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Abstract

Dupuytren’s disease is a common fibroproliferative disorder with digital flexion 

deformities causing disability. Two forms are apparent clinically, nodules and cords.

Transforming growth factor beta-1 (TGF-/3i) has been implicated in Dupuytren’s 

disease development. Myofibroblasts are prevalent in nodules and may be the source of 

cell-mediated contraction, which combined with matrix remodelling causes tissue 

shortening.

The hypothesis was that nodule and cord derived fibroblasts have differing 

contractile properties; have inherently altered tensional homeostasis and responses to 

mechanical stimuli.

It was found that nodule cultures contained significantly greater numbers of 

myofibroblasts, identified using immunohistochemical staining, than cord or carpal 

ligament.

A culture force monitor model was used to study the contractile properties of 

fibroblasts in culture. Mean peak force generated at 20hrs was significantly greater in 

nodule cells, than cord, whilst carpal ligament generated minimal force. There was a 

failure of force to plateau before 20hrs in Dupuytren’s cells, possibly representing 

delayed tensional homeostasis.

Responses to increased tension were investigated by subjecting gels to four 

uniaxial overloads. Dupuytren’s cells, particularly nodule fibroblasts, exhibited an 

unexpected increased contractile response to the first overload.

TGF-j3i stimulation caused a significant upregulation of myofibroblasts in 

Dupuytren’s cells to 25%; it also caused an increase in contraction profiles, with 

elevated mean 20hr force. Greatest stimulation occurred early in contraction, 2hr 

gradients increasing by 250 % in nodule fibroblasts.

After overloading greater contractile responses were observed in the first post

overload period and these persisted to subsequent overloads after TGF-jSi stimulation. 

Flexion deformities in Dupuytren’s disease occur due to shortening of the affected 

matrix. The abnormal contractile properties and altered tensional homeostasis in 

resident cells that we have found may be central to this. TGF-j3i stimulation upregulated 

myofibroblast differentiation in Dupuytren’s cells and exacerbated the abnormal 

contractile properties and responses to loading. Clinical relevance is discussed.
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Thesis Introduction

This thesis will focus on the understanding of cellular events within diseased fascia in 

primary Dupuytren’s disease, which lead to clinically problematic flexion contractures. 

A second aspect of this study will be the differentiation between the cellular properties 

of nodules and cords in primary Dupuytren’s disease.

Hypothesis:

It is hypothesised that in Dupuytren’s disease the fibroblasts have different 

characteristics from normal fibroblasts and the physical shortening of fascial tissue 

fabric is a result of the complex interaction between:

a) Upregulation of myofibroblast phenotype

b) TGF-/?i stimulation (a profibrotic cytokine) and

c) Mechanical forces that result in altered cell mediated contraction and subsequent 

matrix shortening.

The literature review begins with a general appraisal of Dupuytren’s disease, examining 

the history, epidemiology and proposed aetiological factors as well as the surgical 

anatomy and current therapeutic options. Subsequently an evaluation of literature 

specific to the focus of the thesis is undertaken, concentrating on current theories of 

contracture formation, cell mediated contraction, tensional homeostasis and factors that 

influence these processes. The currently published differences between nodules and 

cords will also be presented.

In order to tackle the overall hypothesis of contracture formation, a series of 

experiments have been conducted in order to answer specific questions. It was 

important that only primary cases were chosen to exclude any influence of prior 

surgery.

Primary Dupuytren’s tissue was divided into regions of nodule and cord, from which 

specific cell cultures were established.

20



• Does the myofibroblast phenotype and the differences encountered between 

nodules and cords in tissue, persist into fibroblast cultures? This justifies the 

subsequent use of specific nodule and cord cultures in investigating responses to 

TGF-j8i stimulation and the contractile properties. Chapters 3.1,3.2 and 3.3.

• Do Dupuytren’s fibroblasts display enhanced contractility, and, are there 

contractile differences between nodule and cord fibroblasts? Chapter 3.4

• Are fibroblast responses to mechanical stimulation altered in Dupuytren’s 

disease? Chapter 3.5

• Does the pro-fibrotic growth factor, TGF-/?i, up-regulate both myofibroblastic 

phenotype and matrix contraction in either nodule fibroblasts or cord fibroblasts 

or both? Chapters 3.6,3.7.

• Does TGF-jSi act in synergy with mechanical stimulation to cause exacerbation 

o f abnormal cellular responses? Chapter 3.8.

At each stage experimental comparisons will be drawn with fibroblasts from non- 

Dupuytren’s disease tissue but of a similar, upper limb, fascial origin.

Discussion will centre around the observed differences between the properties of nodule 

and cord fibroblasts and the way in which altered contractile properties might lead to a 

propensity for the Dupuytren’s fibroblasts to effect an excessive shortening of the 3D 

matrix. This would have direct implications clinically for the mechanism of fascial 

tissue fabric shortening, and thus generation of contractures.

Additionally an explanation for the high rates of recurrence following corrective 

surgery for Dupuytren’s contracture will be proposed and possible reasons why the 

continuous elongation techniques for contracture correction result in rapid recurrence if 

not accompanied by fasciectomy.
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Review of the Literature

Chapter 1 

Review of the Literature
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Review of the Literature

Chapter 1 
Review of the Literature

1 Dupuytren’s Disease

1.1 The History of Dupuytren's Disease

Thickening of the palmar fascia of the hand which progresses to cause digital 

contraction is most often referred to by its eponymous name, Dupuytren's disease 

gained from the remarkable nineteenth century French surgeon Baron Gauillaume 

Dupuytren. He presented a case of the disease at what has now become a famous lecture 

in 1831, however this was not the earliest description o f the condition by several 

centuries.

Felix Plater a Swiss surgeon from Basel wrote of an affliction to a stone mason's 

hand in 1614 where the ring and little fingers had become contracted. Referring to the 

tendons he wrote, "They contracted and in so doing were loosed from the bonds by 

which they are held and became raised up, as two cords forming a ridge under the skin. 

These two fingers will remain contracted and drawn forever." It can be seen that Plater 

believed the condition to be one of the flexor tendons rather than the more superficially 

situated fascia, however this description is thought to be the earliest record in the 

surgical literature of Dupuytren's disease (Elliot, 1988).

The disease was no doubt present in the population well before this and people 

have postulated that the "Papal Hand of Benediction" seen in early Christian imagery 

was adopted because one of the Popes of the time suffered with Dupuytren's 

contracture. It is unlikely that a single pope would be influential enough to spread such 

symbolism related to a condition of his own hand and this gesture probably originated 

even earlier in history, as a Roman sign (Elliot, 1999).

The true anatomical nature of Dupuytren's disease was elucidated by Henry 

Cline senior, who dissected two hands affected by the condition in 1777 (the year of 

Dupuytren's birth). It was clear to him that the cause of the observed contractures was 

thickening and shortening of the palmar fascial fibres and, furthermore, that division of 

these allowed immediate return of extension. Cline lectured with Sir Astley Cooper in
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London and Cooper continued this practice with Henry Cline junior when his father 

retired. They continued to describe the anatomy of the disease and it's treatment by 

palmar fasciotomy in the early part of the nineteenth century.

Baron Gauillaume Dupuytren was chief surgeon at the Hotel Dieu in Paris. He 

was considered the greatest surgeon in France by many at that time and was indeed 

surgeon to both Louis XVIII and Charles X. He was referred a patient with the disease 

in 1831 from a neighbouring hospital and following successful treatment by palmar 

fasciotomy he went on and delivered his lecture in December of that year. Using a 

patient with the condition and anatomical specimens he described the morphology, 

history, clinical signs and differential diagnosis before proceeding to perform his 

method of open fasciectomy. The lecture was reported verbatim in the French medical 

press at the time and repeated several times over the ensuing years. Despite much 

debate and some criticism Dupuytren's name stuck such that the condition bears it to 

this day.

1.2 Epidemiology of Dupuytren's Disease

A number of population studies have been carried out to determine the prevalence of 

Dupuytren's disease with significant variations between geographical locations and 

native ethnicity. Mikkelson (1972) found the overall prevalence in Norwegian men to 

be 9.4% and in women 2.8%, with the disease being bilateral in 59% and 43% 

respectively. There was a large increase in prevalence starting from the fifth decade in 

life in men and from the mid-sixties in women. By the eighth decade the ratio of men to 

women with the disease had fallen to 1:2 (Mikkelson, 1990). Gudmundsson et al (2000) 

studying a sample of the Reykjavik population found a similar pattern (overall 

prevalence 19.2% in men, 4.4% in women), whilst in the United Kingdom, Early (1962) 

found the prevalence in men to be 4.2% and in women 1.4%. In a group of nursing 

home residents in Scotland, Lennox (1993) found the disease in 21% of women and 

39% of men over sixty years of age, whilst Carson and Clarke (1997) found an 

incidence o f 13.75% of elderly ex-service men.

There are also well-documented cases in blacks, Indians, Asians and Japanese (Yost, 

1955, Su, 1970, Zaworski, 1979, Haeseker 1981 and Mitra and Goldstein 1994, 

Gonzalez et al, 1998, Egawa et al, 1990, Srivastava et al, 1989).
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1.3 Aetiology of Dupuytren's Disease

Since Baron Dupuytren and others noted the disease in "laborious people" many 

apparent associations and related factors have been proposed although the underlying 

cause of Dupuytren's disease remains unclear. It is likely a combination of such factors 

or events is ultimately responsible for disease development.

1.3.1 Alcohol

Several studies have been undertaken in an attempt to confirm the classic association of 

alcohol and Dupuytren's disease. Both Wolfe et al (1956) and Atalli et al (1987) found 

a higher incidence of Dupuytren's disease in alcoholics than in controls. Other studies 

however (Rafter et al 1980, Houghton et al 1983) found no statistically significant 

increase in alcoholism in patients with Dupuytren's disease and opinion remains divided 

on the importance of this as an aetiological factor.

1.3.2 Genetics

In view of the observed racial variations in Dupuytren’s disease it would be 

unsurprising for there to be a genetic basis to the condition. Ling (1963) suggested the 

disorder was autosomal dominant and that there was variable penetrance, whilst others 

have also suggested an autosomal dominant mode of inheritance (Reviewed by Burge, 

1999). It may merely be the case that a genetic predisposition is inherited with a 

multitude of other environmental or patient factors combining to manifest the disease 

(Ragoowansi et al, 2001).

1.3.3 Smoking

The association between smoking and Dupuytren’s contracture is often blurred by the 

common coexistence of alcohol intake, however Burge et al (1997) found a strong link 

with smoking and a more modest association to alcohol intake. An et al (1988), in 

contrast to an earlier study by Fraser-Moodie (1976), demonstrated a significant 

difference in the smoking habits of patients operated on for Dupuytren’s disease 

compared with controls.
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1.3.4 Convulsive Disorders

The link between Dupuytren’s disease and epilepsy was first reported in 1941 by Lund 

and subsequently supported by Skoog (1948) and Early (1962), who in addition found a 

higher increase in Dupuytren’s disease in those with severe epilepsy. More recently 

Arafa et al (1992) found an increase in the incidence of Dupuytren’s disease in epileptic 

patients compared with a control group, however this only reached significance in those 

over the age of 50.

1.3.5 Diabetes

Several studies have demonstrated an increased prevalence of Dupuytren’s disease in 

diabetic patients (Machtey, 1997; Larkin and Frier, 1986; Heathcote et al, 1981; 

Arkkila, 1996) one group finding a rate of 43% in diabetics compared with 18% in the 

controls (Noble et al, 1984). One study has also correlated diabetic retinopathy with 

Dupuytren’s suggesting a combined role of the microangiopathy as a causative factor 

(Pal etal, 1987).

1.3.6 Occupation

Early surgeons investigating and describing Dupuytren’s disease often came across the 

condition in manual workers; indeed Skoog (1963) has suggested micro-ruptures of the 

palmar fascial fibres following repeated minor trauma as a possible aetiology. A recent 

epidemiological study by Gudmundsson et al (2000) found the disease to be more 

common in men with occupations where they worked primarily with their hands and 

often outdoors. Other studies have strongly refuted the theory that occupation type itself 

is causative. Early (1962) found no difference in the prevalence of Dupuytren’s disease 

between two groups of workers at a single factory, one group being manual workers the 

other office staff. Furthermore no increase in Dupuytren’s has been demonstrated in 

professional sportsmen who experience repeated significant stresses over the course of 

their careers (McFarlane, 1991). Currently there is no accepted link between 

Dupuytren’s disease and occupation; indeed the sudden cessation of activity is thought 

to be more significant by one author (Heuston, 1962).
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1.3.7 Injury

Whilst occupation is considered not to be associated with the onset of Dupuytren’s 

disease the effect of a single injury is more contentious. Many cases of the condition 

have been reported to occur after a single insult ranging from forearm fractures (Stewart 

et al, 1985) to direct local trauma (Gordon and Anderson, 1961; Clarkson, 1961). 

McFarlane and Shum (1990) reviewed 309 patients of whom a close association could 

be made with a single insult in 6%. They pointed out, that the delineation needs to be 

made between Dupuytren’s disease and scar tissue. They conclude that single insults 

may occasionally lead to Dupuytren’s or progression of existing disease but it is likely 

this is in predisposed individuals and it is impossible to conclude a causal relationship 

unless relatively young.

1.3.8 Rheumatoid Arthritis

Arafa et al (1984) found a significantly lower incidence of Dupuytren’s in the 

rheumatoid patients. The reason for this is not clear, however arthritis treatment such as 

steroids was one postulated cause.

1.4 The Morphology of Dupuytren’s Disease

1.4.1 Histology

The microscopic appearances of Dupuytren’s disease were described by Meyerding et 

al in 1941. They noted the highly cellular areas within active nodules as well as a 

relative decrease in adipose tissue and adnexal structures. There was an increase in 

capillaries and lymphocytic infiltration. Luck proposed a classification of the disease in 

1959 based on the histological appearance of the disease and its activity and related this 

to his surgical intervention. He divided the disease into three stages. Proliferative was 

characterised by the active fibrous nodule where the lesion was highly cellular but 

arranged in a disorganised fashion. The collagen content was low. The involutional 

phase tissue was also cellular but the fibroblasts were beginning to align themselves, 

presumably in response to tensional forces, and more collagen was also being laid down 

along these axes. Finally the residual stage is characterised by highly organised, 

virtually acellular dense connective tissue. Luck postulated that diseased tissue would
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begin as a nodule and progress through all three stages before leaving only fibrous 

cords.

