic ine a n d dose into 
a single expression a n d is potentially unre l iab le as it assumes 
a reciprocity relat ionship between i r rad iance and time. 

I r rad ia t ion 
T i m e 

s In o u r view the safest way to record a n d prescr ibe LLLT is to 
de f ine the four parameters of the med ic ine (see table 1.) and 
then def ine the i rradiat ion time as "dose". 

T r e a t m e n t 
interval 

Hours , days or 
weeks 

T h e effects of d i f fe rent t r ea tmen t interval is unde rexp lo red 
at this time though there is suff ic ient evidence to suggest that 
this is an impor tan t parameter . 

laser radiation listed in the "medicine" table; however there is evidence to 
show that d i f ferent wavelengths, pulses, coherence , polarization have 
some effect on the magni tude of b iomodulat ion (see sections 3 and 4). 

2. MECHANISMS OF LOW LEVEL LIGHT THERAPY. 

2.1. Cellular Chromophores and First Law of Photobiology 

T h e first law of photobiology states that for low power visible light to 
have any effect on a living biological system, the pho tons must be 
absorbed by electronic absorpt ion bands belonging to some molecular 
photoacceptors , or ch romophore s (Sutherland 2002). A c h r o m o p h o r e is 
a molecule (or part of a molecule) which imparts some dec ided color to 
the c o m p o u n d of which it is an ingredient. C h r o m o p h o r e s almost always 
occur in one of two forms: conjugated pi electron systems and metal com-
plexes. Examples of such ch romophore s can be seen in chlorophyll (used 
by plants for photosynthesis), hemoglobin, cytochrome c oxidase (Cox), 
myoglobin, flavins, flavoproteins and porphyrins (Karu 1999). Figure 1 
illustrates the general concept of LLLT. 

2.2. Action Spectrum and Tissue Optics 

O n e impor tant considerat ion should involve the optical propert ies of 
tissue. The re is a so-called "optical window" in tissue, where the effective 
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hv, 600-900 nm 

Photoacceptor 

Cell membrane 
ft a ft ft ft ft rififi'tf Tffi tf ft 

Mitochondrial 

Respiratory chain 

c oxidase 

FIGURE 1. Schemat ic d iagram showing the absorpt ion of red a n d NIR light by specific cellular chro-
m o p h o r e s or pho toaccep to r s localized in the mi tochondr ia l respiratory chain 

tissue penetrat ion of light is maximized. This optical window runs 
approximately f rom 650 nm to 1200 nm. (Figure 2). The absorption and 
scattering of light in tissue are both much higher in the b lue j eg ion of the 
spectrum tha:rr^the~Ted7 because the principle tissue chromophores 
(hemoglobin and melanin) have high absorption bands at shorter wave-
lengths, tissue scattering of light is higher at shorter wavelengths, and fur-
thermore water strongly absorbs infrared light at wavelengths greater 
than 1100-nm. The re fo re the use of LLLT in animals and patients almost 
exclusively involves red and near-infrared light (600-1100-nm) (Karu and 
Afanas'eva 1995). 

Phototherapy is characterized by its ability to induce photobiological 
processes in cells. Exact action spectra are needed for determination of 
photoacceptors as well as for further investigations into cellular mecha-
nisms of phototherapy. The action spectrum shows which specific wave-
length of light is most effectively used in a specific chemical reaction (Karu 
and Kolyakov 2005). The fact that defined action spectra can be construct-
ed for various cellular responses confirms the first law of photobiology 
described above (light absorption by specific molecular chromophores) . 

2.3. Mitochondrial Respiration and ATP 

Current research about the mechanism of LLLT effects inevitably 
involves mitochondria . Mitochondria play an impor tant role in energy 
generation and metabolism. Mitochondria are sometimes described as 
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FIGURE 2. Absorp t ion spectra of the ma in c h r o m o p h o r e s in living (issue on a log scale showing the 
optical window where visible and NIR light can p e n e t r a t e deepes t into tissue. 
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"cellular power plants", because they convert food molecules into energy 
in the fo rm of ATP via the process of oxidative phosphorylat ion (see 
Figure 3 for an illustartion of the mitochondria l respiratory chain) . 

T h e mechanism of LLLT at the cellular level has been at tr ibuted to 
the absorpt ion of monochromat i c visible and NIR radiation by compo-
nents of the cellular respiratory chain (Karu 1989). Several pieces of evi-
dence suggest that mi tochondr ia are responsible for the cellular response 
to red visible and NIR light. T h e effects of HeNe laser and o ther illumi-
nation on mi tochondr ia isolated f rom rat liver, have included increased 
pro ton electrochemical potential , more ATP synthesis (Passarella et al. 
1984), increased RNA and prote in synthesis (Greco et al. 1989) and 
increases in oxygen consumpt ion , m e m b r a n e potential, and enhanced 
synthesis of NAD LI and ATP. 

