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Anti-inflammatory effects of low-level laser therapy
on human periodontal ligament cells: in vitro study
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Abstract Periodontal disease is a chronic inflammatory dis-
ease that is commonly treated with surgical and nonsurgical
techniques. However, both approaches have limitations. Low-
level laser therapy (LLLT) has been widely applied in reduc-
ing inflammatory reactions, and research indicates that LLLT
induces an anti-inflammatory effect that may enhance peri-
odontal disease therapy. The purpose of this study was to
investigate the anti-inflammatory effect of LLLT on human
periodontal ligament cells (hPDLCs) in an inflammatory en-
vironment and aimed to determine the possible mechanism of
action. Cells were cultured and treated with or without lipo-
polysaccharide (LPS) from Porphryromonas gingivalis or
Escherichia coli, followed by irradiation with a gallium-
aluminum-arsenide (GaAlAs) laser (660 nm) at an energy
density of 8 J/cm2. Quantitative real-time polymerase chain
reactions were used to assess the expression of pro-

inflammatory genes, including tumor necrosis factor-α
(TNF-α), interleukin (IL)-1β, IL-6, and IL-8. The dual-
luciferase reporter assay was used to examine nuclear
factor-κB (NF-κB) transcriptional activity. An enzyme-
linked immunosorbent assay was used to monitor the concen-
tration of intracellular cyclic adenosine monophosphate
(cAMP). Both LPS treatments significantly induced the
mRNA expression of pro-inflammatory cytokines. However,
LLLT inhibited the LPS-induced pro-inflammatory cytokine
expression and elevated intracellular levels of cAMP. The
LLLT inhibitory effect may function by downregulating
NF-κB transcriptional activity and by increasing the intracel-
lular levels of cAMP. LLLT might inhibit LPS-induced in-
flammation in hPDLCs through cAMP/NF-κB regulation.
These results should be further studied to improve periodontal
therapy.
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Introduction

Periodontal disease is a common and complex inflammatory
disease that results in progressive destruction of the tooth-
supporting soft and hard tissues of the periodontium [1]. The
resulting damage affects the alveolar bone as well as the peri-
odontal ligament (PDL). Although surgical therapies such as
open flap surgery and osseous surgery and nonsurgical thera-
pies such as standard oral hygiene procedure and sustained
local delivery antimicrobial agents are helpful in controlling
this disease, both treatment options have limitations. Patients
with deep pockets or furcation involvement did not respond
well to nonsurgical therapy, and surgical therapy was more
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invasive and risky when treating patients with systemic prob-
lems [2, 3].

It has been reported that one of the functions of PDL cells is
to respond to environmental stresses, such as inflammatory
cytokines and pathogens [4, 5]. Sun et al. reported that lipo-
polysaccharide (LPS) exposure induces the expression of cy-
tokines in PDL cells, including tumor necrosis factor
(TNF)-α , interleukin (IL)-1β , IL-6, and IL-8 [4].
Inflammatory cells as well as PDL cells regulate the periodon-
titis process [4–6], although the exact roles of different cell
types require further clarification.

LPS is a macromolecule with a lipid element (lipid A) and a
polysaccharide element [7]. LPS is located on the exterior
membrane of gram-negative bacteria and stimulates powerful
immune responses in animals. Indeed, the immune systems of
animals have evolved to recognize LPS via toll-like receptors
(TLRs) [8]. TLRs are a class of transmembrane proteins that
contain numerous leucine-rich repeats and are composed of
globular intracellular regions and extracellular domains [9].
Eleven different TLRs in humans have been identified [10].
Among them, TLR2 and 4 function as the principal innate
sensors for the virulent factors of periodontopathic bacteria
[11, 12]. LPS binding to TLR 2 and 4 triggers activation of
the nuclear factor kappa B (NF-κB) signaling cascade, induc-
ing the secretion of pro-inflammatory cytokines such as
TNF-α and IL-1β [13]. Alterations to the number, position,
and length of the acyl groups or monosaccharide groups in
lipid A will result in alterations in the biologic effects [14].
Based on these mechanisms, LPS from different bacterial spe-
cies may trigger different types of immune responses.