1.4.2 Surgical Anatomy

The abnormal tissue that develops in Dupuytren’s disease does so from defined 

anatomical structures that together make up the palmar and digital fascia. The non

diseased fascia is believed to have a functional role despite some authors’ view that it is 

a vestigial structure (Reviewed by Caughell and McFarlane in Dupuytren’s Disease, 

1990). It supports the palmar skin, protecting against shearing and compressive forces 

as well as retaining the deeper structures and the bony framework of the hand. The 

normal anatomy is shown in fig. 1.1 and has both a longitudinal and transverse 

component. As the digit is reached aggregations of fascial fibres condense to form 

defined “ligaments” or bands (fig. 1.2). In the diseased state thickening, hypertrophy, 

shortening and merging of these bands lead to pathological cords with intervening 

nodules (fig. 1.3). The pattern of these cords and their origin from normal bands has 

been studied by several authors (McFarlane, 1974; McGrouther, 1982; Rayan, 1999). 

The cords displace nearby tissues and lead to specific joint contractures depending on 

their position. Table 1.1 summarises the effects and origin of diseased cords.

Natatory Ligament

Adipose tissue in 
Triangular Space

Distal Commisural 
Ligament from 1a Web 
Space

Proximal Transverse 
Palmar Ligament

Proximal Commisural 
Ligament from 1° Web 
Space

Pretendinous bands Palmar Cutaneous 
Branch o f  Median N.

Palmaris Longus 
Tendon

Insertion o f Abductor 
Pollicis Brevis

Figure 1.1. The Normal Anatomy of the Palmar Fascia. Transverse and longitudinal 
Aggregations of the normal palmar fascia are labelled. (Adapted from Anatomy by 
Tubiana, in Dupuytren’s Disease, 2000)
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Diseased Cord Band of Origin Effect

Pretendinous cord Pretendinous band MCPJ contracture

Central cord Central fibrofatty tissues PLPJ contracture

Lateral cord Lateral digital sheet DIPJ contracture

Spiral cord Grayson’s ligament, 

Clelands ligament, 

Lateral digital sheet, 

Pretendinous band

MCPJ contracture 

PIPJ contracture 

Displacement of 

neurovascular bundle

Natatory cord Natatory ligament Decreased abduction

Table 1.1. The pathological cords encountered in Dupuytren’s disease, their 
normal anatomical origin and their primary effect.

Grayson’s ligament

Natatory ligament 

Neurovascular bundle

Pretendinous band

Cleland’s ligament 

Lateral digital sheet

Spiral band

Superficial transverse 
ligament

Figure 1.2. The Normal Anatomy of the Distal Palmar and Digital Fascia.
The structural elements of the normal fascial complex that become involved in 
Dupuytren’s disease are labelled.

A)

Spiral
cord

B)

Central
cord

Spiral
cord

Intrinsi
muscle

Lateral
cord

Natatory
cord

Tissue 
shortens in 
this direction

Pretendinous 
cord

Figure 1.3. The Anatomy of the Pathological Cords That Develop in Dupuytren’s 
Disease. A) Diseased fascia associated with pretendinous cords. B) Diseased fascia not 
associated with pretendinous cords. Taken from McFarlane (1974).
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A detailed knowledge of the pathological anatomy and its variations prepares the 

surgeon when operating to both achieve his goal of removing affected fascia in order to 

straighten the digit and avoid damage to structures such as digital nerves and arteries 

which become intimately bound and displaced within the fibrous tissue.

1.5 Treatment of Dupuytren’s Contracture of the Hand

Advances in the understanding of cellular processes involved in Dupuytren’s disease 

have as yet failed to translate into new therapeutic options for Dupuytren’s disease. 

Currently the mainstay of treatment remains surgery, however over the last several 

decades the results of surgery have improved, with less complications and better 

functional outcomes (Jabaley, 1999).

1.5.1 Surgical Treatment

Surgical fasciotomy, first described by Cline and then Dupuytren (Elliot, 1999), is still 

performed in selected cases, for example elderly patients with cords causing 

metacarpolphalangeal joint contractures. Bryan and Ghorbal (1988) reported it to be 

useful for initial correction at this joint but that this correction was unlikely to be 

maintained in the long term.

Fasciectomy comprises of varying degrees of resection of the Dupuytren’s tissue. 

Segmental aponeurectomy (Moermans, 1991; Andrew and Kay, 1991) achieves a 

similar result to fasciotomy, whilst limited or regional fasciectomy removes the 

macroscopically abnormal fascial tissue. Radical fasciectomy where the resection 

extends into normal fascia in an attempt to limit recurrence or extension is no longer in 

favour.

Irrespective of the degree of resection the disease cannot be cured, with extension and 

recurrence being commonplace. The aim of surgery, therefore, is to correct the 

deformity with the least complications and best chance of avoiding recurrence.

Recurrence appears to increase with time elapsed since surgery. In Mantero et aVs 

series from 1983 of 600 patients (Reveiwed by Leclercq, Results of Surgical Treatment 

in Dupuytren’s Disease 2000) there was a 43% recurrence rate between the third and 

fifth post-operative years, but this rose to 77% in those patients who were followed for 

up to 30 years. Leclercq’s own review of a series of Tubiana’s patients confirmed this
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pattern with a final value of 66% in those followed for more than ten years. Norotte et 

al (1988) similarly reported a 71% recurrence rate whilst Adam and Loynes (1992) 

found a lower rate of recurrence of 34% although the mean follow up was only 3.4 

years. The open palm technique described by McCash (1964) also failed to provide 

superior results despite less early complications, with Schneider et al (1986) 

experiencing a 32% recurrence and 48% extension rate at 5 years following this 

technique.

The only procedure that has consistently shown improved results in terms of recurrence 

is dermofasciectomy and full thickness skin grafting of the defect (Leclercq, C., 

Recurrent Dupuytren’s Disease, Presentation at British Society for Surgery of the Hand 

Meeting Nov 2002). Hueston first noted reduction of recurrence beneath Wolfe grafts in 

1962 (Hueston, 1962) and went on to apply this technique for treatment of recurrent 

disease (Hueston, 1984). Others have found recurrence beneath grafts to be very 

infrequent (Brotherstone et al, 1994, Kelly and Varian, 1992) and Hueston now 

recommends dermofasciectomy as the primary procedure for younger patients with a 

strong diathesis (1985) although this does not prevent extension of disease in adjacent 

areas.

1.5.2 Splinting

Splinting of Dupuytren’s contractures has been employed for centuries however James 

and Tubiana stated in 1952 (quoted by Leclercq, Hurst and Badalamente in Dupuytren’s 

Disease 2000) that when applied discontinuously splints are ineffective. In this respect 

to prevent contracture progression a patient would be required to wear a permanent 

splint, itself an unacceptable impairment. As such it is generally accepted that pre

operative splinting alone is not useful in the management of Dupuytren’s disease 

(Abbott et al, 1987).

Messina and Messina (1993) have however introduced the concept of continuous 

elongation of the Dupuytren’s contracture as an adjunct prior to surgical intervention. 

They apply a bony fixed continuous elongation device (TEC), which can be gradually 

lengthened at 2mm per day to straighten severely flexed digits. Initial results of this 

technique have been encouraging (Citron and Messina, 1998) however it is reported that 

once traction is removed recurrence of contracture deformities is very rapid if
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fasciectomy is not performed. Examination of the stretched fascia by light and electron 

microscopy revealed uniform orientation of collagen fibrils (Brandes et al, 1994) and 

biochemical evaluation of the tissue by Bailey et al (1994) revealed an increase in MMP 

levels, explaining the apparent remodeling without fiber rupture.

Other authors have now begun to adopt this technique, or modifications of it, to 

facilitate surgery in patients with severe contractures (Hodgkinson, 1994).

1.5.3 Other Non Surgical Treatments

Many non-operative treatment modalities have been attempted to halt or reverse 

Dupuytren’s disease but with variable and often limited short-term value. Local 

radiotherapy for Dupuytren’s disease was used by Keilholz et al (1996) with some 

success. Another study however by Weinzierl et al (1993) demonstrated no difference 

in the disease natural history after 7 years. In view of this and the potential side effects 

o f radiotherapy in what is a benign disease, this treatment modality has not gained 

acceptance.

Weinzierl et al (1993) also looked at the 3-year results of treatment with DMSO, which 

again failed to alter the course of Dupuytren’s disease. Similarly vitamin E was found to 

be ineffective (Richard, 1952).

Steroids have been employed with variable success (Reviewed by Leclercq, Hurst and 

Badalamente in Dupuytren’s Disease 2000), Ketchum (1983) reporting resolution of 

nodules following intralesional triamcinolone injection. Meek et al (1999) proposed that 

this useful action of steroids was due to their anti-inflammatory role.

Enzymatic fasciotomy is currently on trial as a therapeutic option in the USA 

(Badalamente and Hurst, 2000), although degradation of collagen using 

pharmacological agents such as trypsin or pepsin has been proposed for some time 

(Reviewed by Leclercq, Hurst and Badalamente in Dupuytren’s Disease, 2000).
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1.6 Clinical Picture

Dupuytren’s disease often presents as a small firm swelling within the palm of the hand 

or base of a finger, although the pattern is very variable (Skoog, 1963; McFarlane, 

1991; Leclercq, 2000 in Dupuytren’s Disease). This early “nodule” can remain static for 

several years, or progress rapidly, the reason for differences in behaviour being unclear. 

Clinically Dupuytren’s diseased tissue can be divided into nodules or cords (Rayan,

1999), which as described above, broadly correspond to the histological stages of 

Dupuytren’s disease. As described above (section 1.4.1) Luck proposed that nodules 

were the early active lesions with disease progressing and eventually burning out when 

nodules became replaced or degenerated into more quiescent cords. This natural history 

of Dupuytren’s disease is currently favoured by many authors (Rayan, 1999) and it 

follows that there could be crucial differences in the characteristics and behaviour of 

cells from these two regions which may influence our understanding and future 

treatment of the condition.

One of the key aspects of this thesis was to study any differences between the 

characteristics of cells derived specifically from Dupuytren’s nodules or Dupuytren’s 

cords. This has been a relatively untapped avenue of research with some investigators 

looking at “Dupuytren’s disease” tissue as a whole, making no differentiation between 

cords and nodules, or, more frequently simply concentrating on nodules.

It is not usually the presence of diseased tissue, which causes problems for the patient, 

although large nodules can be uncomfortable; however with disease progression flexion 

deformities of the digits occur. It is these flexion deformities, or contractures, which can 

cause significant disability for patients. Despite the large amount of research that has 

been undertaken into Dupuytren’s disease and advances in the cell and molecular 

biology of this condition the actual mechanism by which contractures occur remains 

unclear (Kloen, 1999). Currently it is believed that the diseased tissue physically 

shortens (Brickley-Parsons, 1981) rather than folding or actually contracting (by matrix 

elements sliding along one another). It is proposed that this shortening results from a 

combination of two processes (Reviewed by Glimcher and Peabody, Collagen 

organization in Dupuytren’s Disease, 1990) with nodules and cords together forming a 

“contractile unit”.
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Firstly

Cell mediated contraction o f the matrix.

Resident diseased fibroblasts, possibly those with a contractile phenotype 

(myofibroblasts), pull on the matrix that they are attached to causing it to 

shorten.

And Secondly

Continuous Matrix Remodelling.

The extra cellular matrix of most tissues undergoes constant turnover, however 

this remodelling may be increased in Dupuytren’s disease and thus it could fix 

the matrix in the shortened state brought about by cell mediated contraction 

(Reviewed by Flint and Poole, Contraction and contracture in Dupuytren’s 

Disease, 1990).

Neither process alone could bring about sufficient changes to induce macroscopic tissue 

shortening, however by a continuous cycling of the two processes it can be seen that a 

minute step wise shortening of the diseased tissue could be achieved. This fixed 

shortened tissue on the volar aspect of a digit prevents full extension of the finger and 

hence the flexion deformities.

In addition to cellular differences between nodules and cords, this thesis concentrates on 

the cell mediated contraction aspect of Dupuytren’s disease. The contractile cell 

phenotype (the myofibroblast), has been studied, as has the mechanism of contraction 

using a collagen lattice contraction model, and finally the role of a specific growth 

factor, TGF-/?i, thought to be involved in fibrosis.

1.7 The Myofibroblast

In 1971 Gabbiani et al described a specialized type of fibroblast within granulation 

tissue. This had many features in common with smooth muscle cells both at the light 

and electron microscopic level. They proposed its role in the contraction observed in 

wound healing. Subsequently Gabbiani and Majno (1972) showed that cells found in 

nodules from Dupuytren’s Disease were phenotypically similar and so hypothesized 

that this cell, the myofibroblast, was responsible for the tissue contraction leading to the
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contractures seen in Dupuytren’s. Myofibroblasts have also been identified in 

Peyronie’s disease and contracted breast capsule tissue with Ariyan, et al (1978) 

proposing that this cell was the common denominator in all fibrocontractive disorders.

It has been shown that alpha smooth muscle actin (a-SMA) is present in the 

myofibroblast as opposed to normal fibroblasts and this can be detected by 

immunohistochemistry (Skalli et al, 1986, Schurch et al. 1984, Foo et al. 1992). Using 

these techniques myofibroblasts have been confirmed in Dupuytren’s tissue and also a 

difference noted in their relative proportions in the three stages of the disease. Luck 

(1959) divided the disease into proliferative, involutional and residual phases and the 

myofibroblast appears more prominent in the proliferative nodule phase (Tomasek et al. 

