
A High Throughput Screen Identifies Nefopam as
Targeting Cell Proliferation in b-Catenin Driven
Neoplastic and Reactive Fibroproliferative Disorders
Raymond Poon1, Helen Hong1, Xin Wei2, James Pan3, Benjamin A. Alman1,4*

1 Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada, 2 Campbell Family Institute for Breast Cancer Research,

University Health Network, Toronto, Ontario, Canada, 3 Donnelly Centre for Cellular and Molecular Research and Banting and Best Institute for Medical Research,

University of Toronto, Toronto, Ontario, Canada, 4 Division of Orthopaedics, Department of Surgery, University of Toronto, Toronto, Ontario, Canada

Abstract

Fibroproliferative disorders include neoplastic and reactive processes (e.g. desmoid tumor and hypertrophic scars). They are
characterized by activation of b-catenin signaling, and effective pharmacologic approaches are lacking. Here we undertook
a high throughput screen using human desmoid tumor cell cultures to identify agents that would inhibit cell viability in
tumor cells but not normal fibroblasts. Agents were then tested in additional cell cultures for an effect on cell proliferation,
apoptosis, and b-catenin protein level. Ultimately they were tested in Apc1638N mice, which develop desmoid tumors, as
well as in wild type mice subjected to full thickness skin wounds. The screen identified Neofopam, as an agent that inhibited
cell numbers to 42% of baseline in cell cultures from b-catenin driven fibroproliferative disorders. Nefopam decreased cell
proliferation and b-catenin protein level to 50% of baseline in these same cell cultures. The half maximal effective
concentration in-vitro was 0.5 uM and there was a plateau in the effect after 48 hours of treatment. Nefopam caused a 45%
decline in tumor number, 33% decline in tumor volume, and a 40% decline in scar size when tested in mice. There was also
a 50% decline in b-catenin level in-vivo. Nefopam targets b-catenin protein level in mesenchymal cells in-vitro and in-vivo,
and may be an effective therapy for neoplastic and reactive processes driven by b-catenin mediated signaling.
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Introduction

b-catenin plays a critical role in mesenchymal cell function,

regulating cell proliferation, motility, and differentiation. Muta-

tions which stabilize its protein level can cause the mesenchymal

tumor aggressive fibromatosis [1]; its level of activity regulates scar

size in wound healing [2]; and it regulates mesenchymal cell

differentiation during some reparative processes such as fracture

repair [3]. b-catenin is a central mediator in the canonical Wnt

pathway, whose activation is initiated by the binding of an

appropriate Wnt ligand to the Frizzled and low-density lipoprotein

receptor related protein co-receptor complex. In the absence of an

appropriate Wnt ligand, b-catenin is phosphorylated at amino

terminal serine and threonine sites, resulting in its being targeted

for ubiquitination and proteosomal degradation by a multi-protein

complex comprising glycogen synthase kinase-3b (GSK-3b),

Adenomatous Polyposis Coli (APC), and Axin. In the presence

of an appropriate Wnt ligand, this multiprotein complex does not

target b-catenin for degradation. b-catenin translocates to the

nucleus, where in concert with members of the T-cell-factor/

Lymphoid-enhancer-factor (Tcf/Lef) family, regulates transcrip-

tion in a cell type specific manner [4].

Cutaneous wound healing reestablishes the barrier and

mechanical properties of skin, and progresses through overlapping

inflammatory, proliferative, and remodeling phases. During the

proliferative phase of wound repair, mesenchymal cells accumu-

late to reestablish the mechanical properties of the injured tissue.

These cells are also responsible for the size of the scar that

ultimately forms [5,6]. Data from genetically modified mice in

which b-catenin level regulates scar size, and from observations in

patients in which hypertrophic scars are associated with high levels

of b-catenin [3], show that b-catenin regulates the number of

mesenchymal cells that accumulate during the proliferative phase

of wound repair and ultimately scar size [2,7,8,9,10]. Disordered

would repair, such as occurs in hypertrophic scars, lead to loss of

function (e.g. limited joint motion) and have major psychosocial

implications (e.g. disfigurement) [11], resulting in significant health

problems [6,12].