2.4. Cytochrome c oxidase and nitric oxide release 

Absorption spectra obta ined for cytochrome c oxidase (Cox) in dif-
fe ren t oxidation states were recorded and found to be very similar to the 
action spectra for biological responses to light (Karu and Kolyakov 2005). 
The re fo re it was proposed that Cox is the primary photoacceptor for the 
red-NIR range in mammal ian cells (Karu and Kolyakov 2005). 

Nitric oxide p roduced in the mi tochondr ia can inhibit respiration by 
binding" to Cox and competitively displacing oxygen, especially in stressed 
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Complex I Complex II Complex III 

FIGURE 3. Mitochondrial respiratory cha in consisting of contains five complexes of integral mem-
b r a n e proteins: NADII dehydrogenase (Complex I), succinate dehydrogenase (Complex II), 
cy tochrome c reductase (Complex III), cy tochrome c oxidase (Complex IV), a n d ATP synthase 
(ComplexV). 

or hypoxic cells (Brown 2001). Increased nitric oxide (NO) concentra-
tions can sometimes be measured in cell culture or in animals af ter LLLT 
d u e to its pho to release f rom the mitochondria and Cox. It has been pro-
posed that LLLT might work by photodissociating N O f rom Cox, thereby 
reversing the mitochondrial inhibit ion of respiration due to excessive NO 
b ind ing (Lane 2006). Figure 4 illustrates the photodissociation of N O 
f rom its b inding sites on the h e m e iron and copper centers where it 
cometively inhibits oxygen b ind ing and reduces necessary enzymic activ-
ity, thus allowing an immedia te influx of oxygen and resumpt ion of res-
piration and generat ion of reactive oxygen species. 

2.5. NO signaling 

In addition to NO being photodissociated f rom Cox as described, it 
may also be photo-released f rom other intracellular stores such as nitrosy-
lated hemoglobin and nitrosylated myoglobin (Shiva and Gladwin 2009). 
Light mediated vasodilation was first described in 1968 by R F Furchgott , 
in his nitric oxide research that lead to his receipt of a Nobel Prize thirty 
years later in 1998 (Mitka 1998). Later studies conducted by o ther 
researchers confi rmed and ex tended Furchgott 's early work and demon-
strated the ability of light to influence the localized product ion or release 
of N O and stimulate vasodilation through the effect N O on cyclic guanine 
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FIGURE 4. W h e n N O is released f rom its b ind ing to h e m e iron a n d c o p p e r centers in cy tochrome c 
oxidase by the action of light, oxygen is allowed to reb ind to these sites a n d respirat ion is restored to 
its f o r m e r level leading to increased ATP synthesis. 

monophospha t e (cGMP). This f inding suggested that properly designed 
illumination devices may be effective, noninvasive therapeutic agents for 
patients who would benefi t f rom increased localized N O availability 

2.6. Reactive oxygen species and gene transcription 

Reactive oxygen species (ROS) and reactive ni t rogen species (RNS) 
are involved in the signaling pathways f rom mi tochondr ia to nuclei. 
Reactive oxygen species (ROS) are very small molecules that include oxy-
gen ions such as superoxide, free radicals such as hydroxyl radical, and 
hydrogen peroxide, and organic peroxides. They are highly with biologi-
cal molecules such as proteins, nucleic acids and unsatura ted lipids. ROS 
form as a natural by-product of the normal metabolism of oxygen and 
have impor t an t roles in cell signaling (Storz 2007), regulat ing nucleic 
acid synthesis, protein synthesis, enzyme activation and cell cycle pro-
gression (Brondon et al. 2005). LLLT was repor ted to p roduce a shift in 
overall cell redox potential in the direction of greater oxidation (Karu 
1999) and increased ROS generat ion and cell redox activity have been 
demons t ra ted (Alexanclratou et al. 2002; Chen et al. 2009b; Grossman et 
al. 1998; Lavi et al. 2003; Lubart et al. 2005; Pal et al. 2007; Zhang et al. 
2008). These cytosolic responses may in turn induce transcriptional 
changes. Several transcription factors are regulated by changes in cellular 
redox state. But the most impor tant one is nuclear factor B (NF-B). 
Figure 5 illustrates the effect of redox-sensitive transcription factor N F - K B 
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FIGURE 5. Reactive oxygen species (ROS) f o r m e d as a result of LLLT effects in mi tochondr ia may 
activate the redox-sensitive t ranscript ion factor NF-kB (relA-p50) via prote in kinase D (PKD). 

activated after LLLT and is ins t rumental in causing transcription of pro-
tective and st imulatory gene products. 

2.7. Downstream cellular response 

Although the underlying mechanism of LLLT are still not completely 
unders tood, in vitro studies, animal experiments and clinical studiesTTave 

' allTended to indicate that LLLT delivered at low doses may produce a bet-
ter result when compared to the same light delivered at high doses. LLLT 
can prevent cell apoptosis and improve cell proliferation, migration and 
adhesion at low levels of rec l /NIR light illumination (see Figure 6). 