1995). Myofibroblasts were not demonstrated in Dupuytren’s cord tissue by VandeBerg 

et al (1982) or Badalamente et al (1983), whilst Pasquali-Ronchetti et al> (1993) found 

a few myofibroblast phenotype cells in a single cord sample. In this respect there are 

similarities with wound healing where myofibroblasts are numerous in the hypercellular 

granulation tissue but disappear in the maturing scar tissue (Darby et al. 1990).

There has been much debate over the actual origin of the myofibroblast. 

Suggestions have included differentiation from fibroblasts, smooth muscle cells or 

vascular endothelial cells. Rayan et al (1994) showed that when grown in culture 

normal palmar fibroblasts developed stress fibres akin to the actin microfilaments seen 

in myofibroblasts. Myofibroblasts with a-smooth muscle actin positive intracellular 

fibres can also be induced in normal cultured fibroblasts by TGF-p (Desmouliere et al, 

1993). Detailed cytoskeletal investigation has shown certain cells stain for limited types 

of intermediate cytoskeletal proteins. These appear to be involved in cellular 

architecture rather than generating forces. Fibroblasts express vimentin, whereas 

smooth muscle cells express either only vimentin or vimentin and desmin. Like 

granulation tissue myofibroblasts, the majority from Dupuytren’s tissue express only 

vimentin, however in some patients there is expression of both (Schurch et al. 1990). 

From the above it seems likely that the majority of Dupuytren myofibroblasts originate 

from transformed fibroblasts.
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A comprehensive review by Tomasek et al (2002) suggests that fibroblasts, given an 

appropriate stimulus, differentiate first into protomyofiboblasts that demonstrate 

intracellular stress fibres. Subsequently, differentiated myofibroblasts develop, 

characterised by the presence of a-SMA intracellular microfilaments. It may require 

combined stimuli such as a stiff matrix and TGF-P to maximally induce Of-SMA (Arora 

et al, 1999). This is a particularly im portant point in relation to the work that has 

been carried out here where not only have myofibroblasts been under investigation 

but stimulation with both external loading and TGF-P has been studied.

1.8 The Extracellular Matrix

Cells exist within a complex three-dimensional environment, the extracellular matrix, 

which provides support, protection and a means of interconnection. It consists of a 

network of connective tissue fibres such as collagen and elastin contained within a 

ground substance of various macromolecular proteins, proteoglycans and hyaluronates. 

The composition varies depending on tissue type and in certain disease processes. The 

extracellular matrix is a dynamic milieu, thought to be in constant turnover even within 

such apparently stable tissues such as bone and cartilage (Flint and Poole, 1990 in 

Dupuytren’s Disease). This is controlled by the cells within the matrix, which are 

responsible for production of the constituent parts as well as enzymes, the matrix 

metalloproteinases (MMPs) that act to break it down.

1.8.1 Collagen

Collagen comprises a large percentage of the extra cellular protein and currently more 

than 19 collagen molecules have been formally identified. Type I collagen is the most 

prevalent and ubiquitous (Prockop & Kivirikko, 1995) and is the major fibrillar 

collagen forming highly stable and mechanically strong collagen fibres.

Collagens are synthesised primarily by fibroblasts and myofibroblasts in the same way 

as other proteins, via transcription of the DNA into mRNA and the translation of this by 

ribosomes into protein (reviewed by Kivirikko, 1993).
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Collagen amount is regulated by a number of factors, which together form a balance 

between production and breakdown. Proliferation of the fibroblast or myofibroblast 

population can cause an increased synthesis, thus factors such as TGF-/3 can have a 

fibrotic effect. Collagens are degraded by one of two mechanisms, either an intracellular 

pathway which degrades procollagen, or an extracellular process, which is mediated by 

the MMPs.

1.8.2 The Extracellular Matrix in Dupuytren’s Disease

There have been specific biochemical changes identified in the extracellular matrix of 

Dupuytren’s disease tissue. Brickley-Parsons et al (1981) using a number of techniques 

compared collagen characteristics in the diseased fascia and non-diseased fascia of 

patients with Dupuytren’s disease and fascia from patients free of Dupuytren’s. They 

demonstrated a significantly increased level of total collagen as well as increased 

hydroxylysine content and an increase in the number of reducible cross-links. Collagen 

type m , virtually absent in normal palmar fascia, was seen to comprise up to 40% of 

total collagen in diseased tissue. These changes are very similar to collagen 

characteristics encountered in embryos, healing wounds or newly synthesized collagens. 

The investigators hypothesized that this was due to a reparative response in the diseased 

tissue resulting from an increased turnover of collagen. They proposed that the 

shortening of contracted tissue was a result not of collagen folding or pleating but 

continuous remodeling, leaving a shorter section of matrix. Other studies have also 

demonstrated an increased type IE collagen content using a range of techniques (Bailey 

et al, 1977, Bazin et al, 1980, Gelberman et al, 1980 and Menzel et al, 1979). Murrell et 

al (1991) confirmed this increased type DI/I collagen ratio in cell cultures, proposing 

this to be a function of cell density not cell type, as Dupuytren’s and control fibroblasts 

behaved similarly. This is in contrast to other studies where total collagen production 

was greater in Dupuytren’s cells than controls (Delbruck and Schroder, 1983), which is 

of significance, by demonstrating that cellular differences observed in tissue are 

maintained in tissue culture. This was also established by previous studies in our 

laboratory (Bulstrode, N., MD Thesis, 2001).
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Changes in other constituents of the extra cellular matrix have been reviewed by 

Delbruck and Gurr (in Dupuytren’s Disease, Biology and treatment, 1990). There is an 

increase in overall glycosaminoglycan content in palmar fascia, occurring in a stepwise 

manner from apparently normal fascia to fascia adjacent to bands and nodules, to bands 

and finally greatest amounts in nodules. Dermatan sulphate and chondroitin sulphate are 

the main contributors to the increase. Water content is elevated in Dupuytren’s tissue 

(Bazin et al, 1980) however another glycosaminoglycan, hyaluronate, is found in 

smaller amounts than normal palmar fascia (Flint et al, 1982).

Several of these studies (Bazin et al, 1980, Brickley-Parsons et al, 1981) have 

demonstrated that the characteristic changes in the extracellular matrix outlined above 

also occur in apparently uninvolved fascia of patients with Dupuytren’s disease, all be it 

to a lesser extent. This suggests the condition may result from a global change within 

the palmar fascia and explains the often multifocal and recurrent nature of the disease.

Few studies have looked at the role of MMPs in Dupuytren’s disease. Tarlton et al 

(1998) correlated increases in MMP 2 levels with the load applied to fresh tissue strips. 

Subsequently Prajapati et al (2000) demonstrated complex changes in MMP activity 

after cyclical loading regimens applied to dermal fibroblasts in a culture force monitor 

model

1.9 Growth Factors

There are many growth factors and cytokines produced both locally and from the 

general circulation that have possible roles in Dupuytren’s disease either by stimulation 

o f cellular proliferation, contraction or production of extracellular matrix. Many of 

these have been studied by observing their effects on Dupuytren’s fibroblasts in vitro, 

either as monolayer cultures or in fibroblast populated collagen lattices.

Platelet derived growth factor (PDGF) has been studied in Dupuytren’s disease by 

Badalamente et al (1992). They found co-localisation of this with myofibroblasts in the 

densely cellular areas corresponding to proliferative and involutional stages of the 

disease. They hypothesized that this finding was consistent with many of the known 

actions of PDGF, such as increased protein synthesis and reorganisation of cytoskeletal
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components, leading to its possible role in the aetiology of Dupuytrens disease. The 

same group of workers (Badalamente et al, 1988) have also localised the vasoactive 

prostaglandins, PGE2 and PGF2a to myofibroblasts in sections of Dupuytren’s nodule, 

hypothesising that they play a role in cell contractility.

The effects of interferon-a2b (INF-a2b) on fibroblast populated collagen lattices have 

been investigated by Sanders et al (1999). This anti-fibrogenic cytokine produced by 

leukocytes lead to a significant reduction in the contraction of FPCLs using both control 

palmar fascia and Dupuytren’s fibroblasts.

Alioto et al (1994) studied a panel of growth factors and their effect on proliferation and 

protein synthesis in Dupuytren’s and normal palmar fascia fibroblasts. Basic fibroblast 

growth factor (bFGF) and PDGF were both found to stimulate fibroblast proliferation in 

Dupuytren’s and control cells. TGF-p 1 had no significant effects, however, it was a 

powerful stimulator of both collagen and non-collagen synthesis.

Dupuytren’s fibroblasts have been found to express b-FGF and have high affinity 

receptor sites for this factor (Lappi et al, 1992; Gonzalez et al, 1992). Baird et al (1993) 

demonstrated a significantly increased expression of b-FGF in Dupuytren’s nodule 

tissue compared with controls using RT-PCR as well as higher expression of 

Interleukins l a  and lp  and TGF-p.

TGF-P and bFGF have also been implicated in the pathobiology of Dupuytren’s disease 

by Bemdt et al (1995) who found localisation of TGF-P 1, TGF-p2 , bFGF and 

fibronectin RNA in proliferative areas of disease using in-situ hybridisation. They also 

found accumulation of TGF-p 1 and TGF-p3 protein in surrounding normal tissue, 

hypothesising the diffusion of these growth factors causing activation of previously 

uninvolved fibroblasts.
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1.9,1 Transforming Growth Factor B

One of the most widely investigated groups is the Transforming Growth Factor-p 

family. These related polypeptide trophic factors, which have diverse cellular functions, 

have three isoforms, TGF-p i, TGF-P2 and TGF-p3 . They are believed to play central 

roles in many fibrotic conditions (Border and Noble, 1994). It is thought that these 

cytokines control tissue repair processes in response to injury or insult, both initiating 

and turning them off (Bennett and Shultz, 1993). TGF-P 1 for example can function as 

an agonist or antagonist of cell proliferation depending on other factors but consistently 

stimulates extracellular matrix and collagen deposition (Reed et al, 1994) as well as 

regulating the action of other cytokines. Hence if  the delicate balance is altered excess 

scarring or fibrosis can develop.

TGF-P 1 has been shown to increase proportions of myofibroblasts expressing a-smooth 

muscle actin in both in-vivo wounds and in-vitro fibroblast cultures (Desmouliere et al> 

1993,Yokozeki et al, 1997). Tumour necrosis factor did not induce the same changes 

and the authors concluded TGF-P 1 to be important in regulating a-smooth muscle actin 

expression in wound healing and fibrocontractive diseases.

In addition to the studies outlined above, Badalamente et al (1996) demonstrated 

widespread immunohistochemical staining of Dupuytren’s specimens for TGF-P 1 in all 

stages of the disease but not of TGF-P2 in residual stage disease specimens. They 

further investigated TGF-P effects on fibroblast cell culture proliferation, finding an 

increased proliferation of Dupuytren’s fibroblasts in response to TGF-p 1, TGF-P2 and 

combined TGF-p 1 + TGF-p2 .

Kloen et al (1995) demonstrated three forms of TGF-P 1 receptor (I, II and HI) with an 

increased expression of type II receptors in Dupuytren’s fibroblasts compared with 

controls. They also found a consistent mitogenic response of fibroblasts in culture to 

exogenous TGF-pi, again to a greater extent in Dupuytren’s cells. Interestingly when 

combined with epidermal growth factor (EGF), there was a synergistic response to 

TGF-p 1 in Dupuytren’s cell proliferation but this was only additive in control 

fibroblasts, suggesting they may be more susceptible to growth factor stimulation.
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Work in this laboratory has confirmed the positive proliferative effects of TGF-P i on 

Dupuytren’s fibroblasts and the upregulation of myofibroblast differentiation in these 

cell cultures (Jemec et al, 2000). TGF-p i has also been found to significantly increase 

both collagen and non-collagen protein synthesis in fibroblast cultures from 

Dupuytren’s and control tissue (Bulstrode, MD Thesis, 2001).

TGF-p i has been shown to increase cellular contraction in FPCLs seeded with dermal 

fibroblasts (Montesano and Orci, 1988) and Dupuytren’s fibroblasts (Vaughan et al,

2000). In a stressed relaxed model seeded with Dupuyten’s fibroblasts, Vaughan et al 

(2000) showed a corresponding increase in a-smooth muscle positive cells preceded by 

an independent increase in other stress fibres, fibronexus adhesion complexes and 

fibronectin fibrils. These processes however, were reversed or unstable if  TGF-pi was 

withdrawn.

The investigation into growth factors and cytokines and their involvement in the 

processes controlling the development or progression of Dupuytren’s disease is an 

exciting area. Experiments are potentially difficult or time consuming and an in-vitro 

study can never recreate the complex milieu of interactions and feedback loops present 

in the patient. This avenue, however, may provide the key to understanding the cellular 

events leading to Dupuytren’s contracture.

1.10 Cellular Contraction

In vivo cells exist within a dynamic environment where tension and loading play a part 

in the alignment, morphology and function. Elsdale and Bard (1972) demonstrated that 

fibroblasts acquired phenotypic appearances more like those observed in vivo when 

cultured in collagen matrices rather than as monolayers. Tomasek and Hay (1984) later 

investigated the processes involved in this reacquisition of the in vivo bipolar shape, 

concluding that both microfilaments and microtubules were involved through a series of 

four stages. Elsdale and Bard also observed that fibroblast populated collagen lattices 

(FPCLs) shrunk or contracted and subsequently Bell et al. (1979) used this as a model 

to study reorganization in wound contraction. Although other models of cell contraction
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have been developed such as wrinkling of two dimensional silicone membranes (Hurst, 

et al, 1986) or deformable substrates (Wrobel et al, 2002), the 3D FPCL remains the 

most widely applied. Since Bell’s work, several authors have used 3-dimensional 

FPCLs to study the contractile properties of many cell types and in varying species, 

including rabbit tendon and synovial fibroblasts, (Khan et al, 1998) human dermal 

fibroblasts (Stopak and Harris, 1982;Tingstrom et al, 1992; Eastwood et al, 1994, 1996 

and 1998), rat dermal fibroblast (Levinson et al, 2001, Shreiber et al, 2001), dog 

periodontal fibroblasts (Kasugai et al, 1990) and human lung fibroblasts (Yokozeki et 

al, 1997; Mio et al, 1996). These collagen gels have traditionally been tethered, free 

floating or initially tethered and released at a set time point to float freely (stress-relaxed 

gels). Usually circular, the change in diameter of floating gels was used as a 

semiquantitative measure cellular force generation.

