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SUMMARY. Recent advances in the understanding of myofibroblast histology and function, the activity of
fibrogenic cytokines, the role of the extracellular matrix and of free radicals are contributing to an understanding
of the aetiology of Dupuytren’s disease but not yet to its treatment. Surgical excision remains the best treatment.
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Debate over the cause of Dupuytren’s disease has been
ongoing since its well-known description over 170
years ago.1 However, many recent studies of the basic
science of the disease are beginning to erase some of
the enigma of its aetiology. Throughout the 1970s and
1980s, researchers established the myofibroblast as the
hallmark of Dupuytren’s disease by carefully studying
and describing the appearance of these cells and their
relation to the surrounding matrix. Many epidemio-
logic studies have suggested correlations with diabetes,
epilepsy and behavioural patterns. More recently,
efforts have focused on the factors controlling the
(myo)fibroblasts such as free radicals and growth fac-
tors. Table 1 is a listing of implied aetiological factors.
The expanding fields of cell biology, molecular
biology, and research of other fibrotic diseases such as
liver cirrhosis, lung fibrosis, atherosclerosis and
glomerulonephritis2,3 have, in particular, provided
many new insights into the pathogenesis of
Dupuytren’s disease. This paper gives the clinician an
integrated overview of the current understanding of
Dupuytren’s disease as related to recent advances in
histology, cell biology (growth factors), free radicals,
biochemistry and immunology. Until the accumulated
efforts of these and additional investigations have
solved this mysterious disease, there is no better treat-
ment than surgical excision as advocated in the lecture
that earned for Dupuytren this eponym.

Histology

The myofibroblast is a fibroblastic phenotypic variant
first described in contracting experimental granulation
tissue.4,5 A year later, the myofibroblast was described in
Dupuytren’s tissue using electron microscopy,6 and later
confirmed by others.7–9 Myofibroblasts have also been
shown in many other tissues such as hypertrophic scar
tissue,10–12 frozen shoulder,13 around mammary
implants14–16 and in desmoplastic stroma around neo-
plasms.17–19 Presence in these different tissue types can
be categorised in three groups: repair or inflammatory
conditions, fibroproliferative conditions and in
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response to neoplasia.19–21 Their role in these lesions is
presumably of tissue contraction. In the case of
Dupuytren’s contracture for example, prostaglandins
can cause contraction and relaxation of Dupuytren
myofibroblasts in vitro, and are expressed in vivo in the
affected fascia.22,23

The myofibroblast has features in common with
both smooth muscle cells and fibroblasts, as they are
characterised by a cytoplasmic microfilament system
called a-smooth muscle actin (a-SM actin) reminis-
cent of a smooth muscle cell. Myofibroblasts connect
with each other through gap-junctions, and to the
surrounding stroma with extracellular fibronectin
fibres.19–21 In Dupuytren’s fibroblasts, extracellular fil-
aments containing fibronectin connect with intracellu-
lar actin through a transmembrane association called
fibronexus24,25 thus theoretically providing the myo-
fibroblasts with a means to contract the matrix.

Since the initial description of the myofibroblast
in Dupuytren’s tissue, numerous other studies have con-
tributed to a more detailed understanding of its
histological appearance. Collectively, these studies
describe how myofibroblasts dominate Dupuytren’s
tissue,8,9,26–29 and seem to correlate with disease recur-
rence.28,29 Some of the most current myofibroblast
research is focused on understanding why the myo-
fibroblast disappears in normal healing wounds but per-
sists (longer) in desmoplasia and fibroproliferative
diseases. The most likely explanation appears to be in
the control of apoptosis or programmed cell death of
the myofibroblasts,30–32 suggesting that these cells are ter-
minally differentiated.31 The inducers of apoptosis are
unclear, although certain genes such as ced-3 and c-Myc
have been suggested.31 Other candidates for controlling
apoptosis are growth factors such as transforming
growth factor-b (TGF-b), platelet-derived growth factor
(PDGF) and tumour necrosis factor (TNF).31 Recently,
it was shown that cells undergoing apoptosis in the late
involutional stage in Dupuytren’s tissue are myofibrob-
lasts, and are associated with expression of TGF-b in the
same areas.33 Therefore it seems that there is not a com-
plete loss, but rather a changed control of apoptosis in
Dupuytren’s tissue as compared to normal tissue.
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Table 1 Aetiological factors implied in Dupuytren’s disease.