Aggressive fibromatosis (also called desmoid tumor) is a locally

invasive soft tissue tumor comprised of mesenchymal fibroblast-

like spindle cells [13]. It occurs as either a sporadic lesion or a

familial syndrome, such as familial infiltrating fibromatosis, or

familial adenomatous polyposis [14]. b-catenin stabilization is a

universal occurrence in aggressive fibromatosis, and in most cases

it is caused by a somatic mutation in b-catenin removing an amino

terminal serine or threonine phosphorylation site, although in

familial cases it is associated with a germline mutation in APC

[15,16,17]. b-catenin stabilization is sufficient to cause aggressive
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fibromatosis as shown using a transgenic mouse model that over-

expresses a stabilized form of b-catenin [9]. Aggressive fibroma-

tosis is problematic to treat, with recurrence frequently occurring

after chemotherapy or surgery. Because of the cytologic similarity

to hypertrophic scarring and a role for b-catenin in both processes,

aggressive fibromatosis is sometimes thought of as unchecked

wound repair [18].

There are no universally effective pharmacologic approaches to

manage these b-catenin driven fibroproliferative disorders. One

strategy to identify an effective pharmacologic treatment is to

examine libraries of diverse compounds for a potentially effica-

cious agent. Libraries of such compounds in which pharmacoki-

netic and toxicologic data is already available, makes the

translation to patient care potentially easier [19]. Here we report

on the use of this screening approach to identify a compound that

targets cell viability driven by b-catenin in mesenchymal cells, and

tested its ability to decrease scar size in cutaneous wound repair

and as a therapeutic approach for the tumor, aggressive

fibromatosis.

Results

A compound screen identified Nefopam as an agent that
inhibits viability in cell cultures from aggressive
fibromatosis and hypertrophic cutaneous wounds

To identify potential agents that could be used to target

mesenchymal cells in which b-catenin is activated, we examined

primary cell cultures from aggressive fibromatosis and normal

fibroblast cultures from the same patients, as well as from primary

fibroblast cell cultures from hypertrophic scars and normal

fibroblasts from the same patients. Cell cultures were prepared

as previously reported [8,16]. The cultures were screened using

the MicroSource Spectrum collection, which consists of 2,000

compounds, some of which are already in use in humans [20].

Compounds were selected for further study based on two criteria:

that they inhibited cell viability in cell cultures obtained from

aggressive fibromatosis tumors; and that they showed little to no

effect on normal fibroblast cell cultures from the same patient. The

experiments were repeated in triplicate within 96 well plates, with

each well containing 4000 cells treated with 0.1 1.0, or 10 mM of

each compound or DMSO as a control and studies after three

days in culture. The Sulforhodamine B assay (SRB) was used to

measure cell viability, and a robotic system used to measure

relative viability in each well. Compounds identified in the initial

screen underwent further testing using six additional aggressive

fibromatosis samples primary fibroblast cell cultures from hyper-

trophic scars from six patients. In all twelve cases normal

fibroblasts from the same patients were also studied. The agent

was tested at a variety of doses, and for various durations ranging

from one to four days. This screening process identified the agent,

5-methyl-1-phenyl-1,3,4,6-tetrahydro-2,5-benzoxazocine, or Ne-

fopam [21], which met the criteria in that it inhibited cell viability

in cultures derived from hypertrophic wound samples and

aggressive fibromatosis cell cultures, but not in normal fibroblasts

from the same patients (Fig. 1).

Nefopam inhibits cell proliferation in fibroblast cell
cultures from aggressive fibromatosis tumors and from
hypertrophic cutaneous wounds

Cell cultures from hypertrophic cutaneous wounds and from

aggressive fibromatosis tumors, along with normal fibroblasts from

the same patients, were then examined for the effect of Nefopam

on cell proliferation, and apoptosis after two days in culture. Cells

from aggressive fibromatosis tumors or hypertrophic wounds

treated with Nefopam had a significantly lower proliferation rate,

while normal fibroblasts from the same patients did not

demonstrate an appreciable change in proliferation rate, as

measured using the BrdU incorporation assay [22] (Fig. 2A).