LLLT at low doses has been shown to enhance cell proliferation in 
vitro in several types of cells: fibroblasts (Lubart et al. 1992; Yu et al. 1994), 
keratinocytes (Grossman et al. 1998), endothelial cells (Moore et al. 
2005), and lymphocytes (Agaiby et al. 2000; Stadler et al. 2000). T h e 
mechanism of proliferat ion was proposed to involve photost imulatory 
effects in mi tochondr ia processes, which enhanced growth factor release, 
and ultimately led to cell proliferation (Bjordal et al. 2007). Kreisler et al 
showed (Kreisler et al. 2003) that the a t tachment and proliferation of 
h u m a n gingival fibroblasts were enhanced by LLLT in a dose-dependent 
manner . LLLT modula ted matrix metalloproteinase activity and gene 
expression in porc ine aortic smooth muscle cells (Gavish et al. 2006). 
Shefer at el. showed (Shefer et al. 2002) that LLLT could activate skeletal 
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FIGURE 6. T h e downst ream cellular effects of LLLT signal ing include increases in cell prol i ferat ion, 
migrat ion and adhes ion molecules. Cell survival is increased a n d cell dea th reduced by expression of 
prote ins that inhibi t apoptosis. 

muscle satellite cells, enhanc ing their proliferat ion, inhibit ing differenti-
ation and regulat ing protein synthesis. 

2.8. Downstream tissue response 

There have been a large n u m b e r of bo th animal model and clinical 
studies that demons t ra ted highly beneficial LLLT effects on a variety of 
diseases, injuries, and has been widely used in both chronic and acute 
condit ions (see Figure 7). LLLT may e n h a n c e neovascularisation, pro-
mote angiogenesis and increase collagen synthesis to promote heal ing of 
acute (Hopkins et al. 2004) and chronic wounds (Yu et al. 1997). LLLT 
provided acceleration of cutaneous wound heal ing in rats with a biphasic 
dose response favoring lower doses (Corazza et al. 2007). LLLT can also 
stimulate heal ing of deeper s tructures such as nerves (Gigo-Benato et al. 
2004), t endons (Fillipin et al. 2005), cartilage (Morrone et al. 2000), 
bones (Weber et al. 2006) and even internal organs (Shao et al. 2005). 
LLLT can reduce pain (Bjordal et al. 2006a), inf lammation (Bjordal et al. 
2006b) and swelling (Carati et al. 2003) caused by injuries, degenerative 
diseases or a u t o i m m u n e diseases. O r o n repor ted beneficial effect of 
LLLT on repair processes after injury or ischemia in skeletal and hear t 
muscles in multiple animal models in vivo (Ad and Oron 2001; O r o n et 
al. 2001a; O r o n et al. 2001b; Yaakobi et al. 2001). LLLT has been used to 
mitigate damage after strokes (in both animals (Lapchak et al. 2008) and 
humans (Lampl et al. 2007)), after t raumatic brain injury (Oron et al. 
2007) and af ter spinal cord injury (Wu et al. 2009). 
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F I G U R E 7. Beneficial tissue effects of LLLT can include almost all the tissues a n d organs of the body. 

3. REVIEW OF BIPHASIC DOSE RESPONSES IN LLLT 

3.1. Dose dependence and dose rate effects—the biphasic curve 

A biphasic response has been demons t ra ted many times in LLLT 
research (Lanzafame et al. 2007; O r o n et al. 2001a) and the "Arndt-Schulz 
Law" is f requent ly quoted as a suitable model to describe dose d e p e n d e n t 
effects of LLLT (Chow et al. 2006; Hawkins and Abrahamse 2006a; 

"Hawkins and Abrahamse 2006b; Lubart 'et al. 2006; Sommer et al. 2001). 
T h e concep t of the Arndt-Schulz Law dates f rom the years a r o u n d the 
end of the n ine teen th century, when H. Schulz published a series of 
papers that examined the activity of various kinds of poisons (iodine, 
b romine , mercur ic chloride, arsenious acid, etc.) on yeast, showing that 
almost all these agents have a slightly stimulatory effect on the yeast 
metabolism when given in low doses (Schulz 1877; Schulz 1888). He then 
came into contact with the psychiatrist R. Arnd t and together they devel-
o p e d a principle that later became known as the 'Arndt-Schulz law', stat-
ing that weak stimuli slightly accelerate vital activity, s t ronger stimuli raise 
it fur ther , bu t a peak is reached and even s t ronger stimuli suppress it, 
until a negative response is finally achieved (Martius 1923). In 1960 
Townsend and Luckey surveyed the field of classic medical pharmacolo-
gy and publ ished a list of 100 substances known to be capable of causing 
an inhibi t ion at high concentrat ions and stimulation at low concentra-
tions a n d t e rmed the p h e n o m e n o n "hormoligosis" (Townsend and 
Luckey 1960). T h e m o d e r n term "hormesis" was first used by Stebbing in 
1982 (Stebbing 1982) and has been thoroughly reviewed by Calabrese 
(Calabrese 2001b; Calabrese 2002; Calabrese 2004a; Calabrese 2004b; 
Calabrese 2005). 
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FIGURE 8. Idealized biphasic dose response curve (of ten t e r m e d Arndt-Schulz curve) typically 
r epor ted in LLLT studies. 