Alcohol use
Cigarette smoking
Epilepsy
Diabetes mellitus
Hereditary
Growth factors (receptors)/cytokines: PDGF, bFGF, TGF-b, TNF-a, EGF, IL-1, g-interferon
Immune system: HLA-DR3, CD-3, CD-68, HIV
Free radicals
Biochemistry: collagen type I and III, fibronectin (receptor)
Cell biology/growth factors/cytokines

The concept of cells producing and secreting poly-
peptide growth factors that subsequently bind to their
own receptors resulting in a biologic response was
introduced as autocrine growth control in the early
1980s.34 Since then it has become common knowledge
that cells exist in a balanced system of various growth
factors and their receptors. These growth factors can
function individually, or in conjunction with others. If
tissue homeostasis is disturbed (e.g., following injury),
adjustments in expression of growth factors and/or
their receptors is part of the repair mechanisms
needed to restore the balance. The hallmark of normal
repair or growth mechanisms is that once the appro-
priate homeostasis is reached, the autocrine and/or
paracrine loops adjust to their normal state. A classic
example of this process is wound healing.35

Given that tumorigenesis somewhat resembles a
repair mechanism gone awry, it is not surprising that
many tumours have been shown to express an
increased synthesis of certain growth factors and/or
their receptors. Fibromatoses, including Dupuytren’s
disease, can be classified as benign fibroproliferative
tumours,36 and it has been shown that cultured fibro-
blasts from Dupuytren’s contracture display features
intermediate between those expressed by normal
human fibroblasts and ‘transformed’ (neoplastic)
fibroblasts.37 As such, we can speculate on the possible
autocrine and paracrine mechanisms, including the
role of individual growth factors, underlying
Dupuytren’s contracture. Likely candidates should
have a growth stimulatory effect on (myo)fibroblasts,
possibly induce differentiation into myofibroblasts,
stimulate production of extracellular matrix (ECM)
and, once deposited, prevent the breakdown of ECM.

Considering these prerequisites, the most likely
candidates are the so-called fibrogenic cytokines3,38

PDGF,39,40 TGF-b,41,42 basic fibroblast growth factor
(bFGF),43 interleukin-1 (I1-1) and TNF-a.44 In addi-
tion, most of these cytokines induce cell proliferation
of endothelial cells, leading to another important fea-
ture of tissue growth (in repair as well as in neoplasia)
called angiogenesis.

To my knowledge, only one study has screened
Dupuytren’s tissue for expression of a large panel of
cytokines.45 In contrast to this study of a broad group
of cytokines, most other reports have focused on pos-
sible relations between one or two growth factors and
Dupuytren’s disease. Table 2 summarises the current
data on growth factors and their implications in
Dupuytren’s contracture.45–58
In summary, of all the growth factors/cytokines
having been studied so far for a possible role in the
development of Dupuytren’s contracture it seems that
TGF-b is the most likely candidate, whereas other
growth factors such as PDGF and bFGF probably
play a minor role. Since the mitogenic effects of TGF-
b on connective tissue cells are induced via a complex
control of an autocrine PDGF loop,59 increased
expression of PDGF could be a normal response to an
abnormal TGF-b expression.53

Of note is that recently, data have emerged in other
fibrotic disease states suggesting a role for granulocyte
macrophage-colony stimulating factor (GM-CSF).
GM-CSF is mostly known for its stimulatory effect on
cells of haematopoietic origin and its role in the inflam-
matory response.60 However, it was recently shown to
induce proliferation of mesenchymal cells17 through
the formation of granulation tissue containing many
myofibroblasts rich in lung fibrosis model.63 So far,
GM-CSF and TGF-b are the only two cytokines that
are able to induce a-SM actin rich myofibroblasts in
the skin in vivo,61–64 and thus should be considered
the most likely candidates for inducing the myofibro-
blast phenotype in Dupuytren’s disease. Currently, to
my knowledge, there are no data on a possible relation-
ship between GM-CSF and Dupuytren’s disease.