There was a modest, but not significant change in apoptosis, as

detected using annexin V staining [23] (Fig. 2B). Cell cultures were

also treated with diphenhydramine, as a structural control since

Nefopam is derived from this compound [24]. Diphenhydramine

treatment had no effect on any of the cell parameters tested. The

half maximal effective concentration (EC50) for Nefopam was

0.5 uM and there was a plateau in the effect after two days

(48 hours) of treatment. Thus, Nefopam has predominant effect

inhibiting cell proliferation, in these cell cultures.

Nefopam reduces b-catenin protein level
To examine whether Nefopam has the capacity to modulate b-

catenin, we studied primary cell cultures derived from aggressive

fibromatosis tumors, hypertrophic wound fibroblasts, as well as

normal fibroblasts from the same patients. Western blot analysis

using an antibody against total b-catenin demonstrated a marked

decrease in the amount of protein as a result of Nefopam

treatment (Fig. 3A). To determine if Nefopam inhibits canonical

Wnt signaling, we treated normal fibroblasts with Wnt3a and

examined the level of b-catenin level, as well as the phosphory-

lation level of another canonical Wnt mediator, GSK3-b, with and

without treatment with Nefopam. There was a significant increase

in the level of serine-9-phosphorylation of GSK-3-b and b-catenin

with Wnt3a treatment. Nefopam treatment inhibited the levels of

serine-9-phospho-GSK-3-b and b-catenin back towards baseline

levels when the cells were treated with Wnt3a (Fig. 3B), showing

that the Nefopam targets canonical Wnt signaling cascade in

fibroblasts. To determine if Nefopam affects cells expressing a

mutant form of b-catenin, we examined fibroblasts expressing a

form of b-catenin lacking exon three [2], which encodes the amino

terminal serine or threonine phosphorylation sites. Treatment with

Nefopam resulted in a decrease in b-catenin protein level (Fig. 3C).

In all of the cultures examined, Nefopam did not alter the

expression of b-catenin at the mRNA level.

Nefopam suppresses the neoplastic phenotype in murine
aggressive fibromatosis tumors

We then investigated whether Nefopam treatment was able to

modulate the phenotype of aggressive fibromatosis tumors in vivo

using the Apc1638N mouse, which develops large numbers of

aggressive fibromatosis tumors [25]. The number of tumors that

developed in male mice treated with Nefopam was significantly

reduced compared to the number formed in mice provided with

no treatment or treated with 0.1% DMSO as vehicle or carrier

control at 5 months of age (Fig. 4). There was also a 25% decrease

in tumor volume.

Nefopam regulates scar size and b-catenin levels in
cutaneous wound repair

To examine if nefopam alters the phenotype in cutaneous

repair, we examined mouse skin wound healing. 4 mm full

thickness circular wounds were generated on the dorsal skin [2,9].

Nefopam or control was administered daily after wounding. Scar

size was determined using histologic observations of sections cut

across the wound perpendicular to the skin. The section with the

widest diameter of each scar was used to measure the relative scar

size, as previously reported [2]. 14 days after wounding, mice

treated with Nefopam had a scar diameter half that of control mice

Nefopam Targets b-Catenin
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(Fig. 5 B,D, and E). To determine if Nefopam might counteract

the effect of agents that cause hypertrophic scars, we examined if

Nefopam would reduce the large scar size due to subcutaneous

injection of TGF-b at the time of wounding. Nefopam treatment

of wounds treated with TGF-b resulted in a scar size close to that

of control wounds (Fig. 5A, C, E). Protein lysates extracted from

the scars were assayed for b-catenin levels. b-catenin levels are

higher in wounds treated with TGF-b. There was a significant

decline in b-catenin levels in the wound from mice treated with

Nefopam, compared to controls (Fig. 5F).