Collagen lattice contraction has been shown to be a cell-mediated process with 

increasing contraction occurring as more cells are seeded and no contraction if cells are 

left out. It is also serum dependent (Tomasek et al, 1992; Rayan and Tomasek, 1994, 

Brown et al, 2002) and related to the initial collagen concentration of the gels seeded 

(Bell et al, 1979; Zhu et al, 2001); and hence lattice stiffness.

The actual mechanism however is debated. Tomasek et al (1992) have suggested 

that there are different processes taking place between early rapid contraction in stress- 

relaxed gels, that they quantified, compared with the slow contraction over several 

hours or days seen in free floating collagen gels. Grinnell has reviewed these 

mechanisms of gel contraction (1994). Free floating lattice contraction has been 

proposed to be the result of cellular motile activity (Harris et al, 1981, Stopak and 

Harris, 1982) rather than typical smooth muscle type contraction. As such this has been 

termed “fractional remodelling” and was elegantly demonstrated by Ehrlich and 

Rajaratnam (1990) in different free-floating models. It has been demonstrated that the 

myofibroblast phenotype increases in tethered gels but not in free-floating gels 

(reviewed by Tomasek et al, 1999). Indeed Tomasek et al (1992) demonstrated the loss 

of stress fibres only 10 minutes after release of tethered gels and the contraction of 

stress-relaxed lattices is thought to occur in a similar fashion to the cell contraction seen 

in smooth muscle cells via a sliding actin-protein interaction (Guyton and Hall, 1996). 

Additionally the degree of contractility has been directly correlated with the level of
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myofibroblast phenotype cells or a-SMA present (Tomasek et al, 1995; Hinz et al,

2001). Further evidence for two separate contractile mechanisms in the free floating and 

stress-relaxed collagen lattice models has come from Grinnell et al (1999) 

demonstrating different kinetics after addition of specific agonists and blocking agents.

Several studies have also demonstrated that collagen gel contraction is enhanced by a 

variety of cytokines such as Lysophosphatidic Acid (LPA) and PDGF (Reviewed by 

Grinnell, 2000). TGF-/3i in particular, exhibits stimulatory effects on collagen lattice 

contraction (Reed et al, 1994, Montesano and Orci, 1988) although the exact 

mechanism or combination of mechanisms behind this effect remains unclear as 

increased contraction occurs in both free floating and stress-relaxed models. Grinnell 

and Ho (2002) demonstrated that in tethered lattices, increased contraction following 

TGF-/?i stimulation corresponded with a-SMA elevation, however there also appeared 

to be a direct agonist effect of TGF-/3j which was seen in free floating lattices where 

myofibroblasts fail to develop.

1.10.1 A Quantitative Model to Investigate Cell Contraction

With the early circular FPCL experiments only a semi-quantatative analysis of cellular 

contraction forces could be made, however recent advances have employed the use of 

highly sensitive force transducers attached to the gels in a friction free floating 

environment. This allows measurement of the actual forces involved for a given number 

o f cells. Kasugai et al (1990) using this type of set up concluded that the force 

generated by dog periodontal fibroblasts was sufficient to be responsible for tooth 

eruption, whilst Delvoye et al (1991) measured the force generated by dermal 

fibroblasts. Kolodney and Wysolmerski (1992) noted the rapid dissipation of a 

measured force after the addition of cytochalasin D suggesting the cytoskeleton is 

essential for force generation. Subsequently Eastwood (1994) developed the culture 

force monitor (CFM) along similar lines which has been further refined to apply 

programmed cycles o f force to FPCLs, called the tensioning culture force monitor 

(tCFM). Using these machines an accurate, reproducible, real time measurement of 

cellular forces within 3 dimensional collagen lattices has become available, as well as a 

means of studying responses to changes in the tensional environment. This has allowed 

several striking insights into the mechanism behind cellular force generation.
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The same group (Eastwood et al, 1996) demonstrated three phases in dermal fibroblast 

contraction with most of the force being developed in the first phase from 0 to 7 hours. 

Subsequently in phase 2 there was a plateauing of force, which was then usually 

maintained in phase 3. By correlating the contraction profiles obtained with cell 

morphology they were able to determine that most of the force generated in the initial 

phase of contraction correlated with cellular attachment and locomotion. In other words 

this was equivalent to the fractional remodelling described above.

Brown et al (1996), after studying the effects of various cell cytoskeletal disrupters on a 

CFM model, proposed that microtubules act as an intracellular frame, counteracting the 

pulling force of microfilaments, maintaining a degree of cell morphology, and 

maintaining an intracellular tensional equilibrium.

Using the tCFM, Eastwood et al (1998) were able to determine that dermal fibroblasts 

aligned themselves along the lines of isometric force within a high aspect ratio collagen 

gel. Conversely in a low aspect ratio gel, the same cyclical loading regimen where the 

lines of stress were minimal, produced no cellular alignment. It appears therefore that 

fibroblasts are able to perceive an external load on the matrix in which they reside and 

are stimulated to modify their orientation accordingly, in order to shield themselves 

from further loading. This explains the cellular alignment in loaded structures such as 

tendons and ligaments.

1.10.2 Tensional Homeostasis

It has been known for some years that various cell types respond to tension or loading, 

however recently Brown et al (1998) demonstrated dermal fibroblasts exhibit tensional 

homeostasis. Using a fibroblast populated collagen lattice (FPCL) model, attached to a 

tensioning culture force monitor they confirmed the presence of an endogenous cell 

mediated tension as previously described (Eastwood et al, 1996). Subsequently various 

loading regimens were applied. The FPCLs showed a rapid endogenous cellular 

response to loading or unloading of the opposite direction, so that the overall tension 

tended to return towards the previously established baseline (see figure 1.4). The cells 

in this way were protecting themselves from excessive tensional variations. The 

mechanism by which this homeostasis occurs is as yet unclear. Some authors have 

suggested a cyclic AMP secondary messenger system in response to mechanical
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stimulus (He and Grinnell, 1994). Others have suggested stretch induced intracellular 

calcium ion flux (Arora et al, 1994), whilst Chiquet-Ehrismann et al (1994) have 

demonstrated that control of the elevated levels of the extracellular matrix protein 

tenascin-C under stressed conditions, is regulated at the transcriptional level. This 

indicates that the cellular perception of tension can affect many levels of the cells 

behaviour.
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Figure 1.5. Section of a Contraction Profile with Tensional Homeostasis Being 
Displayed. The cellular responses seen at the troughs and peaks of this trace, where 
external forces have been increased or decreased, show a tendency to contract or relax 
in the opposite way to the force that has just been applied. This causes the overall trend 
in force produced by the cells (indicated by the solid lines) to return the system to a 
stable equilibrium. (Taken from Brown et al, 1998)

1.10.3 Contraction in Dupuytren’s Disease

In Dupuytren’s Disease cellular contraction and force have been examined in relation to 

the myofibroblast activity as well as the response to potential therapy. Rayan and 

Tomasek (1994) demonstrated an equivalent degree of contraction between dermal 

fibroblasts and Dupuytren’s fibroblasts using a stress-relaxed model and that the 

contraction was dependent on an intact actin cytoskeleton. In contrast to this Tarpila et 

al (1996) found a lesser degree of contraction in Dupuytren’s nodule fibroblasts 

compared with dermal fibroblasts, although they used a free floating collagen gel model 

and late stage nodule fibroblasts. Sanders et al (1999), looked at contraction of stress- 

relaxed FPCLs in response to interferon-ot2b. Both control and Dupuytren fibroblasts 

demonstrated a reduction in contraction however there was not a consistent difference 

between the two groups with 2 of 3 Dupuytren’s strains being more contractile than 

matched controls. Jemec (1999, MD Thesis) showed a reduction in cellular contraction 

after the application of 5-flurouracil (5-fu) to Dupuytren’s fibroblasts using a culture
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force monitor. This was seen to occur both with pre treatment for 5 minutes and 

application of 5-fu to the FPCL itself. Several other pharmacological agents or trophic 

factors have been investigated with respect to their effect on Dupuytren’s fibroblast 

contraction. Rayan at al (1996) demonstrated that lysophosphatidic acid (LPA) was a 

potent agonist of cell contraction using a circular FPCL, stress-relaxed model. They also 

noted that this effect was partially abrogated by the addition of prostaglandins Ei or E2 

as well as by calcium channel blockers. Once again TGF-/3j has been shown to enhance 

collagen lattice contraction by Dupuytren’s fibroblasts in a stress-relaxed model 

(Vaughan et al, 2000).

The role of mechanical factors in the genesis of Dupuytren’s disease has long been 

debated. Early descriptions of the condition, for example by Dupuytren himself and 

others (Elliot, 1999) noted the condition in manual workers, however since this time 

many opposing views have been proposed. Heuston (1990) disputes the role of 

occupation or injury as a cause, unless in the presence of the “Diathesis”. Flint (1990) 

supports Skoog’s theory (1963) and suggested that partial rupture of the palmar fascial 

fibres may lead to an alteration in distributed forces. He proposes that this lack of 

continuing uniaxial tension stimulates the processes leading to the Dupuytren’s nodule. 

There are also anecdotal reports (Skoog, 1963; Flint and Poole, 1990 in 

Dupuytren’s Disease) that continuous physical attempts to overcome the disease by 

stretching affected fingers causes rapid development of thickened contracture 

tissue, whilst Messina and Messina (1993) have shown that, although contractures 

can be overcome by dynamic extension splinting techniques the flexion deformities 

will rapidly recur if splinting is withdrawn.

Interestingly other authors who have simply released tension in Dupuytren’s 

contractures by fasciotomy or segmental aponeurectomy have observed softening or 

regression of the disease (Moermans, 1981; Andrew and Kay, 1991).

1.10.4 Transmitting the cellular force

Although the myofibroblast has been repeatedly implicated in Dupuytren’s tissue 

contraction, thus being the possible means by which clinical contractures occur, it has 

only been recently that a mechanism for the transmission of this cellular force to the 

surrounding matrix and adjacent cells has been identified.
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Cells appear to be linked to the surrounding extra-cellular matrix components as well as 

to each other via physical interconnections. The trans-membrane molecule integrin has 

been proposed as this crucial bond (Magro, 1995), and the close membrane association 

between matrix fibronectin filaments and intracellular actin microfilaments surrounding 

a )31 integrin molecule has been termed the fibronexus. Tomasek and Haaksma (1991) 

have demonstrated such fibronexi in Dupuytren’s contracture tissue proposing them to 

be the dominant means of transferring cell-mediated force to the matrix in the disease.

Interestingly Halliday et al (1994) using immunohistochemical techniques localised two 

fibronectin isoforms to Dupuytren’s nodules but showed minimal signal in residual 

stage disease or normal palmar fascia.

The integrin molecule by its connection to the extracellular matrix is thought to transmit 

forces to the intra-cellular cytoskeleton and possibly directly affect protein production 

(D’Addario et al, 2001) by mechanotranscriptional coupling. Filamin A, an actin cross- 

linking protein that protects cells from applied forces, has been shown to increase in 

response to tension.

Furthermore Burridge (1981) has suggested that tight cellular adhesion to the matrix is 

fundamental to the formation of intracellular stress fibres and the subsequent generation 

of force.

Transforming Growth Factor f t  has been shown to increase the specific integrin o2/51, 

which has also been correlated with the degree of collagen gel contraction (Riikonen et 

al, 1995). This was in a free floating model and the increase in o2/31, which enables cell 

-  type I collagen interaction, was proposed to mediate the mechanism of increased gel 

contraction following TGF-ft stimulation. In contrast to this Brown et al (2002), using 

the culture force monitor, found that the temporal relationship of increased integrin 

expression by TGF- f t  stimulation was inconsistent with the point where contraction 

was increased.
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1.11 Summary

As can be appreciated from the discussion above there is no current widely accepted 

non-surgical therapy for Dupuytren’s disease. Surgical results have improved, however 

rates of recurrence and extension of the disease remain high. A solution to the problem 

of Dupuytren’s treatment is only likely to occur through gaining a deeper understanding 

of the cell and molecular biology involved in this condition. Several advances have 

been made in recent years, with the identification of myofibroblasts, the implication of 

growth factors such as TGF-ft, and delineation of matrix changes in Dupuytren’s 

disease. None of these findings have yet led to therapeutic progress. A single causative 

factor has not been identified and the mechanisms behind the development of the most 

disabling aspect of the condition, flexion contracture, remains poorly defined.

In this thesis it is intended to investigate further the mechanisms behind the shortening 

of Dupuytren’s fascia that is thought to lead to flexion contracture development. By 

comprehending the way in which this occurs one may be better placed to develop and 

deliver a therapy to prevent this most troubling aspect o f Dupuytren’s Disease.

Additionally by defining differences between nodule and cord fibroblast phenotypes 

and behaviour it could be possible to obtain an enhanced understanding of the natural 

history of Dupuytren’s disease and even enable an evidenced based strategy for 

targeting specific areas of the condition.

THE HYPOTHESIS:

In Dupuytren’s disease there is an interaction between an increased myofibroblast 

phenotype, TGF-ft and mechanical stimulation that results in altered cell 

mediated contraction and hence the physical shortening of fascial tissue fabric.
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2. Materials and Methods 

2.1. Cell Culture

Dupuytren and control carpal ligament fibroblasts were established in culture following 

local ethical committee approval (Number EC2001-21). Dupuytren’s disease tissue was 

obtained from excised specimens at routine fasciectomy. Carpal ligament was selected as 

control tissue and excised from the incised free edge of the carpal ligament at routine carpal 

tunnel decompression. These patients showed no evidence of Dupuytren’s disease. Several 

previous investigators have used carpal ligament cells as non-diseased fibroblasts for 

comparison with Dupuytren’s disease derived cells (Badalamente et al, 1988, Rayan and 

Tomasek, 1994; Tomasek and Rayan, 1995, Halliday et al, 1994). Cell lines established are 

detailed in appendix I.