In the past few decades, low-level laser therapy (LLLT) has
been widely employed in the treatment of wound healing,
musculoskeletal pain, and chronic and acute inflammation
[15, 16]. Studies have identified the benefits of using LLLT
[17, 18]. For example, Bortone et al. reported that LLLT in-
duced an anti-inflammatory effect through the regulation of
pro-inflammatory mRNAs [17]. Obradovic et al. reported that
low-level lasers have shown efficacy in reducing inflamma-
tion of periodontitis in patients with diabetes mellitus [18].
However, the precise mechanism by which LLLT regulates
periodontal inflammation remains unknown.

Cyclic adenosine monophosphate (cAMP) functions as an
important second messenger in many cell physiological pro-
cesses, such as cell differentiation, proliferation, apoptosis,
and inflammation [19]. cAMP is formed by the activation of
adenylyl cyclase and is converted from adenosine triphos-
phate [19]. Also, cAMP was recently implicated in pro-
inflammatory processes as it was shown to not only serve as
a modulator of immune function but also as a regulator in
response to LLLT signaling [20]. However, the potential rela-
tionship between cAMP and LLLT in affecting the LPS-
induced inflammatory response in human periodontal liga-
ment cells (hPDLCs) has not been investigated.

In this study, we investigated the anti-inflammatory effects
of LLLT on hPDLCs that were exposed to LPS from
Porphryromonas gingivalis (P. gingivalis) or Escherichia coli
(E. coli) and aimed to determine the possible mechanism of
action.

Materials and methods

Cell culture

The procedure for hPDL cell preparation was according to a
modification of the method reported by D’Errico et al. [21].
Briefly, hPDL tissues were collected from the middle third of
periodontally healthy and non-carious third molar roots ex-
tracted from healthy volunteers (20 to 40 years of age) during
the course of orthodontic treatment. Periodontal ligament tis-
sue was scraped from third molars, enzymatically digested by
2 mg/mL collagenase and 0.25% trypsin for 1 h at 37 °C. The
cells were harvested by centrifugation for 10 min at 500×g.
The supernatant was carefully aspirated, and cells were
washed twice with Dulbecco’s modified Eagle’s medium
(DMEM) containing 10% fetal bovine serum. The cells were
expanded with DMEM supplemented with 10% fetal bovine
serum, 100 mg/mL penicillin-G, 100 mg/mL kanamycin sul-
fate, and 0.3 mg/mL amphotericin B. The cultures were kept
at 37 °C in a humidified incubator in the presence of 95% air
and 5% CO2. The medium was changed every other day. The
cells were used at passages 3 to 9.

Chemical inhibitor and reagent treatments

LPS from E. coli and P. gingivalis was dissolved in 1×
phosphate-buffered saline at a final concentration of 10 mg/
mL and stored at 4 °C. The hPDLCs were treated with differ-
ent concentrations of LPS (0, 10, 20, 50, and 100 μg/mL)
from P. gingivalis and E. coli freshly diluted in culture medi-
um. The adenylyl cyclase inhibitor SQ22536 (Sigma-Aldrich,
St. Louis, MO, USA) was used to block the activity of
adenylyl cyclase. SQ22536 was dissolved in dimethyl sulfox-
ide (DMSO), and the cells were treated with a dose of
100 μmol/L. Forskolin (50 μmol/L, Sigma-Aldrich, St.
Louis, MO, USA), an adenylyl cyclase activator, was dis-
solved in DMSO.

Low-level laser therapy

A gallium-aluminum-arsenide red laser with flat top beam
profile (wavelength 660 nm diode laser, Transverse
Industries Co., Ltd., Taipei, Taiwan) was used as the laser
source. The output of the laser device was 70 mW. The dis-
tance between the bottom of the culture plate and the laser
source was 3 cm, and the irradiated area was 3.8 cm2. The
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cells were irradiated once for 528 s in a continuous mode and
received 8 J/cm2 of laser energy density in total. All irradiation
experiments were performed on a clean bench at room tem-
perature. The control groups were processed under the same
conditions, except without laser irradiation.