Figure 1. Nefopam inhibits cell viability in cultures from aggressive fibromatosis and hypertrophic cutaneous wounds. Data from the
Sulforhodamine B assay. The mean value for the cell culture treated with carrier was arbitrarily defined as 100 for each cell type. A) Data for a dose of
10 mM of Nefopam. There was a significantly lower level of cell viability in the aggressive fibromatosis or the hypertrophic scar cultures compared to
that seen in normal tissues. B) Data from different doses of Nefopam in cell cultures from aggressive fibromatosis or from hypertrophic scars, showing
a dose dependent decrease in cell viability. C) Time course data for cell viability after days of treatment with 10 mM of Nefopam in cell cultures from
aggressive fibromatosis or from hypertrophic scars. Data is given as means and 95% confidence intervals. Control data is generated by treatment with
diphenhydramine. Treatment with carrier alone gave identical results as for diphenhydramine. An asterisk over a data point indicates a significant
difference form the control cell cultures.
doi:10.1371/journal.pone.0037940.g001

Figure 2. Nefopam inhibits cell proliferation in fibroblast cell cultures from hypertrophic cutaneous wounds and from aggressive
fibromatosis tumors. Percent BrdU incorporation or annexin V staining from the various cell cultures treated with 10 mM of Nefopam. Data is given
as means and 95% confidence intervals. An asterisk over a data point indicates a significant difference form the control cell cultures. There was a
significant difference in BrdU incorporation in the tumor and hyperplastic scar cultures treated with Nefopam compared to treatment with carrier
alone. Treatment with diphenhydramine resulted in the identical findings as for treatment with the carrier.
doi:10.1371/journal.pone.0037940.g002
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Discussion

Here we used a high throughput screen to identity Nefopam as

an agent that inhibits cell viability in mesenchymal cells in which

b-catenin is activated. To test this for its effects in-vivo, we

examined the mesenchymal tumor, aggressive fibromatosis, and

cutaneous wound repair in mice. Nefopam suppressed the

neoplastic phenotype in aggressive fibromatosis, and reduced the

scar size in wound healing.

Nefopam is a centrally-acting but non-opioid analgesic drug of

the benzoxazocine chemical class which was developed in the

1970s [26]. It was generated by cyclization of diphenhydramine

[24]. It has an analgesic effect is stronger than aspirin, but not as

strong as codeine, and has few side effects, especially as compared

to opioid analgesic agents [27]. The mechanism of action of

Nefopam is not completely elucidated, although inhibition of

serotonin, regulation of dopamine and noradrenaline reuptake,

and the regulation histamine H3 receptors and glutamate are all

hypothesized to play a role in its analgesic effect [28,29,30]. It also

acts as a voltage-gated sodium channel blocker, and this could

mediate its antinociceptive effects [31].

Despite what is known about the potential mechanism by which

Nefopam inhibits pain, the mechanism by which it inhibits b-

catenin signaling and suppresses fibroblast cell proliferation is not

clear. Since we found that the agent primarily influences cell

behavior when b-catenin is activated above physiologic levels, this

suggests a threshold effect. Such a threshold effect has been

demonstrated for some G-protein-coupled receptors, where the

intracellular proteins binding to a receptor will cause desensitiza-

tion when present above a certain threshold level [32]. D(2)-class

dopamine receptors exhibit such a G-protein-coupled desensitizing

effect, and can also regulate glycogen synthase kinase 3 activity

[33]. Since nefopam may regulate dopamine signaling, such an

effect could explain the mechanism by which nefopam regulates b-

catenin activity. While such a desensitizing mechanism is reported

to cause a threshold effect of a drug primarily when a signaling

pathway is activated, it is also possible that activation of a signaling

could inhibit expression of a protein that could bind a G-coupled

receptor. In this case signaling activation would decrease

expression of such a protein and thus cause desensitization of a

G-protein-coupled receptor. While such a mechanism is only

conjecture, a similar process can play a role in other instances,

such as in diabetes, where certain drugs will only have an effect in

diabetic rodents [34].