Dose 

In the context of LLLT the increasing "stimulus" may be irradiation 
timeT or increased irradiance. This non-linear effect contradicts the 
Bunsen-Roscoe ruIe~oF"'reciprocity (whicli was originally formula ted for 
visual detect ion of light by photoreceptors (BrindIey T952)y,"which pre-
dicts" that if" the products~of exposure time in seconds and irradiance in 
m W / c m 2 are equal , i.e. the energy density is the same, then the changes 

iTr~biologicar~endpoint will be ^qu^rTh1s~~mvers^ linear relat ionship 
Between i r radiance j m d j i r ae __has—freq ue n tly failed in LLLT research 
( K a F u ^ T K o l y a k o v 2005; Lubar t et al 2006). 

A "biphasic" curve can be used to illustrate the expected dose 
r eSponseTo l tgh r at a subcellular, cellular, tissue or clinical level. Simply 
put , it suggests that if insufficient jenergy- is-appl ied- there will T5e j i o 
"response (because the min imum threshold has not been met) , if more 
energy is appl ied the then a threshold is crossed and biostimulation is 
achieved but when too much energy is applied then the s t imula t ion dis-
appears and is replaced by bioinhibit ion instead. An idealized illustration 
(lngure~S) similar to that suggested by Sommer (Sommer et al. 2001) 
helps unders tand the concept . 

3.2. Biphasic Response—irradiance 

As early as 1978 Endre Mester observed a "threshold p h e n o m e n o n " 
after laser irradiation of lymphocytes in vitro (Mester et al. 1978). Peter 
Bolton in 1991 irradiat ing macrophages with two dif ferent i rradiances 
(W/cm 2 ) but the same energy density ([/cm'2) recorded d i f fe ren t results 
(Bolton et al. 1991). Karu (Karu and Kolyakov 2005) found a d e p e n d e n c e 
of stimulation of DNA"syntEesis rate oriTight intensity at a constant ener-
gy density 0.1 J / c m 2 with a clear maximum at 0.8 m W / c m 2 . IrTanqtjLer; 
'Study (Karu et al. 1997) the same g roup founcl ncTless tharlseven maxima 
in the dose vs. biological effect curves using a pulsed 810-nm diode laser. 
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TABLE 3. Compar i son of d i f fe ren t i r radiances a n d f luences of 810-nm laser on d i f ferent ia t ion of 
normal h u m a n neura l p rogeni to r cells. Cells received light once a day for three days a n d neur i t e 
outgrowth was measured . 

Ander s et al. 2007 
Average S u m m e d Neur i t e Length Parameters 

1 m W / c m 2 5 m W / c m 2 15 m W / c m 2 19 m W / c m 2 25 m W / c m 2 50 m W / c m 2 

0.01 J / c m 2 NS NS NS 
0.05 J / c m 2 NS NS NS S S NS 
0.2 J / c m 2 NS NS NS S S S 
1 J / c m 2 NS NS NS NS NS S 

NS: No statistical d i f ference . 
S: Groups significantly grea te r than Factors g roup . 
( O n e way ANOVA *p<0.01, **p<0.001) 

Four d i f ferent biological models were used: luminol-amplified chemilu-
minescence measured in nucleated cells of mur ine spleen (splenocytes), 
bone marrow (karyocytes), and mur ine blood and adhesion of HeLa cells 
cultivated in vitro. T h e peaks coincided for all four models. Anders con-
ducted the widest ranging in-vitro study (on normal h u m a n neural pro-
geni tor cells) with four d i f ferent energy density groups, each g r o u p test-
ed across a range of six d i f ferent i r radiance parameters (Anders et al. 
2007) Table 3. 

In 1979 Ginsbach found that laser stimulation of wound closure had 
"no reciprocity relation". His control led exper iments on rats with He-Ne 
laser at an energy density of 4 J / c m 2 f ound stimulation at an i r radiance 
of 45 m W / c m - but no t at 12.4 m W / c m 2 (Ginsbach 1979). Uri Oron 
(Oron et al. 2001a) showed d i f fe ren t reductions of infarct "sizfe af ter 
induced hear t attacks in rats. Keeping energy density constant and vary-
ing the i r radiance he f o u n d that the beneficial effects were maximumal 
at 5 m W / c m 2 and significantly less effect both at lower irradiances (2.5 
m W / c m 2 ) and also at h igher i r radiances (25 m W / c m 2 ) . Ray Lanzafame 

v (Lanzafame ^ a r 2007) conduc ted a study varying irradiance and inter-
val on laser-induced healing of pressure ulcers in mice^Energy density (5 
J / c m 2 ) was fixed but four d i f fe ren t i r radiance (0.7 - 40 m W / c r r ^ param-
eters were tested with a significant improvement only occurr ing for 8 
f n W / c m r — 