Cell viability

An MTT assay (3-[4, 5- dimethylthiazol-2-yl]-2, 5-
diphenyltetrazolium bromide) was used to determine cell via-
bility. The hPDLCs were seeded onto a 96-well plate. After
exposure to LPS from P. gingivalis and E. coli for 24 h, the
cells were incubated with 5 mg/mL MTT for 4 h. The reac-
tions were measured using an enzyme-linked immunosorbent
assay (ELISA) reader at 595 nm.

Lactate dehydrogenase leakage

Lactate dehydrogenase (LDH) leakage was measured to quan-
tify cytotoxicity with a Cytotoxicity Detection kit. The
hPDLCs were seeded onto a 96-well plate and cultured with
different concentrations of LPS from P. gingivalis and E. coli
for 24 h. The LDH leakage was calculated according to the
manufacturer’s guidelines. The absorbance was measured
with an ELISA reader at 490 nm.

Real-time reverse transcription-polymerase chain
reaction (RT-PCR)

The total RNA from hPDLCs was extracted using TRIzol
(Thermo Fisher Scientific, Waltham, MA, USA). cDNA re-
verse transcription was conducted with an RT system contain-
ing Moloney Murine Leukemia Virus reverse transcriptase.
Quantitative real-time PCR was performed in a Bio-Rad
CFX Connect real-time PCR detecting system, and the reac-
tions were carried out in a mixture containing cDNA, primers
for each gene, and iQ™ Syber-Green Supermix (Bio-Rad,
Hercules, CA, USA). The primer pair sequences for the fol-
lowing human genes are listed in Table 1. The relative mRNA
expression levels were analyzed with the comparative Ct
method, where the amount of target is normalized to the
housekeeping gene GAPDH.

Intracellular cyclic adenosine monophosphate levels

ELISA kits for the detection of cAMP were obtained from
Enzo (Farmingdale, NY, USA). All of the procedures were
based on the manufacturer’s instructions, and the optical den-
sity was measured at a wavelength of 405 nm.

Dual-luciferase assay

We cultured 2 × 104 hPDLCs in a 48-well plate and co-
transfected the cells with the pGL 4.32 [luc2P/NF-κB-RE/
Hygro] vector (250 ng) and pTK-Renilla vector (50 ng) using
Lipofectamine 2000 (Thermo Fisher Scientific, Waltham,
MA, USA). The transfection procedure was performed ac-
cording to the manufacturer’s instructions. Twenty-four hours
after transfection, the cells were treated with LPS, LLLT, and
SQ22536 for an additional 6 h. The luciferase activity was
measured using a dual-luciferase reporter assay system
(Promega, Madison, WI, USA) with an Anthos Lucy3 micro-
plate luminometer (AnthosLabtec Instruments, Austria).

Statistical analysis

All the data were collected from three to four independent
experiments. Data were analyzed with the statistical software
SPSS/Win version 17.0 and expressed as the mean ± standard
deviation. For statistical analysis, normality was first tested
using the Shapiro-Wilk test. For normally distributed data,
one-way analysis of variance was used to test for statistical
differences followed by the post hoc Tukey’s test. If the data
failed the normality test, the nonparametric Kruskall-Wallis
one-way analysis of variance was used to test for statistical
differences with Dunn’s multiple comparison test. A p value
of 0.05 was considered statistically significant.

Results

The viability and cytotoxicty of LPS-challenged hPDLCs

To evaluate the influence of LPS from P. gingivalis and E. coli
on the viability of hPDLCs, an MTT test was conducted. The
MTT assay showed that the viability of hPDLCs was not
reduced following treatment with P. gingivalis or E. coli
LPS at 24 h (Fig. 1a, b). The cytotoxic effects of LPS on
hPDLCs were also measured with the LDH leakage assay.
After normalizing to the control group, the activities of LDH
leakage showed no differences between the control and LPS-
treated groups at 24 h (Fig. 1c, d). These results indicated that
LPS was not cytotoxic and did not reduce the viability of
hPDLCs in the short time intervals. All subsequent experi-
ments were analyzed in 24-h increments.