Our data shows that this agent can suppress the effects of high

levels of b-catenin due to activation by a Wnt ligand, a growth

factor known to activate b-catenin mediated transcription, and an

oncogenic mutation in b-catenin itself. Thus, it has a broad range

of activity suppressing the effects of b-catenin in mesenchymal

cells. It has a predominant effect in cell cultures modulating cell

proliferation, and this may be mediated by the decline in b-catenin

protein level, as activation of b-catenin mediated signaling

stimulates fibroblast proliferation [35]. Intriguingly, Nefopam

has little effect on b-catenin in normal fibroblasts, and this finding

raises the possibility that the agent primarily targets cells in which

b-catenin is activated above normal physiologic levels. Such a

characteristic makes Nefopam an enticing therapeutic agent, as it

suggests that it will have little effect on normal mesenchymal cells.

We found that nefopam primarily effects cell proliferation,

having little effect on apoptosis. This results in a relative decrease

in number of cells present in culture with nefopam treatment.

Since the Sulforhodamine B assay measures cell viability by

Figure 3. Nefopam modulates b-catenin protein level. A) Western blot analysis for b-catenin in aggressive fibromatosis and hypertrophic scar
cell cultures treated with Nefopam. A representative Western blot for total b-catenin is shown at the top of the panel. The data is shown in graphical
form in the lower part of the panel, as mean and 95% confidence intervals for the relative density compared to the loading control for six pairs of
cultures for each condition. An asterisk over a data point indicates a significant difference form the control cell cultures. There is a decrease in b-
catenin level with Nefopam treatment in cell cultures from both conditions. B) A representative Western blot for b-catenin and serine-9-phosph-GSK-
3-b in normal fibroblasts treated with Wnt3a is shown at the top of the panel. Composite data is shown in graphical form in the lower part of the
panel. Actin and total GSK3-b are used as loading controls. There is an increase in serine-9-phosph-GSK-3-b and b-catenin with Wnt3a treatment,
which is significantly lowered, close to the baseline level, with Nefopam treatment. C) A representative Western blot for b-catenin in fibroblasts
expressing a stabilized form of b-catenin lacking exon three is shown on the top of the panel. Composite data is shown in graphical form on the
bottom of the panel. There is a decrease in b-catenin with Nefopam treatment.
doi:10.1371/journal.pone.0037940.g003
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measuring cell number, this inhibition in proliferation results in a

lower number of viable cells, despite no change in cell death. In

fibroproliferative processes, such an inhibition in cell proliferation

would limit the size of the associated fibrous, thus inhibiting tumor

growth and decreasing scar size.

b-catenin plays a role in a wide variety of neoplastic processes

[36,37], as well as in other non-neoplastic fibroproliferative

processes [18,38], such as renal fibrosis [39], pulmonary fibrosis

[40], skin fibrosis, [40] and palmar fibrosis (or Dupuytren disease)

[41]. This raises the possibility that Nefopam, would have a

therapeutic application in a wide variety of fibroproliferative and

neoplastic conditions. Indeed, blockade of b-catenin inhibit fibrosis

in some of these processes [42,43]. Thus, Nefopam could play a

therapeutic role in a broader range of conditions than the two

investigated in this study.

There is a lack of pharmacologic agents which target b-catenin

that can be readily used in patient care. Nefopam is an enticing

agent for use for this purpose as it has already been used in

patients, and found to have a strong safety record. As such, it has

the capacity to be rapidly brought to patient care to aid in the

treatment of difficult to manage neoplastic and reactive fibropro-

liferative disorders.

Materials and Methods

Ethics statement
This study was carried out in strict accordance with the

recommendations of the Canadian Council on Animal Care. The

protocol was approved by the Committee on the Ethics of Animal

Experiments of the Toronto Centre for Phenogenemic and the

Hospital for Sick Children. The use of human material was

approved by the Institutional Review Board of the Hospital for

Sick Children. Written informed consent was obtained for the use

of the material.