All cell culture work was carried out in sterile class II laminar airflow hoods, (HERA Safe, 

No. HS 12, Heraeus Instruments, Hanau, Germany) and flasks maintained in Heraeus (No. 

BB16, Heraeus Instruments) incubators kept at 37°C, humidified and with a CO2 

concentration of 5%.

2.1.1. Processing of Tissue and Establishment of Cell Cultures

Fresh tissue was obtained from the plastic surgery theatres wrapped in a saline soaked 

sterile swab. Dupuytren’s tissue excised at fasciectomy was selected to include at least one 

clinical nodule and a length of pathological cord identified where possible per-operatively. 

All tissue was obtained from patients undergoing primary procedures for Dupuytren’s 

disease; no recurrent cases were included. When cleaned of surrounding fatty and loose 

connective tissue the specimen would often resemble a “drumstick” shape (figure 2.1). This 

tissue was sectioned longitudinally with one half being fixed in 10% formal saline for 

histology and the other half being used to establish cell cultures. An explant method was 

used to establish cells in culture with two lines obtained from each specimen, one from the 

nodule and one from the cord (figure 2.2). Tissue from these regions was macerated using a
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sterile scalpel and forceps, which had been previously sterilized in 70% Industrial 

Methylated Spirits (IMS) and allowed to air dry. It was placed on the base of a T25 tissue 

culture flask (No. 690-160, Greiner Labortechnik, greiner bio one, Germany.) and allowed 

to adhere for 2 minutes. It was bathed in normal fibroblast growth medium (NGM, see 

appendix II for composition) and incubated until fibroblasts were observed migrating from 

the specimen. At this point the media was changed and then further media changes were 

carried out on every third or fourth day thereafter. Cells were passaged into T75 tissue 

culture flasks (No. 658-170, greiner bio one.) once an expanding monolayer was seen 

spreading from the tissue specimen.

Carpal ligament tissue was explanted in exactly the same way, but without separation into 

selected zones.

Figure 2.1. A Typical Dupuytren’s Disease Specimen.
a) Dupuytren’s disease tissue being excised from a patient undergoing routine primary 
fasciectomy. b) The defatted specimen illustrating macroscopically identifiable regions of 
nodule (N, white arrow) and cord (C, black arrow), c) The specimen bisected 
longitudinally. The inked end of the specimen allows orientation of the specimen 
throughout processing
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2.1.2. Routine Propagation of Cell Cultures

Cells were passaged just prior to confluence by splitting 1:3 in T75 tissue culture 

flasks. Culture medium was aspirated and the cell monolayer washed with 10ml phosphate 

buffered saline w/o calcium and magnesium and w/o sodium bicarbonate (PBS) (No. 

14190-094, Gibco, Paisley, Scotland). This was aspirated and lml of 1:10 trypsin : versene 

(see appendix II for formulation) solution was added. The flask was incubated for 5 

minutes and then agitated to obtain a single cell suspension. The trypsin solution was 

neutralized with 10ml of culture medium (containing 10% Foetal Calf Serum which 

neutralises the trypsin) and the resulting suspension was then centrifuged at lOOOrpm for 5 

minutes. The supernatant was discarded and the cell pellet resuspended in 30mls of culture 

medium.

Ten millilitres of solution was distributed to each of three T75 cell culture flasks. These 

were incubated as previously described. Cells used were all at or below passage 5 in an 

attempt to limit any dedifferentiation of the fibroblast population.

Intermediate Zone

Inked area for 
orientation

Tissue used for 
establishing 
cell cultures

Nodule Cord
Tissue fixed 
and stained for 
histology

Figure 2.2 Diagram of a “drumstick” shaped specimen of Dupuytren’s tissue. It was
processed by sectioning longitudinally as indicated. Half was used for establishing separate 
zonal cell culture lines, the second half processed for histology.
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2.1.3. Crvopreservation of Cells

Cells were stored once established in culture by freezing. A cell suspension obtained after 

trypsinisation of the monolayer, described above, was centrifuged at lOOOrpm for 5mins to 

obtain a cell pellet. The supernatant was discarded and the pellet resuspended in 2ml of a 

solution of 10% DMSO (Dimethylesulphoxide, No. D2650, Sigma Chemical Company, 

Poole, Dorset) and 90% foetal calf serum (No. 10106-169, Gibco). lml was dispensed into 

each of two cryovials labelled with cell line, passage and date. They were wrapped in tissue 

paper as insulation and then frozen in a -80°C freezer. The tissue paper allowed a gradual 

decrease in temperature during the freezing. Once frozen, samples were transferred to 

liquid nitrogen for long-term storage.

2.1.4. Raising Cells from Frozen

Cryovials were thawed rapidly in a water bath at 37°C. The cell suspension was transferred 

to a 15ml Falcon tube and 10ml of NGM was slowly added whilst swirling gently. The 

resulting suspension was centrifuged at lOOOrpm for 5mins and the cryopreservation 

containing supernatant aspirated and discarded. The cell pellet was suspended in 10ml of 

NGM and dispensed into a T75 flask for incubation.

2.1.5. Determination of Cell Number and Viability

For many experimental protocols specific numbers of viable cells were required. Cells were 

counted using a haemocytometer (improved Neubaur) and stained with Trypan Blue to 

determine viability. An aliquot of 50pi of a well-mixed cell suspension was diluted 1 in 2 

with 50pl of Trypan Blue (0.4%, No. T8154, Sigma.) and then drawn between the 

haemocytometer and cover slip by capillary action. This was examined under an inverted 

phase contrast microscope (Olympus CK2, Olympus Optical Co., Japan.) where dead cells 

were seen to stain darkly with the Trypan Blue as live cells pump out the dye. The number 

of viable cells contained within 1 large grid of the haemocytometer was counted and this
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repeated in 3 further grids. The mean cell number of all 4 was taken and multiplied by 2 

(the dilution factor) and then by 104 to give the cell density (Viable cells/ml).

2.2. Histology

The fixed specimens of Dupuytren’s tissue were embedded in paraffin blocks with a known 

orientation maintained by inking of one edge of the sample. This allowed accurate 

identification of the areas corresponding to those where cell cultures were established from, 

under light microscopy. Representative sections of the embedded tissue were cut and 

stained with haematoxylin and eosin. Paraffin blocks were sectioned at 4 /im using a 

Reichert-Jung Microtome (Leica Instruments, Germany) and were mounted on glass slides 

(No. 00210, Snowcoat Extra; Surgipath, St. Neots, Cambs.). Sections were dewaxed by 

bathing in xylene (No. 202-422-2, Genta Medical, York, UK) for 10 minutes and were then 

rehydrated through bathing in a series of ethanol (Hayman Ltd, Essex, UK) dilutions, from 

100% then 90%, 70% then to tap water. The sections were stained in Harris Haematoxylin 

(No. 31945S, BDH, Poole, Dorset, UK.) and Eosin (1% solution; 1034197, BDH) by firstly 

immersing the slides in Haematoxylin for 1 minute. They were then washed well under 

running tap water before immersion in eosin for 1 minute. After a further washing sections 

were dehydrated through the alcohols, cleared and mounted using DPX (No. M81330/C, 

DiaCheM, London, UK.) and 22 X 30 mm cover slips (Menzel-glazer). Examination at x 

100 and x 200 magnification (Zeiss Axioscope 20, Carl Zeiss, Germany) allowed 

confirmation of histological differences in the regions used for different cell culture zones. 

These broadly corresponded to Luck’s 1959 classification. The “Nodule” zone was highly 

cellular with disorganized architecture and minimal collagen deposition correlating to the 

proliferative phase (fig. 3.1.1.). The “Cord” was relatively acellular with large amounts of 

parallel, longitudinally aligned collagen representing the residual phase (fig. 3.1.2.). The 

area between these two extremes was more variable, generally less cellular and more 

organized than nodular tissue, (fig. 3.1.7.) In order to quantify these differences, digital 

images were captured of nodule and cord regions at x20 magnification using the 

microscope and Leica DC200 mounted camera and software (Leica DC Viewer, Leica 

Microsystems-Ltd, Heerbrug, Switzerland). Three images of each area from all specimens 

were taken and a grid of known area was overlaid onto the image using Adobe Photoshop
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(version 5.0.2. Adobe Systems Ltd.). The number of cell nuclei in the grid was then 

counted for each image and a mean obtained for each cell line, nodule and cord.

Mean cellularity was compared between nodule and cord and significance determined using 

a paired student’s t-test (Sigma Stat 2.0, Jandel corps.).

2.3. Staining of Tissue Sections for a-Smooth Muscle Actin

Tissue sections similar to those used for standard H & E histology were stained for the 

presence of a-Smooth Muscle Actin in order to identify myofibroblasts within the 

specimens obtained. Paraffin blocks were sectioned at 4 /xm using a Reichert-Jung 

Microtome and mounted on glass slides (Snowcoat Extra; Surgipath, St. Neots, Cambs.). 

Antigen retrieval was performed by steaming the slides for 10 minutes in 400 mis of 

preheated Tris HC1 buffer, pH 9.0, in a steamer (No. 48870, Morphy Richards). This 

provided the optimal conditions for maintaining sections on the slide, which was found to 

be problematic with other methods of antigen retrieval. The “steaming” method was found 

to be as effective on positive control sections (tonsil or intestine sections) when tested 

against the standard, in house antigen retrieval method of 15 minutes microwave treatment 

in citrate buffer (pH 6.0).

Two methods were used to identify a  smooth muscle actin within tissue sections of both 

Dupuytren’s disease and carpal ligament (see figure 2.3). The first employed an 

immunohistochemical technique using the streptavidin alkaline phosphatase method, which 

provides a striking contrast for positive and negative reactions and was not confused with 

endogenous tissue pigment. The second method employed an immunoflourescent technique 

allowing visualisation of positive staining under ultraviolet light.

In the first method endogenous alkaline phosphatase was blocked by a 20 minute 

incubation in a bath of 20% acetic acid solution and then sections were washed in running 

tap water for 2-3 minutes. Prior to ringing the sections with a hydrophobic wax pen (No. H- 

4000, Vector Laboratories, Peterborough, UK), they were placed in a bath of 50 mM Tris 

buffered saline (pH 7.6). Sections were then placed in a flat bed humidification tray for all
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subsequent applications of immunoreagents. Between reagent application, slides were 

rinsed off with a wash bottle containing TBS + T (see appendix II) before being placed in a 

slide rack and put in a fresh bath of TBS + T on a magnetic stirrer (No. 13135, Stuart 

Scientific, UK). This wash step was crucial in order to reduce background staining.

Sections were incubated with one drop of Avidin D blocking solution (Avidin Biotin 

Blocking Kit SP200, Vector Laboratories, Peterborough, UK.) for 15 minutes. This was 

flicked off and briefly rinsed with TBS + T after which one drop of the Biotin blocking 

solution was applied for 15 minutes (Avidin Biotin Blocking Kit SP200, Vector 

Laboratories). Sections were again briefly washed with TBS + T. Following this 100 /d of 

1:5 normal rabbit serum (Vector S5000) diluted in Dako Chemmate antibody diluent (Dako 

S2022, Dako, Ely, UK) was applied to each slide for 30 minutes.

Excess rabbit serum was flicked off the slides and 100 jd of anti-a smooth muscle actin 

antibody (anti- a  SMA; No. A2547, clone 1A4, Sigma) diluted 1:5000 was applied 

overnight at 4 °C. Negative controls used were either diluent only or a mouse IgG serum 

(No. 1-2000,Vector) substituted for the anti- a  SMA at an equivalent dilution. Numerous 

test sections were performed which showed no reaction using either control, and 

subsequently Chemmate diluent was used alone as a negative control.

After a wash step with TBS + T, 100 /d of biotinylated rabbit anti-mouse antibody (Dako 

E0354), diluted 1:200 in Dako Chemmate diluent, was applied for 30 minutes. After 

washing in TBS + T, 100 fi\ of streptavidin alkaline phosphatase (Vector SA5100) diluted 

1:200 in Dako Chemmate diluent was applied for another 30 minutes. After a further wash 

in TBS + T, Vector Red substrate (Vector Alkaline phosphatase substrate, SK5100) made 

up in 200 mM Tris HC1 (pH 8.2) was applied for 10 minutes so that a  SMA staining 

appeared bright pink. The intensity of the chromagen was checked under the microscope 

prior to washing the slides in running tap water for 2 -  3 minutes. Nuclei were 

counterstained blue with Harris’s haematoxylin for 10 -  30 seconds, differentiated and then 

blued in water. Sections were subsequently dehydrated, cleared and mounted in permanent 

DPX mountant.
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Figure 2.3. A flow diagram illustrating the two methods of staining for a  SMA.
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In the second immunofluorescent method, antigen retrieval was followed simply by the 

primary antibody (anti- a  SMA) at a dilution of 1:5000. Then after a wash step in TBS + T 

a FITC conjugated rabbit anti-mouse secondary antibody (No. F0232, Dako) was applied at 

a dilution of 1:400 with propidium iodide (40pg/ml No. P-14170, Sigma) 1:60 dilution for 

30 minutes. Following another wash step the slides were mounted in DABCO (Sigma, see 

appendix II) and stored at -20 °C.

: ® r e |

Figure 2.4a-d) Representative sections demonstrating the grading of positive staining 
for a  SMA using the streptavidin alkaline phosphatase method, a) represents negative 
staining (-). b to d represent increasing levels of positive staining (+, ++ and +++ 
respectively)
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Streptavidin alkaline phosphatase stained sections were viewed under a light microscope 

(Zeiss Axioscope 20) and sections of nodule and cord and carpal ligament were graded for 

the presence of positive staining for a  SMA. As shown in figure 2.4.a indicated no 

positive staining. Increasing levels of positive staining were represented by “+”, “++” and 

“+++” respectively (figure 2.4.b to 2.4.d) allowing a semi quantitative (although subjective) 

assessment of the level of a  SMA staining and hence myofibroblasts present in tissue 

sections.