We know of only one h u m a n clinical trial which varied i r radiance but 
this trial kept t rea tment time the same so energy density (J /cm 2 ) did not 
remain the same. This RCT by Hash imoto on the t rea tment of the stellate 
ganglion to reduce pain in patients with post herpetic neuralgia of the 
facial type. This study compared the effects of 830-nm lasers delivering 60 
mW, 150 mW and placebo, each appl ied for 3 minutes to the anter ior 
aspect of the lateral process of the 7th cervical vertebrae. Each pat ient 
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had three t rea tments (one t reatment , three consecutive days), each treat-
m e n t was with a d i f fe ren t laser or placebo. T h e study was properly blind-
ed and randomized . T h e r e was a significant d i f fe rence in skin tempera-
ture of the fo rehead and in recorded pain scores. T h e greatest improve-
ments were for the 150mW laser (Hashimoto et al. 1997). 

T h e r e have been several systematic reviews a n d meta analyses of RCTs 
and these have revealed some irradiance d e p e n d a n t effects: Bjordal pub-
lished a review of LLLT for chronic jo in t disorders and identif ied 14 RCTs 
of suitable methodologica l quality, 4 of which failed to repor t a significant 
effect because the i r radiance was e i ther too high or too low, a n d / o r deliv-
ered insufficient energy, the remaining eight studies all p roduced positive 

^S£is~"(B|ordal et al. ~~2003). Tumilty reviewed 25 LLLT RCTs of 
tendinopathies ,13 of which (55%) failed to p r o d u c e a positive outcome, 
all of these negat ive/ inconclusive studies that r ecorded i r radiance (or 
could subsequently be established) had delivered an i r radiance in excess 
of the guidel ines set by the World Association for Laser Therapy 
(www.walt.nu) (Tumilty et al. 2009). 

3.3. Biphasic Response—time or energy density 

Again, Peter Bolton's study ment ioned in 3.2 above had an energy 
density aspect showing a different response for each of the irradiances 
used. For the 4 0 0 m W / c m 2 study he found increasing energy density f rom 
2.4 J / c m 2 to 7.2 J / c m 2 increased fibroblast prol iferat ion, in the 800 
m W / c m 2 g roup increasing energy density f rom 2.4 J / c m 2 to 7.2 J / c n r 
decreased fibroblast proliferation (Bolton et al. 1991). Anders ' study also 
men t ioned in 3.2 above looked at four energy density groups, and for the 
irradiance parameters that p roduced significant results increasing energy 
density increased neur i te length (Anders et al. 2007) Table 3. Yamaura and 
colleagues found a biphasic dose response in MTT activity in rheumatoid 

^axthritis synoviocytes af ter 810-nm laser with a peak at 8 J /cm 2 and less 
effect at lower and h igher fluences (Yamaura et al. 2009). Loevschall meas-
ured h u m a n oral mucosal fibroblast cell proliferat ion by incorporat ion of 
tritiated thymidine af ter varying fluences of 812-nm laser delivered at 4.5 
m W / c i r r and f o u n d a biphasic dose response with a distinct peak at 0.45 
J / c m 2 (Loevschall and Arenholt-Blndslev 1994) . Ano the r study (al-Watban 
ancl Andres 2001) looked at Chinese hamster ovary and h u m a n fibroblast 
proliferation af ter various fluences of He-Ne laser delivered at a constant 
i rradiance of L25 m W / c m 2 . A g a i n j h e y f o u n d a clear biphasic dose 
response with a peak at 0.18 J / c m 2 . Zhang et al (Zhang et al. 2003) found 
a biphasic dose response in h u m a n .fibroblast cell n u m b e r s af ter t reatment 
with varying f luences of 628-nm light, with a m a x i m u m increase of 30% 
af ter 0 .88 ) / cm^^and ' an a c t u ^ r e d u c t i o n a p p e a r j n g ^ a t ^ ^ j / ^ c m ^ B r o ^ o n 
and~ colleagues (Brondon et al. 2005) found that two t reatments per day 
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caused a bigger increase than 1 or 4 t reatments per day measuring prolif-
eration"Index in h u m a n HEP-2 and mur ine L-929 cell lines. They used a 
670 nm light emi t t ing d iode device with an i rradiance of 1 ( I fnW / c m 2 and 
each "single Treatment was 5 J / c m 2 and the course was stopped after 50 
J / cm 2 had been given (at 10, 5 or 2.5 days). 

Lopes-Martins showed a biphasic response to LLLT on the n u m b e r of 
mononuc lea r cells that accumulate in pleural cavity after car rageenan 
injection. T h e results showed neutrophi l influx mice treated with three 
di f ferent laser f luencies at 1, 2.5 8c 5 J / c m 2 ) with 2.5 haying the greatest 
e f f e c t ( L o p e s - M a r t i n s , M a l - 2 D . Q 5 ) . 