Human cell cultures
Aggressive fibromatosis tumors were obtained at the time of

surgery. Tumor tissue and surrounding normal fascial tissue from

the same patient were processed immediately after surgical

excision, and primary cell cultures generated [17,44]. Hypertro-

phic wound samples and dermal fibroblasts from surrounding

normal skin were harvested at the time of surgery to revise the

scar, and primary cell cultures were prepared as reported [8].

Monolayer cultures were cultured in DMEM supplemented with

5% fetal bovine serum and maintained at 37uC in 5% CO2. Cells

were divided when confluent and experiments were performed

between the first and fourth passages. The details about the

patients, processing of tissues to generate primary cell cultures, and

maintenance of the cells in cultures is provided in previous

publications [8,17,44].

To identify potential agents that would target cell viability in

aggressive fibromatosis, we screened the MicroSource Spectrum

collection library (Discovery Systems, Inc. Gaylordsville, CT,

U.S.A.) which contains 2,000 agents, for compounds which meet

two criteria: 1) inhibit cell viability of fibroblasts obtained from

aggressive fibromatosis; and 2) show little to no effect on normal

fibroblast cultures. The experiments were repeated in triplicate

within 96 well plates, with each well containing 4000 cells treated

with between 0.1 1.0, or 10 mM of each compound or DMSO as a

control. The Sulforhodamine B assay (SRB) [45] was used to

measure cell viability. Data on Nefopam was verified using

additional cell cultures. Controls included the use of a carrier or

the use of a structural control, diphenhydramine from which

Nefopam is derived [24]. For these experiments hypertrophic

wound or aggressive fibromatosis cell cultures from additional

patients were studied. Normal fibroblasts as well as the pathologic

cells from each patient were tested. Cells were treated with vehicle

control 0.1% DMSO with or without Nefopam (Meda Pharma-

ceuticals, Bishop’s Stortford, UK) or diphenhydramine (Sigma-

Aldrich, Oakville, Ontario, Canada) prepared each used at the

same concentrations. Normal fibroblast cultures were also

examined with recombinant Wnt3a [46,47] (R and D systems,

Minneapolis, MN, U.S.A.) to activate the canonical Wnt signaling

pathway.

Proliferation was measured using 5-bromo-2-deoxy-uridine

(BrdU) Incorporation assay. After BrdU incubation for 12 hours,

cells with incorporated BrdU were identified using rabbit

monoclonal anti-BrdU antibody and horse anti-mouse antibody

conjugated to Alkaline Phosphatase. Presence of BrdU was

detected using Alkaline Phosphatase substrate. Percentage of

positively stained nuclei out of total nuclei was analyzed over 10

high-powered fields. Apoptosis was measured by annexin V

staining [23] using flow cytometry to detect positively stained cells.

Protein Analysis
Tissue samples or cells were treated with Lysis Buffer (Roche,

Montreal, Quebec, Canada). Equal quantities of total protein were

Figure 4. Nefopam suppresses the neoplastic phenotype in
murine aggressive fibromatosis tumors. The number of tumors
found in male Apc1638N mice. Data is given as the mean and 95%
confidence intervals for the number of tumors formed in male mice in
no treatment; 0.1% DMSO (carrier); or Nefopam treatment groups. Data
is given as means and 95% confidence intervals. An asterisk over a data
point indicates a significant difference form the control cell cultures.
Mice treated with the carrier showed a comparable number of tumors
to mice that received no treatment, while mice treated with Nefopam
developed significantly fewer tumors.
doi:10.1371/journal.pone.0037940.g004
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separated by electrophoresis in an SDS-polyacrylamide gel,

transferred to a nitrocellulose membrane, and immunoblotted

overnight at 4uC with primary antibodies against phospho-GSK3-

b (Ser 9, rabbit polyclonal, New England Biolabs, Pickering,

Ontario, Canada), b-catenin (mouse monoclonal, Upstate Bio-

technology, Lake Placid, NY, U.S.A.) total GSK3b (mouse

monoclonal, Transduction Laboratories, Mississauga, Ontario,

Canada), or GAPDH (mouse monoclonal, Upstate Biotechnology,

Lake Placid, NY, U.S.A.). Horseradish Peroxidase-tagged second-

ary antibodies and Enhanced ChemiLuminescence (Amersham,

Piscataway, New Jersey, U.S.A.) were used to detect hybridization.