The immunoflourescent method was used as a comparison to see if better visualisation of 

weakly positive areas could be obtained. Both methods were found to be equivalent.

2.4. Cultured Fibroblast Immunohistochemistry

2.4.1. Staining of Fibroblast Cultures for a-Smooth Muscle Actin

Six well plates (No. 657-160, Cellstar, Greiner bio one) were prepared with 

(24mmx24mm) glass cover slips in the bottom of each well. These were first soaked in 

alcohol and air-dried. Into each well were seeded 80,000 cells and these incubated with 

2mls of normal fibroblast growth medium per well at 37°C, 5% CO2 . For each cell line this 

was repeated in three wells. The media was aspirated and changed at twenty-four hours. At 

four days the cells on the glass cover slips were fixed by aspirating the growth media and 

bathing each in 2mls of ice-cold methanol at -20°C for 30 minutes. Each cover slip was 

then removed and air-dried with the cell-coated side uppermost. Once dry the cover slips 

were mounted on labelled glass microscope slides using DPX mountant (DiaChem) again 

with the cell layer uppermost. The slides were stored at -20°C in the dark until they were to 

be stained.

To stain the slides they were defrosted for 15 minutes and a ring drawn on each 

cover slip around the cells using a wax pen (Vector). They were washed three times in 

phosphate buffered saline (PBS, see appendix II for composition) and then laid out on a 

metal flat bed humidification staining tray. To each cover slip was added lOOpl of mouse
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monoclonal anti a-smooth muscle actin antibody (anti- a  SMA; No. A2547, clone 1A4, 

Sigma) at 1 in 1000 dilution with PBS. The tray was covered and left for one hour. The 

antibody was washed off using Tris Buffered Saline with Tween (TBS-T, see appendix II 

for composition) and then the slides were washed three times in PBS. The secondary 

antibody, a FIT-C rabbit anti-mouse monoclonal antibody (No. F0232, Dako), was made up 

at a 1 in 400 dilution in PBS mixed with propidium iodide at a lin 50 dilution as a nuclear 

counterstain. lOOpl of this solution was added to each cover slip and again covered and left 

for 50 minutes. The antibody was washed off using TBS-T and then the slides were washed 

three times in PBS. One drop of DABCO (appendix II) was placed on each cover slip and a 

second 24x40mm cover slip placed over this.

The slides were examined under ultraviolet light using a FITC filter where nuclei 

appeared red due to the counterstain and a-smooth muscle actin fluoresced green. Images 

of three random areas from each cover slip were captured using a Zeiss Axioscope 20 

microscope with a Leica DC200 mounted camera and software (Leica DC Viewer) so that a 

total of nine fields were obtained for each cell line (each one having been done in 

triplicate). For each field the total numbers of cells were counted as were the total number 

of cells staining positively for a-smooth muscle actin. A mean percentage of these positive 

myofibroblasts was calculated for each cell line and results for nodule, cord and control 

carpal ligament were compared.

Statistical analysis of the results was performed using a student’s t test. (Sigma Stat.)

2.4.2. Myofibroblast Content of Cell Cultures Treated with TGF-B

The same experimental procedure was carried out as in section 2.4.1. with 80,000 

cells again being seeded on sterilised and air dried cover slips in six well plates. They were 

allowed to settle and adhere for 24 hours in normal fibroblast growth media and then the 

media changed as above but this time substituted for 2 ml of TGF-pi (No. 240-B R&D 

Systems, Minneapolis, MN. USA) supplemented normal growth media at a concentration 

of 2ng per ml. The cover slips were fixed in ice-cold methanol at 4 days for 30 minutes and 

air-dried before being placed on glass microscope slides, attached with DPX mountant.
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They were frozen at -20°C for storage and then stained for a-smooth muscle actin and 

myofibroblast proportions determined in exactly the same way as in section 2.4.1.

2.5. The Culture Force Monitor

This is a novel experimental device for quantitative analysis of forces produced by cells in 

a three-dimensional collagen lattice, which was developed at University College London 

(Eastwood et al, 1994), and is now based at the Tissue Repair and Engineering Centre 

(TREC), at the Royal National Orthopaedic Hospital, Stanmore, Middlesex.

It consists of a collagen lattice seeded with the cells to be examined, suspended in a 

well containing growth media (figure 2.5). The well is actually a standard size created by a 

defect in a silicone elastomer mould (see appendix ID) placed within a 10 cm petri dish. 

The collagen gel floats between two floatation bars, one attached to a fixed point and the 

other to a sensitive force transducer which has previously been calibrated in dynes (see 

appendix IV for calibration method). The force transducer is attached to a desktop 

computer (Akhter, Pentium PC; 48MB RAM; Windows 95 operating system) which 

records one reading of the force across the system every second in real time. The petri dish 

sits on a base stage, similar to that of a microscope mounting stage, with a micrometer 

calibrated wheel allowing accurate, unidirectional movement of the system towards or 

away from the force transducer. The whole apparatus is kept at constant temperature, CO2 , 

and humidity within an incubator (Galaxy S, Wolf Laboratories).
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Figure 2.5. The Culture Force Monitor Set Up.
The collagen lattice (a) is suspended between two floatation bars (b) attached to “A” 
frames. It floats within a well of fixed dimensions in a silicone elastomer mould (c), which 
is filled with growth media. One “A” frame is attached to a fixed point (d), whilst the other 
is attached to the force transducer (e). The force transducer is connected to a desktop 
computer. The apparatus sits on a moveable microscope mounting stage, which can be 
moved towards or away from the force transducer by the micrometer wheel (f).

2.5.1. Preparing the Fibroblast Populated Collagen Lattice

The cells to be used were grown to 80 -  90 % confluence in a T225 cell culture flask 

(Coming, cat No. 431081, Coming inc. NY.). In general two flasks were required to 

provide sufficient cells at this density. The monolayer was washed twice with PBS and the 

cells were then trypsinised off of the flask using 5ml of trypsin/versene solution (1 in 9 

dilution). Once in suspension the trypsin was neutralised with normal growth medium and 

then the cells were centrifuged at lOOOrpm for 5 minutes. The supernatant was discarded 

and the cells resuspended in 5ml of normal growth media. Cell counting and viability 

confirmation was then carried out as per section 2.1.5. and the cells were centrifuged once 

more. The cell pellet was resuspended in normal growth media depending on the viable cell 

number to reach a concentration of one million viable cells per lOOpl of media.
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Meanwhile the mould and floatation bars for the culture force monitor gel were prepared. 

The bars (see appendix in  for dimensions) were checked for symmetry and correct height 

relative to the mould. They were then immersed in alcohol to sterilise them and left on a 

sterile petri dish to air dry. Pre autoclaved moulds (see appendix m  for dimensions and 

composition) were fitted into 10cm petri dishes (No. 8-0402, Nalgene, Nalge Company, 

Rochester, New York) and these sealed with lml of collagen gel mixture. To do this, one 

millilitre of collagen prep (2.3 mg/ml in 0.6% acetic acid; No. 60-30-810, First Link UK 

Ltd.) was added to lOOpl of lOx MEM (No. 21430-012, Gibco) and mixed by swirling. 

This was then neutralised using 1M NaOH (No. 301674M, BDH, made up in distilled 

water) in a drop wise fashion until the solution just changed to a deep pink colour from the 

initial yellow. This was pipetted into the mould at the interface between its sidewalls and 

the base of the petri dish and left in an incubator at 37 °C to solidify.

The main collagen gel was prepared in a similar manner using 6ml of collagen prep mixed 

with 700pl of MEM. The solution was neutralised using first 5M NaOH and then with 1M 

NaOH again until the colour change is just observed. The liquid was mixed by swirling and 

lml of the solution was quickly dispensed into the lattice of each bar. Five million 

fibroblasts were then seeded into the remaining solution by adding 500pl of the cell 

suspension prepared above and mixed trying to avoid bubbles. The bars were placed at each 

end of the mould well and the gel poured between them and very gently agitated to fill the 

remaining space before it started to set. This was placed in an incubator at 37°C to solidify 

using an inverted 9cm petri dish base, with windows cut out to accommodate the bar arms, 

as a protective lid (see figure 2.6.).
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Figure 2.6. A Close Up View of the Collagen Lattice Within the Mould.
The collagen lattice has contracted, indicated by the concave long edges. It is floating freely 
in the well so that there is no friction on the system and even small changes in force can be 
accurately measured. The lid (arrow), made out of an inverted 9cm petri dish base, can be 
see sitting on top of the mould. Windows have been cut out of each side of the lid (arrow 
head) to allow the “A” frames to extend through.

2.5.2. Setting up the Fibroblast Populated Collagen Lattice on the Culture 

Force Monitor

Once set the fibroblast populated collagen lattice was floated in 25ml of normal growth 

media. A sterile needle was used to free the edge of the gel from the mould walls and the 

floatation bars gently moved inwards to release them. The gel then floated to the surface 

between the buoyant bars. The gel was then transferred to the culture force monitor situated 

within a humidified incubator at 37°C, and 5% CO2 . The eye of one bar was place over the 

fixed strut of the culture force monitor as the petri dish was placed on the mounting stage. 

The stage was moved in towards the measuring arm until the other bar could be hooked 

onto it and the system gently altered until the gel, bars and arms were aligned and floating 

free with no friction, (see figure 2.6) The lid was replaced and the force transducer
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measured a voltage corresponding to the displacement of the measuring arm. The system 

was linked to a desktop computer with software (LabVIEW VI, National Instruments) 

recording one measurement every second, converting the voltage reading into a force 

measurement in dynes using a pre determined calibration factor (see appendix IV for 

method of CFM calibration). Thus a real time graph of the force across the system was 

generated. At initial set up the force at equilibrium was set at zero and subsequent changes 

were observed over the following 24 hours with readings once a second.

2.5.3. Basic Contraction Profile Determination and Method Development

Once the fibroblast populated collagen gel was set up in a satisfactory way the incubator 

was closed and data recording begun after 5 minutes of equilibration. The whole system 

was maintained at 37°C and 5% CO2 for the duration of the experiment. The gel was left to 

contract for between 20 and 24 hours producing a contraction profile for each cell line 

studied as the attached desktop computer recorded one force reading every second for the 

duration of the experiment. This data was converted to a mean reading per minute at the 

end of the experiment using a DOS macro program and then analysed using Microsoft 

Excel software (Microsoft corporation).

The CFM has been used to extensively study contractile properties of dermal fibroblasts, 

both human and rat derived, and is currently being extended to investigate other cell types. 

Few people, however, have used the apparatus to study fibroblasts derived from 

Dupuytren’s tissue and none have examined carpal ligament tissue. The methods of 

collagen gel preparation and set up on the machine are technically demanding with a steep 

learning curve and it was therefore important to ensure the technique was reliable and 

reproducible once it had been mastered.

AIM

To establish the reliability and reproducibility of the culture force monitor in this operator’s 

hands and its applicability to the cell types of interest for study.
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METHOD

To confirm the reliability of the method once learned, a standard dermal fibroblast cell line 

was used initially to allow comparison with previously published data.

Subsequently to confirm the reproducibility of the technique within the cell lines of interest 

several experimental runs were carried out repeating the same cell lines on three or more 

occasions. One Dupuytren’s nodule, one Dupuytren’s cord and two carpal ligament derived 

fibroblasts cell lines were examined in this way.

The relative paucity of contraction within carpal ligament cell lines, and in some 

Dupuytren’s cord cell lines, raised the question of cell viability within the collagen gels 

over the 24-hour study period. Contraction may have been poor because of significant cell 

death within the population of fibroblasts seeded into the collagen gel. Had this 

preferentially occurred in certain cell types or lines, such as carpal ligament it would 

invalidate their use. A series of viability (Fluck et al, 1998) assays were therefore 

performed using four separate cell lines from each tissue type, nodule, cord and carpal 

ligament. Collagen lattices were set up in the same way as detailed above. They were left to 

contract for twenty-four hours. At this time the collagen gel was removed from between the 

floatation bars and placed intact into a 15 ml falcon tube containing a 5 ml solution of 

collagenase-D (5mg collagenase-D, No. 1 088 866, Roche Diagnostics, Mannheim, 

Germany, in 10 ml of Phosphate Buffered Saline without sodium bicarbonate, No. 14040- 

091, Gibco Life Technologies, Paisley Scotland; containing 50 mg of Bovine serum 

albumin, No. 11018-017, Gibco.). The tube was placed into a warmed shaker (Innova 4000, 

Incubator Shaker, New Brunswick Scientific) at 37°C for approximately lhour until the 

collagen gel had completely dissolved. The cells now in suspension were centrifuged at 

lOOOrpm for 5 minutes to pellet them and the collagenase solution was aspirated. The pellet 

was resuspended in 5 ml of Phosphate Buffered Saline with Mg and Ca and the 

percentage of viable and dead cells was calculated by staining with trypan blue and 

counting as described in Chapter 2.1.5.
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RESULTS

Figure 2.7 displays graphically the contraction profiles of a standard dermal fibroblast cell 

line repeated on two occasions. The pattern is typical of that described in the literature for 

dermal fibroblasts (Eastwood et al, 1994 and 1996). There is an initial rapid contraction 

(arrow head), which is plateauing by between 8 and 15 hours. Subsequently until the end of 

the 24-hour experiment there is an extended steady state plateau stage (solid arrow).

The force generated is 126.9 dynes at 20 hours with the contraction profile gradient at this 

point (The rate of change of the force expressed in dynes per minute) being zero.
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Figure 2.7. Contraction profiles of a single dermal fibroblast cell line repeated on two 
occasions. Five million viable fibroblasts were seeded into a 5 ml collagen lattice in each 
case and the force measured on the culture force monitor over 20 hours. The arrowhead 
indicates the point at which there is a rapid contraction, which eventually reaches a plateau 
phases (arrow).
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Reproducibility for the cell lines of interest was then investigated. Figure 2.8 shows three 

contraction profiles obtained from the same Dupuytren’s nodule cell line. There was some 

initial early phase variation in the trace obtained, especially on repeat 2 (arrow) however; 

subsequently the traces are virtually identical. This is illustrated by the mean trace shown in 

figure 2.9 with standard deviations displayed at hourly intervals.
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Figure 2.8. Contraction profiles of a single Dupuytren’s nodule cell line repeated on 
three occasions. Runs were matched for cell number (5 million viable fibroblasts) and 
passage. Note some minor early phase variability (arrow) before the traces become nearly 
identical.