The expression patterns of inflammatory cytokines
in LPS-challenged hPDLCs

The hPDLCs were treated with different concentrations of
LPS from P. gingivalis or E. coli for 24 h. Then, q-PCR
was conducted to assess the gene expression of pro-
inflammatory cytokines including IL-1β, TNF-α, IL-6,
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and IL-8. The results showed that LPS from P. gingivalis
or E. coli enhanced the mRNA expression of TNF-α, IL-
1β, IL-6, and IL-8 in a dose-dependent manner with in-
creasing LPS concentrations. LPS from P. gingivalis in-
duced a 2- to 4-fold elevation of mRNA expression at a
lower dose (20 μg/mL), while LPS from E. coli had the
same effect at a higher dose (50 μg/mL) (Fig. 2). At doses
higher than 50 μg/mL, the expression levels of most pro-
inflammatory cytokine genes were observed to plateau
(Fig. 2a, c–f).

The anti-inflammation effect of LLLT on hPDLCs

The hPDLCs were treated with or without LPS from
P. gingivalis (20 μg/mL) or E. coli (50 μg/mL), which was
immediately followed by laser irradiation at an energy density
of 8 J/cm2 to determine the effect of LLLTon the LPS-induced
inflammatory response. Twenty-four hours following the ex-
posure of hPDLCs to LPS from P. gingivalis or E. coli, there
was an elevated level of inflammatory cytokine mRNA ex-
pression in the non-irradiated group. The group treated with

Fig. 1 LPS did not induce cytotoxic effects nor reduce the viability of
hPDLCs. The hPDLCswere treated with LPS from P. gingivalis orE. coli
doses of 0 (control), 10, 20, 50, or 100 μg/mL. MTT assays (a, b) and
LDH leakage analysis (c, d) were used to evaluate cell viability and

cytotoxicity. The data are shown as the mean ± SD. N = 3 (N numbers
of independent experiments). There were no significant differences
between the groups

Table 1 Primer sequences
Gene Primer sequence Accession number

IL-1β Forward: 5′-AAACCTCTTCGAGGCACAAG-3′ NM_000576
Reverse: 5′-GTTTAGGGCCATCAGCTTCA-3′

TNF-α Forward: 5′-CTCGAACCCCGAGTGACAAG-3′ NM_000594.3
Reverse: 5′-TGAGGTACAGGCCCTCTGAT-3′

IL-6 Forward: 5′-CCTGACCCAACCACAAATGC-3′ NM_000600.3
Reverse: 5′-ATCTGAGGTGCCCATGCTAC-3′

IL-8 Forward: 5′-CAGGAATTGAATGGGTTTGC-3′ NM_000584.3
Reverse: 5′-AAACCAAGGCACAGTGGAAC-3′

GAPDH Forward: 5′-CAATGACCCCTTCATTGACC-3′ NM_002046
Reverse: 5′-TTGATTTTGGAGGGATCTCG-3′
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LPS and LLLT showed obvious decreases in cytokine
mRNAs compared to the LPS-only group (Fig. 3).

To elucidate whether LLLT inhibited inflammatory cyto-
kine mRNA expression by regulating cAMP, we treated

hPDLCs with SQ22536, a pharmacological inhibitor of
cAMP, and then treated with LPS and LLLT. In this group,
the level of pro-inflammatory cytokine mRNA expression
was not reduced by LLLT (Fig. 3).