Densitometery was performed using the AlphaEaseFC software

(Alpha Innotech, San Leandro, California, U.S.A.). Western

blotting was performed in triplicates to ensure reproducibility.

Mouse studies
Mice heterozygous for the Apc1638N allele harbor a targeted

mutation at codon 1638 of the Apc gene. Male mice develop as

many as 45 aggressive fibromatosis lesions by the age of 6 months,

but female mice develop fewer numbers of tumors than male mice

develop. Testosterone levels influence the sex difference in tumor

incidence [48]. These mice develop an average of six gastrointes-

tinal polyps at the same age. Male Apc1638N mice were divided

into three groups: No Treatment; carrier (0.1% DMSO); or

Nefopam (40 mg/kg body weight [49]). There were ten mice in

each group. Nefopan or carrier were administered daily by oral

gavages, starting at 2 months of age. Treatment was continued

until the mice were five months of age. At autopsy, an observer

blinded to the treatment regimen scored the size and number of

aggressive fibromatosis tumors and gastrointestinal polyps as

previously reported [50].

For wound healing experiments, two 4 mm diameter circular

full-thickness skin wounds were generated using a dermal biopsy

punch (Miltex Instrument Company, York, Pennsylvania, U.S.A.)

in wild type mice. Wounded mice were either treated with

Nefopam, 40 mg/kg body weight [49] given daily via oral

gavages, or a carrier group (10 mice in each group). At 14 days,

the mice were sacrificed, and wound tissues were collected for

histological examination. Scar size was measured from the

histologic sections as previously reported [2], using trichrome

stained sections cut across the wound perpendicular to the skin.

Serial sections were cut across the scar to identify the widest

diameter of each scar (mid aspect of the scar), and this section was

used to measure scar size. An observer blinded to the treatment

measured the scar size. An additional 16 mice were also treated

with TGF-ß at the time of wounding as previously reported [2,10],

and then with either Nefopam or carrier. The wounds were

examined 14 days following injury in an identical manner as for

the studies using nefopam alone. The scar size was averaged

between the two wounds in each mouse, and taken as a single

value for each mouse for statistical analysis. Primary cell cultures

were established from The Catnbtm1Tak mouse, which possesses

loxP sites flanking exon 3 of the gene encoding for b-catenin.

When exposed to Cre-recombinase, this results in the conditional

stabilization of b-catenin. An adenovirus that expresses Cre-

recombinase was used to induce recombination, which was

verified using PCR and Western analysis. The details of the

Figure 5. Nefopam regulates scar size and b-catenin level in cutaneous wound repair. A to D) Representative histologic sections through
the widest margin of scars 14 days after wounding. A) A wound from a mouse treated with TGF-b. B) A wound in a mice treated with carrier only. C) A
wound from a mouse treated with TGF-b and Nefopam. D) A wound from a mouse treated with Nefopam. Arrows show the widest width of the scar.
The black line is 500 mm in length. E) A graphical representation of the mean and 95% confidence intervals of the widest diameter of the scars in mms.
F) A representative Western blot mice showing the b-catenin protein levels in wounds from mice treated with TGF-b, Nefopam, or both, showing that
Nefopam decreases b-catenin protein level in the wounds.
doi:10.1371/journal.pone.0037940.g005
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generation of the primary cell cultures were previously reported

[2].

For mice treated with Nefopam, high-performance liquid

chromatography was performed on serum from the mice at the

time of sacrifice, using techniques as previously reported [51], to

verify systemic uptake of Nefopam.

Statistical analysis
Data in given as means 695% confidence intervals. Means and

standard deviations were compared using the t-test. The studies

were performed in at least triplicate.
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