Mean force at 20 hours was 191 dynes SD ±5.1 dynes. A similar mean trace for three 

experiments using a single poorly contracting cord cell line matched for passage number is 

illustrated in figure 2.10. Error bars again represent the standard deviations with the mean 

20 hour force being 68 dynes SD ± 3.0 dynes. A single carpal ligament derived fibroblast 

cell line was then studied on four occasions, illustrated in figure 2.11 as a mean trace over 

20 hours +/- standard deviations. Mean force generated at 20 hours was only 36.07dynes 

SD ± 14.5 dynes with a rate of change of force at this point of 0.002 dynes per minute.
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Figure 2.9. The mean contraction profile of a single nodule cell line repeated three 
times. 5 million viable fibroblasts were seeded into 5 ml collagen lattices. Cells were 
matched for passage. The error bars represent the standard deviations at hourly intervals.
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Figure 2.10. The mean contraction profile of a single cord cell line repeated three 
times. 5 million viable fibroblasts were seeded into 5 ml collagen lattices. Cells were 
matched for passage. The error bars represent the standard deviations at hourly intervals.
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Figure 2.11. The mean contraction profile of a single carpal ligament cell line repeated 
four times. 5 million viable fibroblasts were seeded into 5 ml collagen lattices. The error 
bars represent the standard deviations at hourly intervals. (Note: viability > 90%)

This significant lack of force generation by this cell line was surprising and thus the 

reproducibility experiment was repeated with a second carpal ligament cell line, illustrated 

in figure 2.12. The trace is displayed as a mean value over time for three repeats of the 

same cell line +/- standard deviations. Mean force generated at 20 hours was 41 dynes SD ± 

7.1 dynes. Again this was low compared with other cell types investigated here and in the 

literature. Figure 2.12 shows the percentage of viable cells remaining in 5 ml collagen 

lattices seeded with 5 million cells and left to contract over 24 hours. In all cell types the 

number of viable cells was high, above 90%, and there is no significant difference in 

viability between the three groups. Any variation in contraction profiles seen between cell 

types therefore cannot be attributable to differential cell death in the 3D lattice.
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Figure 2.12. The mean contraction profile of a different single carpal ligament cell line 
to figure 2.11. repeated three times. 5 million viable fibroblasts were seeded into 5 ml 
collagen lattices. The error bars represent the standard deviations at hourly intervals.
(Note: viability >90%)

Nodule Cord CL

Figure 2.13. The mean percentage of viable cells extracted from collagen lattices at 24 
hours from nodule cord and carpal ligament cell lines (CL). In all cases n=4. Note that 
there is high cell viability with no significant cell death at 24 hours and there is no 
significant difference between groups.
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DISCUSSION
Initial experiments on the culture force monitor using collagen gels seeded with a dermal 

fibroblast cell line conformed with previously published literature regarding this type of 

cell both in the pattern of the trace obtained and in the absolute force values measured.

Eastwood et al (1996) described three phases of contraction seen in dermal fibroblasts 

populated collagen lattices using the CFM. The first phase up to 8 hours was characterised 

by rapid generation of force, and by observing changes in cell morphology, they 

determined this to be due to cell attachment and locomotion within the collagen gel. The 

second phase between 8 and 15 hours showed a plateauing of force and the subsequent 

third phase was where a steady state was reached and the contractile forces of the cells 

balanced the resistance within the matrix.

The initial studies here with a single dermal fibroblast cell line corresponded well with 

these observations demonstrating all three phases. The methods therefore appear reliable in 

my hands.

The true plateau only seemed to occur just at 15 hours with continued force generation up 

to this point. Previous reports of the amount of force generated by dermal fibroblasts using 

this model vary somewhat (Eastwood et al, 1996, Eastwood et al, 1994; Brown et al, 1998) 

ranging from 20 to 56 dynes per million cells, but our data falls within this range, peak 

force being 125 and 131 dynes respectively for the two repeats, or 25 and 26.2 dynes per 

million cells.

From these two experiments alone the technique appeared reproducible however it was 

important to confirm this in the cell lines to be investigated. The Dupuytren’s nodule and 

cord cell line repeats experiments gave very consistent results with low standard deviations 

indicating little variability between runs (figures 2.9 and 2.10) and hence good 

reproducibility.
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Results from the carpal ligament fibroblast cell line were intriguing, as they were not 

expected to produce so little force. Most cells investigated and published in the literature to 

date produce at least a moderate contractile force equivalent to that of a dermal fibroblast. 

The results however were reproducible, with near 100% cell viability, with a similar pattern 

of trace through all repeats and small standard deviations. A second cell line was examined 

because of the unexpected finding, but again consistently generated minimal force over the 

time period studied.

Bell et al (1979) demonstrated that collagen gel contraction was proportional to the number 

of cells seeded into the lattice. Our study of cell viability at 24 hours confirmed that the 

differences seen in contractile properties at this early stage were not due to differential cell 

death within the collagen gels and hence altered cell numbers.

SUMMARY:-

• It has been demonstrated that the method employed for using the culture force 

monitor by this operator is reliable, reproducing results similar to those previously 

published for dermal fibroblasts.

• The results are reproducible within single cell lines of the types to be used in the 

subsequent investigations with low standard deviations.

• The differing contraction profiles observed between cell types and specifically the 

paucity of contraction in carpal ligament and some Dupuytren’s cord cell lines are 

not due to differential cell death within the collagen lattices.
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Having confirmed the reliability using dermal fibroblasts and obtaining comparable results 

to published reports, and establishing the reproducibility of the experimental model, the 

subsequent experimental data could be interpreted as a true representation and not due to 

variability in the system. The basic contraction profiles of 9 Dupuytren’s nodule, 10 

Dupuytren’s cord and 4 control carpal ligament cell lines were then studied. The mean 

contraction profile for each type of cell line was calculated using Microsoft Excel 

(Microsoft corporation.). The mean force generated at 20 hours and the mean gradient of 

the contraction profile at 2 hours and 20 hours after set up was also calculated. The gradient 

was determined by measuring the rate of change in force between either 1 and 2 hours or 

19.5 and 20.5 hours respectively and expressed as dynes per minute. Thus the “two hour” 

gradient was calculated as the force measured at 2 hours minus the force at 1 hour, divided 

by 60 (minutes) to obtain a value in dynes per minute. A similar method was used to obtain 

the “twenty hour” gradient using the force value at 20.5 hours minus that at 19.5 hours and 

dividing by 60. A positive value indicated an increasing gradient whilst a negative value 

represented a falling slope. Statistical analysis of the data was performed using the 

students-t test utilising the Sigma Stat. Software Package.

2.5.4. System Overloading

At the end of recording the basic contraction profile each collagen gel was serially 

overloaded on the system. This was achieved by rapidly hand turning the micrometer wheel 

on the CFM mounting stage by 30 micrometers leading to an increase in longitudinal, 

uniaxial tension on the gel of around 20 to 25 dynes. The system was then left for 30 

minutes to record the response to this rapid loading. The procedure was repeated a further 

three times so totalling four rapid overloads and four 30-minute “post overload” responses. 

The experiment was terminated at this point and the gel taken off and processed (Section 

2.5.6.)

2.5.5. Addition of TGF-Bi

After basic contraction profiles and overloading data were collected for the cell lines as 

detailed above, the effects of pre-treatment with Transforming Growth Factor-Pi(TGF-(3i, 

R & D Systems) were investigated. Fibroblast cultures to be studied were again grown in 

T225 tissue culture flasks and when judged to be three to four days from sub-confluence
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the media was changed and the cells then incubated with normal growth media 

supplemented with TGF-Pi at the same concentration as used for 2D myofibroblast 

stimulation, 2ng per ml. The fibroblasts were then used after three days incubation in this 

media (No further media changes were carried out) for preparation of the FPCL. The 

collagen gels were set up in exactly the same way as described above and TGF-pi was not 

included in the growth media used in gel manufacture or subsequent gel floatation and 

nutrition. In this way the fibroblasts were merely pre-treated with TGF-pi.

Collagen gel set up on the CFM and measurement of the resulting contraction profiles was 

performed in an identical fashion to non pre-treated fibroblasts and the same parameters 

were calculated for comparison. At between 20 and 24 hours the FPCLs were also serially 

overloaded four times and the post overload responses measured. Finally the gels were 

removed from the CFM and processed as described in the following section.

2.5.6. Removal and Processing of Gels from the CFM

At the conclusion of each experimental run the data was saved and the fibroblast populated 

collagen lattice removed from between the bars. As illustrated in figure 2.14 it was cut in 

two, and half was snap frozen in liquid nitrogen before being stored at -80°C. The media 

was also kept and frozen as aliquots in case subsequent analysis was thought to be of use. 

The other half of gel was processed in order to study its morphology. It was rapidly fixed 

by immersion in 10% formal saline (see Appendix II for formulation) and then left for 24 

hours. At this point the gel was washed thoroughly in PBS and stored in a bijou tube at 4°C 

before subsequent staining for light microscopy or immunohistochemical staining for a- 

smooth muscle actin fibres.
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2.5.7. Staining Fibroblast Populated Collagen Lattices for Light Microscopy

Basic cellular morphology within FPCLs run on the culture force monitor was assessed by 

staining with Toluidene blue. One quarter of each gel was soaked in a 1% solution of 

Toluidene blue (No. G298, Gurr’s Ltd, London, UK) for 15 seconds and then washed 

thoroughly with three changes of PBS. It was then observed under light microscopy (Zeiss 

Axioscope 20). Digital images were taken and comparisons made between Dupuytren’s 

nodule, cord and carpal ligament cell lines.

2.5.8. Staining Fibroblast Populated Collagen Lattices for a-Smooth Muscle 

Actin

To assess myofibroblast content and orientation within the collagen gels small 

rectangular sections of the gel previously fixed and stored in PBS at 4°C were cut. The 

position of origin within the gel was noted as this has a bearing on the lines of stress and 

hence cellular orientation (Eastwood et al, 1998). In each case a portion from the middle of 

the gel was used but additionally some pieces from the delta zones were stained in selected 

cell lines (see figure 2.14.).

The segment of gel to be stained was soaked in ice-cold methanol in a Universal container 

on an orbital shaker (Luckham R100 Rotatest Shaker) for lhr to permeabilise the cells. The 

gel was then washed with three changes of PBS for a further lhr again on the orbital 

shaker.

The gel was placed in a well of a 24 well plate. It was incubated overnight in the dark at 

4°C bathed in 500pi of the primary antibody, a mouse monoclonal anti a-smooth muscle 

actin antibody (Sigma) at lin 1000 dilution in PBS. A second piece of gel to be used as a 

negative control was placed in a separate well and incubated in the same way with only 

500pl of PBS.

The following morning the gels were transferred to separate universal containers and 

washed with three changes of PBS on an orbital shaker for a total of 40 minutes.
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They were then placed in another well of the 24 well plate and each incubated with 500pl 

of the secondary antibody solution covered in foil on orbital shaker for lhr. The secondary 

solution was a FITC conjugated rabbit anti-mouse monoclonal antibody (Dako) at 1 in 400 

dilution in PBS with Propidium Iodide at 1 in 50 dilution as a nuclear counterstain.

Finally the gels were again washed with three changes of PBS for lhr in a Universal 

container wrapped in foil to keep them in the dark and prevent degradation of the 

fluorescence.

The pieces of gel were placed on a glass slide, two drops of DABCO (see appendix II for 

composition) added and then covered with a cover slip for viewing. Stained pieces of gel 

were viewed under ultraviolet light on a microscope at x 200 and x 400 magnification. 

Myofibroblasts positive for a-smooth muscle actin demonstrated intra cellular fibres that 

fluoresced bright green. Negative cells showed a red nucleus with diffuse pale red or 

orange cytoplasmic staining.

Delta zone: stained in 
a selection of gels Stained with 

Toludine blue
Snap Frozen in 

LN2

Section stained for a- 
smooth muscle actin

Figure 2.14. Processing of CFM gel at termination of runs.
Diagram indicating the whole collagen gel at the conclusion of experimental runs and the 
fate of different regions of the gel.

2.5.9. Assessment of Cell Alignment within Collagen Gels

A broad observation was made that there appeared to be morphological and orientation 

differences between the contractile Dupuytren’s cell lines and the relatively non-contractile 

controls. It was therefore decided to attempt to analyse and quantify cell orientation within 

the gels stained for a-smooth muscle actin. Two methods were devised and tested initially
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in 6 nodule cell lines and 6 gels seeded with carpal ligament fibroblasts (4 different cell 

lines, 2 repeated). Digital images of the stained gels were captured at x 400 magnification, 

using a Zeiss Axioscope 20 microscope with a Leica DC200 mounted camera and software 

(Leica DC Viewer, Leica Microsystems-Ltd). By focusing in a specific plane a 2D slice of 

the gel was captured and these were studied using image analysis software (UTHSCSA 

Image Tool).

By correct orientation of the rectangular piece of gel on the microscope slide the overall 

orientation of the whole gel and its long axis was known. The first method required the 

long axis of the all of the cells in focus to be drawn through them. The angle of this from 

the longitudinal gel axis was calculated from the slope of the line (figure 2.15a). The mean 

angle of orientation of the in focus cells was then calculated for each gel. A value of 0° 

would suggest perfect alignment along the gels long axis whilst an angle of 90° would 

suggest an orientation at right angles with the standard deviations giving an indication of 

the variability of the alignment.

The second method examined cell body height utilising the theory that aligned cells are 

spindle shaped as are the cell bodies themselves. Fibroblasts aligned with the long axis of 

the gel will therefore have shorter cell body heights when measured in this plane compared 

with more stellate cells or fibroblasts aligned at right angles to the axis of the gel (see 

figure2.15.b). The mean cell body height of cells in focus was determined for each gel and 

the overall means for each cell type then compared.