As stated in 3.2 above, Hashimoto repor ted on the laser t rea tment of 
the stellate gangl ion to reduce pain in patients with post herpet ic neu-
ralgia of the facial type. T h e study compared the effects of 830-nm lasers 
delivering 60mW, 150mW and placebo, T h e greatest improvements were 
for the 150mW laser (Hashimoto et al. 1997). Again as stated in 3.2 above, 
there have been several systematic reviews and meta analyses of RCTs and 
these revealed some energy density d e p e n d a n t effects (Bjordal et al. 2003; 
Tumilty et al 2009). 

3.4. Beam measurement reporting errors 

O n e notable aspect of the close rate (W/cm 2 ) studies is the wide vari-
ation of "optimal" irradiances in vitro studies as they range f rom 1-800 
m W / c m 2 in ju s t the few papers referenced in this review. If the pr imary 
pho to acceptor is cytochrome C oxidase as postulated here, then why 
would so many au thors arrive at d i f ferent conclusions for optimal param-
eters in vitro, should it not be the same for all of them? 

Explanations may include, the slightly di f ferent wavelengths used or 
sensitivity d u e the redox state of mi tochondia in the target cells (Tafur 
and Mills 2008), bu t we consider that the greater contr ibutor may be laser 
beam m e a s u r e m e n t problems. It may be a surprise to non-physicists that 

a f vtjoer^ts^lliode laser beams are not inherently round , and even if circularizing 
lenses are used to correc t this, then the beam intensity distribution is no t 
homogeneous . Laser beams are brighter (higher irradiance) in the micl-
<Jle and weaker towards the edge. Cells in the centre of a culture well will 
be exposed to considerably higher irradiances than those on the per iph-
ery. Because the edge of a laser beam is hard to def ine and find this could 
mean that i r radiance calculations are significantly di f ferent between 
research centers. Agreement on beam measurement and repor t ing of 
intensity distr ibution is needed to reduce these inconsistencies. This is 
impor tan t no t only for in vitro studies but also in vivo and clinical trials as 
repor t ing of i r radiance is jus t as impor tan t though we accept that tissue 
scattering diffuses the beam probably making non-homogenous sources 
less critical to clinical effectiveness. 
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FIGURE 9 . Biphasic dose response of N F - K B activation ( m e a s u r e d by b io luminescence r e p o r t e r 
assay) in m o u s e e m b r y o n i c fibroblasts 10 h o u r s a f t e r d i f f e r e n t f luences o f 8 1 0 - n m laser light. CHI is 
con t ro l w h e r e all p ro t e in synthesis has been inh ib i t ed . 

4. BIPHASIC LLLT DOSE RESPONSE STUDIES IN OUR LABORATORY 

4 . 1 . In vitro activation of N F - K B 

We developed die hypothesis (Chen et al 2009a) that NIR light (810-
nm laser) would activate the transcription factor N F - K B by genera t ing 
reactive oxygen species from the mitochondr ia (see section 2.5). We test-
ed this in mouse embryonic fibroblasts that had been genetically engi-
neered to synthesize luciferase in response to N F - K B activation (Chen et al 
2009a). We used a wide range (four orders of magnitude) of delivered flu-
ences by adjust ing the laser power so that the illumination time was kept 
constant at 5 minutes. As shown in Figure 9 there was a biphasic dose 
d e p e n d e n t activation of N F - K B as measured by luciferase assay 10 hours 
af ter the illumination was completed. There was no significant increase at 
0 . 0 0 3 J / c m 2 comparcd lo j Jhg jda rJ^con l ro^ 
the max imum activation was observed at 0.3 J / c m 2 , while at 3 J / c m 2 and 
even m o r e so at 3 0 j/crrrjhere wasadec rea se in N F - K B activation, bu t the 
level was still higher than that found at 0.03 J / c m 2 . The level of luciferase 
expression was also measured in the presence o f cycloheximide (CHI) as 
a control . CHI is a protein synthesis inhibitor that removes even the back-
g r o u n d level of luciferase seen in dark control cells, as well as all the 
increases seen with the different f luences of 810-nm light. 

We tested the hypothesis that the activation of N F - K B by L . L L T was 
media ted by generat ion of ROS because N F - K B is known to be a redox-
sensitive transcription factor (Schreck et al 1992) and moreover ROS 
have previously been shown to be genera ted dur ing L L L T (Alexandratou 
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FIGURE 10. Biphasic dose r e sponse in g e n e r a t i o n of R O S as d e t e c t e d by f luo rescence p r o b e u n d e r 
s a m e c o n d i t i o n s as Fig 9 bu t m e a s u r e d at 5 m i n u t e s pos t - i r rad ia t ion . 

et al. 2002; Lubart et al. 2005; Pal et al. 2007). We used dichlorodihydro-
fluorescein diacetate (DCHF-DA) which is taken u p into cells, hydrolyzed 
and oxidized to a f luorescent fo rm by most species of ROS probably via 
lipid peroxides (Diaz et al. 2003). As can be seen in Figure 10 even the low 
f luence of 0.003 J /cm' 2 p roduced detectable levels of ROS, greater at 0.03 
J / c m 2 and maximum at 0.3 J / c m 2 with a slight decrease observed at 3 
J / c m 2 . T h e maximum level observed at 0.3 J / c m 2 was only slightly less 
than that observed inside the cells a f ter addi t ion of hydrogen peroxide to 
the extracellular medium. 