Free radicals

Murrell et al65–68 introduced the free radical theory,
which suggests a relation between localised ischaemia,
superoxide free radicals (O2

–), hydrogen peroxide
(H2O2), hydroxyl radicals (OH–) and Dupuytren’s con-
tracture. This was based on studies suggesting that
microvessel narrowing secondary to age, smoking and
other environmental factors leads to localised hypoxic
conditions. Such conditions trigger increased levels of
xanthine oxidase, which catalyses the conversion of
hypoxanthine to xanthine to uric acid, and, ultimately,
free radical generation. The free radicals subsequently
would cause a proliferation of fibroblasts and deposi-
tion of collagen leading to tissue fibrosis and even
lower local oxygen concentrations. The authors also
speculated on a possible clinical/therapeutic role for
allopurinol, which inhibits xanthine oxidase and thus
prevents release of free radicals in the treatment and
prevention of Dupuytren’s disease.69 However, the
effect of allopurinol in Dupuytren’s contracture was
later found to be not significant.70

While the free radical theory seems to offer a unified
approach to the morphological and epidemiological
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findings in Dupuytren’s tissue, little work has been
done to push our understanding significantly forward.

Biochemistry

Extensive literature exists with respect to the biochem-
ical aspects of Dupuytren’s disease, primarily on the
components of the extracellular matrix (ECM). The
ECM is made of collagens, fibronectin, and proteo-
glycans, which form a matrix to which cells attach by
means of their surface receptors called integrins. The
ECM is a dynamic structure, constantly being broken
down and rebuilt.

An elevated level of total collagen in Dupuytren’s
tissue is considered to be typical.71,72 The ratio of dif-
ferent collagen types and their potential roles in dis-
eased versus normal tissue, however, has not been fully
worked out. For example, whereas Brickley-Parsons et
al71 said that the ratio of type III to type I collagen was
related to the degree of disease severity, Gelberman et
al28 could not confirm these results. Two other stud-
ies72,73 showed that there is increased expression of
type III in clinically ‘normal’ fascia of patients with
established Dupuytren’s disease, suggesting that the
disease is widespread throughout the fascia. Murrell
et al74,75 dispute the causative role of the increased
collagen III/I ratio in Dupuytren’s disease, citing the
fact that increased cell proliferation leads to decreased
type I production, but the total of type III collagen
produced per cell is unchanged.

One of the other constituents of the ECM is
fibronectin,76 which has been shown to play a role in
cell migration, adhesion, cell morphology and differ-
entiation. Fibronectin was shown to be upregulated by
TGF-b about 2–3 fold in fibroblasts in vitro.76–78 In
Dupuytren’s tissue, fibronectin expression has been
documented using indirect immunofluorescence show-
ing an ‘embryonic pattern’ of so-called oncofetal
fibronectin (ED-A and ED-B) suggesting the relation
of Dupuytren’s disease to normal processes such as
healing and granulation with production of immature
tissue.79–80

Immune system

Neumuller et al81 studied the presence of HLA-DR3
in patients with Dupuytren’s disease, and calculated
an increased relative risk of 2.94 for people who
express HLA-DR3 to develop Dupuytren’s disease.
Baird et al82 showed increased presence of HLA-DR
and CD-3 positive lymphocytes in Dupuytren tissue
as compared to normal fascia. Other isolated reports
speculate on a link between dermal dendrocytes and
Dupuytren’s disease based on immunohistochemical
detection of factor XIIIa (marker for dermal dendro-
cytes) in Dupuytren’s tissue,83 and presence of HLA-
DR as well as CD-68 positive cells, which have an
immunologic function, being of macrophage lineage.
The importance of this finding is that macrophages
are known to secrete cytokines including TGF-b and
GM-CSF, which have a role in tissue fibrosis as 
discussed above.
Lastly, from an epidemiologic standpoint, the
reported findings of a high prevalence of Dupuytren’s
contracture in immunocompromised HIV patients
(36%)84 have been disputed by others.85