Fig. 2 hPDLCs stimulated by
LPS expressed inflammatory
genes. LPS from P. gingivalis or
E. coli increased the mRNA
expression of IL-1β, TNF-α, IL-
6, and IL-8. a–dCells treated with
LPS from P.gingivalis. e–h Cells
treated with LPS from E. coli. The
data are shown as the mean ± SD.
N = 4 (N numbers of independent
experiments). The following
statistical levels were applied:
*p < 0.05 compared with the
0 μg/mL group (control);
†p < 0.05 compared with the
10 μg/mL group; ‡p < 0.05
compared with the 20 μg/mL
group
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Next, an ELISAwas conducted to examine the cAMP levels
associated with LLLT in hPDLCs. When hPDLCs were treated
with the adenylyl cyclase activator forskolin or irradiatedwith the
low-level laser, the level of cAMP increased and showed a sig-
nificant difference compared to the control group. However,
when hPDLCs were treated with SQ22536 and irradiated with
the low-level laser, the level of cAMP was not elevated and
showed a significantly lower level when compared to the
LLLT or forskolin-only groups (Fig. 4). These results indicated
that LLLT may reduce inflammation through the regulation of
cAMP. We further investigated whether LLLT affected the tran-
scriptional activity of NF-κB, a crucial inflammatory transcrip-
tion factor, using luciferase reporter assays. When hPDLCs were
treatedwith LPS fromP. gingivalis (20μg/mL) orE. coli (50μg/
mL), the level of NF-κBwas increased and showed a significant

difference compared to the control group (Fig. 5). When
hPDLCs were treated with LPS and irradiated with the low-
level laser, the level of NF-κB showed no significant difference
compared to the control group. With the addition of SQ22536,
the irradiated LPS-stimulated hPDLCs showed a similar NF-κB
level as the LPS-only group and a major difference when com-
pared to the control and laser-irradiated LPS-stimulated groups
(Fig. 5). These results suggested that LLLT regulated NF-κB
transcriptional activity by affecting the cAMP level.

Discussion

The hPDLCs are human fibroblasts with multifunctional tis-
sue that provide physical, formative and remodeling,

Fig. 3 A cAMP inhibitor (SQ22536) hindered the anti-inflammatory
effect of LLLT on inflammation induced by LPS of P. gingivalis and
E. coli. Real-time RT-PCR was performed to measure the mRNA levels
of a IL-1β, b TNF-α, c IL-6, and d IL-8. The results were analyzed with

the 2−ΔCT method based on the control. The data are shown as the
mean ± SD. N = 4 (N numbers of independent experiments). The
following statistical levels were applied: *p < 0.05 compared with the
control group and †p < 0.05
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nutritional, and sensory functions [22]. In the present study,
the hPDLCs were treated with different concentrations of LPS
from P. gingivalis or E. coli. Our data showed that LPS from
both P. gingivalis and E. coli induced pro-inflammatory cyto-
kine (IL-1β, TNF-α, IL-6, IL-8) mRNA expressions in a
dose-dependent manner. However, P. gingivalis-treated cells
responded in a dose-dependent manner at lower doses when
compared to E. coli-treated cells (Fig. 2). The different levels
of induced inflammation from the two sources may be attrib-
uted to molecular differences in the lipid components. The
lipid A from P. gingivalis LPS is a monophosphate type lack-
ing a phosphate group in the 4′ position that does not contain a
tetradecanoic acid, but rather long-chain fatty acids made up

of only acyloxyl groups [23]. It is believed that LPS from
P. gingivalis is recognized mainly by TLR2, while LPS from
E. coli is recognized mainly by TLR4 [23–26]. Uehara et al.
also reported that human gingival fibroblasts showed more
robust mRNA expression of pro-inflammatory cytokines fol-
lowing TLR2 ligation (Mycoplasma-type diacyl lipopeptide)
compared to TLR4 ligation (E. coli-type lipid A) [27]. These
results indicate that different sources of LPS might induce
inflammation through different mechanisms.