4.2. Mouse wound healing 

In an in vivo study (Demidova-Rice et al. 2007) we used a set of flu-
ences of 635-nm (+/ -15-nm) light delivered f rom a filtered lamp. T h e 
model was a full thickness dorsal excisional wound in BALB/c mice treat-
ed with a single exposure to light 30 minutes af ter wounding. These flu-
ences were 1, 2, 10 and 50 J / c m 2 delivered at constant f luence rate of 100 
m W / c m r and taking 10, 20, 100 and 500 seconds respectively. In this 
model the untreated wound tends to expand for 2-3 days after it was 
made , but even a brief exposure to light soon af ter wounding, reduces or 
stops the expansion of the wound and the integrated time course of the 
wound size can therefore be significantly reduced. O u r hypothesis is that 
fibroblasts in the edge of the wounded dermis can be t ransformed into 
myofibroblasts, and the contractile na tu re of these cells with their smooth 
muscle actin fibers prevents the wound expanding. It should be noted 
that the fibroblast-myofibroblast transition can be mediated by N F - K B 

activation (Watson et al. 2008). As shown in Figure 11 there was a bipha-
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F I G U R E 11. Biphasic dose r e sponse in m e a s u r e d d i f f e r e n c e in in t eg ra t ed a r e a u n d e r the curve of 
t ime course of w o u n d size c o m p a r e d to n o t r e a t m e n t con t ro l , with a c lear m a x i m u m seen at 2 J / c m 2 , 
a n d the h igh dose of 50 J / c m 2 gave a worsen ing of the w o u n d h e a l i n g t ime cu rve . 

sic dose response with positive effects (di f ference in integrated area 
unde r the curve of time course of wound size compared to no t rea tment 
control) seen in low doses with a clear max imum seen at 2 J / c m 2 , and the 
high dose of 50 J / c m - actually gave a worsening of the wound healing 
time curve i.e. there was a greater expansion of the wound compared with 
non-treated controls. 

4.3. Rat arthritis 

In ano the r in vivo study (Castano et al. 2007) we investigated whether 
LLLT using an 810-nm laser could have a therapeut ic effect in a rat 
model of inf lammatory arthritis caused by zymosan injected into their 
knee joints. In this model the severity of the arthritis is quantif ied by 
measuring the d iameter of the swollen jo in t every day and plott ing a time 
course for each jo in t . We compared i l lumination regimens consisting of 
a high and low f luence (3 and 30 J / cm 2 ) , delivered at high and low irra-
diance (5 and 50 m W / c m 2 ) using 810-nm laser light daily for 5 days, with 
the positive control of conventional corticosteroid (dexamethasone) 
therapy. 

As shown in Figure 12 three of the i l lumination regimens were effec-
tive in reducing the mean integrated knee swelling almost as much as the 
positive control of the powerful steroid, dexamathasone ; these were 3 
J / c m 2 delivered at 5 m W / c m 2 and 30 J / c m 2 delivered at 50 m W / c m 2 

both of which took 10 minutes, and 30 J / c m 2 delivered at 5 m W / c m 2 

which took 100 minutes.^The only ineffective dose regimen was 3 J / c m 2 

P < 0.05 PcO.OS 

1 J/cm2 2 J/cm2 10 J/cm2 SO J/cm2 

fluence 
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FIGURE 12. Dose response of i l luminat ion time f o u n d in a study of 810-nm laser to t reat zymosan-
induced arthri t is in rats. In tegra ted curves of knee c i rcumference versus t ime were c o m p a r e d . T h r e e 
LLLT reg imens were equally successful where the i l lumination time was e i ther 100 minu te s o r 10 
minutes , bu t the ineffective regimen only had a 1 minu te i l lumination time. 

delivered at 50 m W / c r r r which took the comparatively shor t t ime of 1 
minu te to deliver. This observation led us to propose that the illumina-
tion time was an impor tan t parameterTn some LLLTappllcaTFons". 

" — j 

5. POSSIBLE EXPLANATIONS FOR BIPHASIC DOSE RESPONSE IN LLLT 

T h e repea ted observations that have been made of the biphasic dose 
response p h e n o m e n o n in LLLT require some explanation. T h e natural 
assumption that is frequently made is, that if a small dose of red or near-
rnfrared light p roduces a sigriilicant therapeut ic effect, then a larger dose 
sTiould p roduce an even more beneficial effect. This natural assumption 
in f requent ly no t the case*. We here propose three possible explanat ions 
for the existence of the biphasic dose response based u p o n mechanist ic 
considerat ions out l ined in section 2. 