Discussion

Fibrotic disorders affecting organs such as kidney,
lung, heart and bone marrow provide a major cost to
healthcare. Whereas fibrosis of the palmar fascia
known as Dupuytren’s disease is not a major health
hazard, its pathogenesis is likely to be fairly similar to
these other fibrotic disorders. It has recently become
clear that progressive fibrosis is a complex process
involving a cascade of molecular and cellular events,
with TGF-b playing a pivotal role in the final common
pathway.2,86

Although Dupuytren’s is not regarded as an inflam-
matory disease, it seems that in most related fibrotic
diseases the presence of GM-CSF and macrophages is
related to the production of cytokines, including
TGF-b. This results in chemotaxis, cell proliferation,
collagen production, myofibroblast differentiation
(a-SM actin induction), fibronectin (receptor) pro-
duction and cell transformation.76–78 The reported 
co-localisation of myofibroblasts, growth factors and
fibronectin isoforms substantiates this theory.51 Once
this process is started, a positive feedback loop
ensues, with autoinduction of TGF-b.87 Additionally,
increased fibrosis leads to local hypoxia, which is
known to induce TGF-b in an additional amplifica-
tion step.88 Other described mechanisms such as the
production of free radicals66–68 may well be part of this
complex mechanism.

Descriptive findings such as those on the absence or
presence of myofibroblasts, the type III/I collagen
ratio, and epidemiologic data such as the relation to
race, smoking, diabetes and epilepsy are historically
important, but are unlikely to help us find the cause or
a non-surgical cure for Dupuytren’s contracture. The
answer will undoubtedly come from cell biological or
molecular biological advances. Each step is slowly
being elucidated but many questions still remain. What
starts the cascade that leads to excessive fibroblast pro-
liferation and ECM production similar to wound heal-
ing, and why does it not shut itself off as a normal
repair process? Is it similar to other fibrotic diseases
and are GM-CSF and TGF-b the key players? Can we
modulate the mechanism of apoptosis on the myo-
fibroblast once the diagnosis of Dupuytren’s disease is
established? It seems that investigation of GM-CSF
expression in Dupuytren’s tissue would be worthwhile.

Once all the steps of the cascade are elucidated on a
cellular level, it will be interesting to see if this leads us
back to the (historic) epidemiological data. Does
Dupuytren’s contracture start with local hypoxia, as
seen in smokers and diabetics89–90 or with repeated
microtrauma resulting in an inflammatory response
with macrophages and/or platelets releasing specific
fibrogenic cytokines, or is a genetic defect (apoptotic
control) at the core of the disease?

Although a number of important questions remain
unanswered, work has begun to identify possible



Aetiology of Dupuytren’s contracture 633
non-surgical treatments for Dupuytren’s and related
diseases, such as keloids and hypertrophic scars, based
on the scientific evidence currently available. The most
prevalent ideas for treatment include alteration in the
growth factor expression by local gene therapy, local
application of growth factor antibodies and blocking
of receptor binding and/or post-receptor signalling.
Experimental studies attempting to decrease scarring
and fibrosis have been targeted at modulating the
expression of TGF-b isoforms,72 for example, and pre-
liminary clinical reports are encouraging. Local appli-
cation of antibodies to TGF-b resulted in decreased
scarring in an experimental dermal healing study in
rats, and histological evaluation of those tissues
revealed fewer macrophages, blood vessels, lower col-
lagen and fibronectin content.91 These findings are in
line with a later report in which binding of TGF-b by
decorin protected against scarring in an experimental
glomerulonephritis syndrome without detectable side-
effects.92 Other treatments could involve down-regula-
tion of a-SM actin expression with g-interferon, which
has recently been shown in clinical studies of
Dupuytren’s disease57 and keloids.93

At the end of his lecture in Hotel Dieu on the con-
traction of the palmar fascia, Guillaume Dupuytren
expressed the hope that ‘these hints may become use-
ful to science and humanity, in multiplying observa-
tions on the cause, symptoms, and treatment of this
disease’.1 Now, more than 170 years later, although
there is a much better understanding of Dupuytren’s
contracture, surgical excision of the diseased fascia
remains the best treatment available. Advances in the
basic sciences of the disease, however, will ultimately
provide us with better options.
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