In recent decades, many studies have shown that LLLT
reduces inflammatory reactions both in vitro and in vivo.
Correa et al. induced periodontitis in mice with LPS and
found that LLLT (GaAs laser, 904 nm) diminished inflam-
matory cell migration in a dose-dependent manner, with
an energy dose of 3 J/cm2 identified as the most effective
dose [28]. Pires et al. reported a model of collagenase-
induced tendini t i s and demonstra ted that LLLT
(780 nm), at an energy dose of 7.7 J/cm2, suppressed
the expression of IL-6 [29]. Boschi et al. reported that
LLLT (InGaAlP laser, 660 nm) significantly reduced the
expression of IL-6 and TNF-α [30]. According to previ-
ous studies conducted in our lab [31], LLLT (GaAlAs
laser, 660 nm) showed the most effective suppression of
inflammation at the optimal dose of 8 J/cm2, which was
used in this study. In the current study, we noted that LPS-
challenged hPDLCs showed similar results to the afore-
mentioned studies, suggesting that LLLT significantly
suppressed the mRNA expression of pro-inflammatory
cytokines (IL-1β, TNF-α, IL-6, IL-8), leading us to con-
clude that LLLT has an anti-inflammatory effect in
hPDLCs (Fig. 3). In addition, we noticed that the anti-
inflammatory effect of LLLT was neutralized when the
cAMP inhibitor SQ22536 was used (Fig. 3). We also ob-
served that the level of cAMP from hPDLCs was elevated
by both forskolin (cAMP promoter) and LLLT but

Fig. 5 LLLT reduced NF-κB
transcriptional activity. The NF-
κB luciferase activity was
elevated by LPS and reduced by
LLLT. With the addition of the
cAMP inhibitor (SQ22536), the
NF-κB activity in LPS-stimulated
hPDLCs was not reduced by
LLLT: a LPS from P. gingivalis; b
LPS from E. coli. The data are
shown as themean ± SD.N = 4 (N
numbers of independent
experiments). The following
statistical levels were applied:
*p < 0.05 compared with control
group; †p < 0.05

Fig. 4 LLLT increased the intracellular cAMP levels. Intracellular cAMP
levels were measured by ELISA in hPDLCs treated with LLLT, cAMP
inhibitor (SQ22536), or forskolin. The data are shown as the mean ± SD.
N = 4 (N numbers of independent experiments). The following statistical
levels were applied: *p < 0.05 comparedwith the control group; †p < 0.05
compared with the forskolin-only group; ‡p < 0.05 compared with the
LLLT-only group
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decreased when SQ22536 (cAMP inhibitor) was added (Fig.
4), consistent with previous study that the level of cAMP
increased by approximately 3- to 4-fold following LLLT treat-
ment of human adipose-derived stem cells [31]. This finding
suggests that LLLT can act to stimulate the level of cAMP.
Other studies have shown that the elevation of intracellular
cAMP levels inhibited the transcriptional activity of NF-κB,
which is a crucial transcription factor in the regulation of in-
flammation [32, 33]. Possible mechanisms that regulate of
NF-κB activity include the ability of cAMP to manage IκB
degradation and IKK activity as well as to change the compo-
sition of NF-κB dimers and thereby block transcription [34].
Indeed, we observed that LLLT significantly inhibited the
transcriptional activity of NF-κB in our previous study of
LPS-stimulated human adipose-derived stem cells [31]. In
the present study, we treated LPS-stimulated hPDLCs with
LLLT and the adenylyl cyclase inhibitor SQ22536 and ob-
served that the inhibitory effect of LLLT on NF-κB transcrip-
tional activity was significantly reduced (Fig. 5). Aimbire
et al. [35] also reported results similar to ours, showing that
a low-level laser (660 nm) at an energy dose of 7.5 J/cm2

inhibited NF-κB transcriptional activity and further reduced
apoptotic gene expression.

Exploring LLLT’s role in regulating the induction of pro-
inflammatory cytokine in periodontal pathology is important
as it may lead to novel therapeutic approaches for periodonti-
tis. This study has demonstrated that LLLT inhibits inflamma-
tion, induced by LPS from E. coli and P. gingivalis, through
the cAMP/NF-ĸB signaling pathway in hPDLCs. Future re-
search into the detailed regulation of LLLT on cAMP may be
of great value in improving periodontal therapy.
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