5.1. Excessive ROS 

As discussed in 2.5 the light mediated generat ion of reactive oxygen 
species has been observed in many in vitro studies and has been proposed 
to account for the cellular changes observed after LLLT via activation of 
redox sensitive transcription factors (Chen et al. 2009a). T h e evidence of 
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ROS mediated activation of N F - k B in M E F cells presented in 4 . 1 provides 
additional suppor t for this hypothesis (Chen el al. 2009a). It is well-accept-
ed that ROS can have both beneficial and ha rmfu l effects (Huang and 
Zheng 2006). Hydrogen peroxide is often used to kill cells in vitro (Imlay 
2008). O the r ROS such as singlet oxygen (Klotz et al. 2003) and hydroxyl 
radicals (Pryor et al. 2006) are thought to be ha rmfu l even at low con-
centrations. T h e concep t of biphasic dose response in fact is well estab-
lished in the field of oxidative stress (Day and Suzuki 2005). If the gener-
ation of ROS can be shown to be dose d e p e n d e n t on the delivered ener-
gy f luence this may provide an explanation for the stimulation and inhi-
bition observed with low and high light fluences. 

5.2. Excessive NO 

T h e o the r mechanist ic hypothesis that is pu t forward to explain the 
cellular effects of LLLT relates to the photolysis of nitrosylatecl proteins 
that releases f ree N O (see section 2.6). Again the li terature has many 
papers that discuss the so-called two-faced or "Janus" molecule N O 
(Anggard 1994; Lane and Gross 1999). NO can be ei ther protective or 
ha rmfu l d e p e n d i n g o n the dose and particularly on the cell or tissue type 
where it is g e h ^ r a t e ^ ^ a l a b r e s e ' 2 0 0 1 a ) . _ 

5.3. Activation of a cytotoxic pathway 

The third hypothesis to explain the biphasic dose response of LLLT 
is the idea that the protective and stimulatory effects of light occur at low 
doses, but there is an addit ional pathway that leads to damaging effects of 
light that only occurs at high doses, and effectively overwhelms the ben-
eficial effects of low doses of light. Work f rom South China Normal 
University provides some suppor t for this hypothesis. Low doses of LLLT 
were found to phosphoryla te hepatocyte growth factor receptor (c-Met), 
and initiate signaling via cyclic AMP and J u n kinase and Src (Gao and 
Xing 2009). By contrast , h ighjdose LLLT was f o u n d to induce ajjopt()sis 
via a mi tochondr ia l caspase-3 pathway and cytochrome c release was 
at t r ibuted to o p e n i n g of the mitochondrial permeabili ty transition pore 
caused by high-level intracellular reactive oxygen species (ROS) genera-
tion ( W u ' e t a l . ' 2 0 ( J 9 ) . s e c o n d a r y signaling pathway through Bax activa-
tion was observed (Wu et al. 2009). 

6. SUMMARY AND CONCLUSION 

LLLT delivered at low doses tends to work bet ter than the same wave-
length delivered at high l eve l^^T^ l lTus tFa tes the basic concepTot bipha-
sic dose response or hormesis (Calabrese 2001b). In general, f luences of 
red or NIR as low as~3 o r 5 J / c m 2 will be beneficial in vivo, but a large dose 
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like 50 or 100 ]/cm'2 will lose the beneficial effect and may even become 
detrimental . T h e molecular and cellular mechanisms LLLT suggest that 
pho tons are absorbed by the mitochondria ; they stimulate more ATP pro-
duction and low levels of ROS, which then activates transcription factors, 
such as NF-KB, to induce many gene transcript products responsible for 
the beneficial effects of LLLT gOS^are well known to stimu]ajLe_celliilar 
proliferation o j low levels, but inhibit proliferation and kill cells at high 
levels. Nitric oxide is also involved in LLLT, and may be photo-released 

T r o m i t s binding sites in the respiratory chain and elsewhere. is possible 
that NO release in low amounts by low dose light may be beneficial, while 
FTigh levels released lw jinrh_Hnse I.ITTl^nm^ieJT^Tyiagi rig. The third pos-
^ i l T t j M s T M r L L L T may activate transcription factors, upregulat ing pro-
tective proteins which are anti-apoptotic, and generally promote cell sur-
vival t4n_contrast, it is entirely possible that d i f ferent transcription factors 
and cell-signaling pathways, t h a t p r o m o t e apojD&siSqjcguld be activated 

^a f t eFh ighen igh t exposure. We believe that fu r the r advances in the mech-
a n i s t i c understanding" of LLLT will con t inue to be made in the near 

future. These advances will lead to greater acceptance of LLLT in main-
stream medicine and may lead to LLLT being used for serious diseases 
such as stroke, hear t attack and degenerative brain diseases. Nevertheless 
tlu* concept of biphasic dose response or LLLT hormesis (low levels of 
light are good for you, while high levels are bad for you) will remain. 
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