The first method was considered to be more reliable and applicable to the characteristic to 

be quantified (see chapter 3.9) and this was therefore applied to all other cell types in the 

study with the alignment of 6 Dupuytren’s nodule, 5 Dupuytren’s cord, 4 Carpal Ligament, 

5 TGF-/?i stimulated nodule, 5 TGF-/3i stimulated cord and 4 TGF-/3i stimulated carpal 

ligament cell lines being investigated.
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A

Orientation of the 
collagen gel

Orientation of the 
collagen gel

Figure 2.15. Methods Tested for Determining Degree of Cellular Orientation Within a 
Collagen Lattice. A) Indicates how the long axis was drawn through all the fibroblasts in 
focus within a random field (arrows). With the orientation of the collagen gel as a whole 
known, the relative angle of each cells long axis from that of the gel’s long axis could be 
determined by measuring the slope of the lines (arrows). B) Illustrates the second method 
of measuring the relative height of fibroblast cell bodies (represented by distance x) at right 
angles to the orientation of the long axis of the whole gel.
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Chapter 3 

Results
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3. Results

3.1. Histological assessment of clinically defined Dupuytren’s nodules and cords

3.1.1. Introduction

Dupuytren’s disease tissue has certain characteristic features when examined 

histologically depending upon the area that is observed. Luck (1959) classified these into 

proliferative, involutional and residual stages. Proliferative disease is highly cellular, 

randomly organised and the hyperplastic appearance can even be such as to confuse lesions 

with fibrosarcoma (Enzinger and Weiss, 1995). The involutional phase has increased 

fibroblast alignment although it is still cellular. The residual stage is relatively acellular 

with thick bundles of collagen, which are orientated with the lines of stress. It resembles 

the appearance of tendon.

The features of proliferative and involutional stages of disease are found in clinical 

nodules whereas the cords are tendon like both in gross macroscopic appearance and their 

residual stage histological appearance. Mayerding et al (1941) did note variable cellularity 

within the lesions and MacCallum and Hueston (1962) considered there to be only two 

phases of disease activity although these could intermingle even within a single lesion.

Although the above authors have undertaken descriptive studies of the histological 

appearances related to disease stage, no quantification of the appearances were carried out. 

This has only been done in a single previous study by Murrell et al (1989) and, as with 

many other studies, no differentiation was made between primary and recurrent disease and 

sample numbers were small. It was crucial for the purposes of subsequent experiments in 

this thesis to be able to say with confidence that clinically determined nodules and cords 

could be accurately differentiated.
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3.1.2. Aim

To quantify differences in cellularity of excised Dupuytren’s disease tissue 

categorized on the basis of macroscopic features as nodule or cord.

3.1.3. Materials and Methods

Specimens from routine fasciectomies for Dupuytren’s disease were delineated as 

nodule or cord as outlined in section 2.1. Samples were only used from primary operations 

for Dupuytren’s disease, patients with recurrent disease being excluded. After bisecting the 

specimens longitudinally as described in chapter 2.1.1, one half of each, containing areas of 

both cord and nodule, was fixed in 10% formal saline for histological assessment. These 

fixed specimens were wax embedded and representative sections through the sample taken 

and stained with haematoxylin and eosin using the standard protocol detailed in 2.2. 

Sections were examined at x400 magnification and the number of cell nuclei counted in 

three random areas in each of the nodule and cord regions. The area size (0.04mm2) was 

chosen because a 0.2mm x 0.2mm square grid fitted comfortably into a high power field 

when the image was digitally captured. This was done for n=10 fasciectomy samples. The 

cord and nodule cellularity was compared using a paired students t-test.
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3.1.4. Results
*

Nodules were generally highly cellular with a random organisation of cells and 

extra cellular matrix (figure 3.1.1.). Some regions of nodule were seen to contain “nests” of* 

densely packed cells (figure 3.1.4). Other areas did show some reduction in cellularity often 

with a corresponding increase in alignment and thickening of interspersed collagen and 

other extra cellular matrix (figure 3.1.5). The cords were markedly hypocellular (figure

3.1.2) with very thick parallel-orientated collagen fibres. Between these the cells were 

small, thin and elongated, and aligned along the same axis as the collagen bundles. Despite 

the constant morphology found in the cords there were occasionally small areas within the 

cord where a nest of hypercell ularity could be seen (figure 3.1.3).

Figure 3.1.1. Typical histological appearances of an area defined as nodule stained 
with H and E at x 200 magnification. The cellular tissue displays a lack of organisation 
and alignment, as seen by swirls of cells (arrows).
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Figure 3.1.2. Typical histological appearances of an area defined as cord stained with
H and E at x 200 magnification. The specimen is relatively acellular with thick parallel- 
aligned collagen bundles (solid arrows) surrounding the elongated cells (open arrows).
Note: At the same magnification the difference in cellularity between nodule in Fig 3.1.1 
(highly cellular and unaligned) compared to the appearances here of cord (hypocellular and 
aligned)

Figure 3.1.3 Histological appearances of a hypercellular focus within a cord. An area 
within a well-defined cord where a nest of hypercellularity (arrow) is evident within the 
surrounding uniform, collagen rich tissue.
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Figure 3.1.6 shows the mean cellularity of ten nodules and cords specimens from 

separate patients all with primarily operated disease. Nodule cellularity was 105.61 cells 

per 0.04mm2 ± 52.4 (Range 38-242 cells per 0.04mm2). Mean cord cellularity was only 

36% of this at 38.5 cells per 0.04mm2 ± 20.3 (Range 10-155 cells per 0.04mm2). The 

differences observed were statistically significant p<0.01. Despite the broad spectrum of 

patients from which the diseased tissue was excised the cellularity indexes within nodules 

or cords were remarkably similar with relatively narrow standard deviations despite some 

overlap of the ranges. This may be particularly pertinent to primary disease rather than 

recurrence. Recurrent disease may contain more variable features, often with less clear 

differentiation of nodules and cords than is encountered in primary, previously un-operated 

disease. This heterogeneous, macroscopic appearance may reflect an equally heterogeneous 

fibroblast population so obscuring important differences between nodule and cord.

Figure 3.1.4. An area of nodule at x 400 magnification stained with H and E 
illustrating a “nest” of densely packed cells (arrow).
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Figure 3.1.5. An area of nodule at x 200 magnification stained with H and E 
illustrating mixed areas of high cellularity (solid arrows) surrounding more organised 
collagen rich regions (open arrows).
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Figure 3.1.6. The mean cellularity of Dupuytren’s disease tissue comparing regions 
defined clinically as nodule and cord. The error bars represent the standard deviations 
between n=10 fasciectomy specimens, expressed as nuclei counted per 0.04mm2.
* p < 0.01. The cellularity of regions defined clinically as Dupuytren’s nodule are 
significantly more cellular than those defined as Dupuytren’s cord.
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3.1.5. Discussion

The findings presented here agree well with previous published descriptions of the 

histology from various regions of Dupuytren’s disease tissue. The majority of literature 

regarding Dupuytren’s disease histology to date has been descriptive, detailing the 

microscopic appearances and relating them to the clinical features of the disease or the area 

of the specimen from which the section originated (Meyerding et al, 1941; Luck, 1959; 

Larson et al, 1960; Reviewed by Shum, 1990).

In order to study specific nodule or cord cell cultures, those areas that appear to be 

macroscopically well defined nodules or cords have been determined clinically. The 

histological appearance of these regions has then been quantified by determining their 

cellularity. The nodules correspond to the proliferative stage disease described by Luck 

(1959) being highly cellular and relatively disorganised. The cords were sparsely populated 

by cells, which were elongated and arranged parallel to thick bundles of collagen (figure

3.1.3), Luck’s residual stage. He also described an involutional stage where again there was 

high cellularity but the cells were beginning to align with the lines of stress. These areas 

were difficult to define accurately, occasionally being seen within nodules but often only in 

part or at the edge of a well defined nodule.

As noted by Meyerding (1941) and later by MacCallum and Hueston (1962) a 

degree of variability was seen in the histological appearances especially within nodules, 

often regions of increased cellularity merging with or occurring within, less populated 

regions (figure 3.1.5). These were probably the areas Luck referred to as involutional. If 

sections were examined progressively from a nodule to a cord in continuity one was often 

able to observe a transition encompassing all three of Luck’s stages, from proliferative to 

involutional and finally residual (illustrated in figure 3.1.7). McCann also noted this in 

1993.
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Murrell et al, 1989 also calculated cell density in Dupuytren’s disease sections, 

finding 4060 fibroblasts per mm in nodule areas and 835 per mm in cords. If the results 

presented here are multiplied by 25 to express them as cells per mm2 then there is a very 

good agreement in the cord results at 962.5 cells per mm2. The result for nodule is 

somewhat different to that found by Murrell et al, at only 2640 cells per mm2, 65% of their 

value. The standard errors are also less than those stated by Murrell, however the overall 

range does extend to well above their mean cell density and it may be that selection or 

definition variability are enough to account for the differences observed.

It is remarkable that despite high n numbers (n=10) the range of cellularity and thus 

standard deviations are tight for both nodule and cord indicating a marked degree of 

consistency in the histological features of primary Dupuytren’s disease nodules and cords.

In this study nodules may have included less “nests” of intense cellularity or more 

areas of collagen bundles where cells became less abundant. Furthermore tissue samples 

were all obtained from primary fasciectomies for Dupuytren’s disease. Murrell does not 

state in his methods if specimens were obtained from primary operations, patients with 

recurrent disease or a mixture. They could have found a much higher cellularity in patients 

with recurrent disease where there may have been increased activation and proliferation of 

fibroblasts within aggressive nodules. Recurrent disease may represent a different spectrum 

of Dupuytren’s disease to that investigated here. By restricting specimens to primary 

disease throughout this and the subsequent study the aim is to gain an insight into 

Dupuytren’s disease in its pure form, not altered by intervention and excision.

By calculating the cellularity of the clinically defined regions of nodule and cord 

and not including the intermediate areas, it has been possible using histological 

examination to statistically prove that the regions labelled nodule are quantitatively 

different from those labelled cord.

Given this fact it was possible in the following experimental studies to define the 

cellular characteristics of fibroblasts established in culture specifically from nodule or cord.
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Figure 3.1.7. The transition of histological appearances in a single specimen of 
Dupuytren’s Tissue. Hypercellular nodule tissue is seen on the right panel, which mixes 
into intermediate zone tissue shown in the centre panel. This is less densely populated with 
cells and collagen alignment can be seen starting to appear. This finally transforms into 
cord tissue with few cells between thick parallel collagen bundles seen in the left panel.

SUMMARY

• Regions of Dupuytren’s disease defined clinically as nodule and cord were different 

with nodule being three times more cellular then cord when quantified 

histologically.

• By detailed observation and quantification of tissue from primary cases of 

Dupuytren’s disease it has been possible to identify classically described regions 

but detail the changes seen across the spectrum of appearance more precisely.
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3.2. Myofibroblast Phenotype in Tissue Sections Cut from Specimens of
Dupuytren’s Nodules, Cords and Control Carpal Ligament

3.2.1. Introduction

The myofibroblast is a specialised cell type so called because of its similarities with both 

fibroblasts and aspects of smooth muscle cells (Gabbianni et al 1971, Shultz and Tomasek, 

1990 in Dupuytren’s Disease). These cells have been implicated in wound healing and 

specifically granulation tissue contraction, many features of which are analogous to those 

encountered in Dupuytren’s disease (Gabiani and Majno, 1972). These cells contain 

numerous intra-cellular microfilaments a key feature of which is their positive staining for 

alpha smooth muscle actin (a-SMA). This is currently the most reliable method for 

identifying differentiated myofibroblasts (Tomasek et al, 2002). The actual origin of these 

cells has been the subject of much debate, one that remains not fully resolved. Most authors 

however, believe them to be transformed fibroblasts (Shultz and Tomasek, 1990), and they 

appear to play a central role in fibrotic and wound healing processes (Walker et al, 2001). 

They have been linked to increased production of collagen and ECM (Petrov et al, 2002, 

Serini and Gabbiani, 1999) as well as being involved in cell contraction and motility. From 

these features it is clear that they are likely to be important in Dupuytren’s disease both in 

terms of the excess collagen deposition and in the contractures observed as disease 

progresses. Indeed many authors have identified myofibroblasts in Dupuytren’s nodules 

(Vande Berg et al, 1984; Pasquali-Ronchetti et al, 1993; Badalamente et al, 1983). They 

have, however only been reported once in cord specimens by Pasquali-Ronchetti et al 

(1983) in one patient. As outlined in chapter 1.6 contractures are thought to occur partly as 

a result of cell-mediated contraction causing matrix shortening. Collagen gel contraction 

has been correlated with the presence of myofibroblasts or a-SMA (Tomasek and Rayan, 

1995 and Hinz et al, 2001) thus it is clear that myofibroblasts may be crucial in 

Dupuytren’s contracture development. Although this cell phenotype has been identified in 

regions of Dupuytren’s tissue its presence has not been quantified. Having determined a 

significant difference in cellularity between regions defined as nodule and cord from 

Dupuytren’s fasciectomy specimens, it was desirable to investigate the prevalence of the 

myofibroblast phenotype within these areas.
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3.2.2. Aim

To determine the frequency of cells demonstrating the myofibroblast phenotype in regions 

of Dupuytren’s tissue defined as nodule and cord.

3.2.3. Materials and Methods

Sections of Dupuytren’s tissue were cut from paraffin blocks as described in section 2.2. 

Similar sections of carpal ligament tissue specimens were used as comparisons. Antigen 

retrieval was found to be optimal using a steaming method to prevent lifting of the fibrous 

material. The sections were stained for alpha-smooth muscle actin (a-SMA) (Skalli et al, 

1986) using the two different methods detailed in section 2.3. The first employed a routine 

Streptavidin Alkaline Phosphatase method and a vector red final substrate enabling 

visualisation of positive cells using light microscopy where a dark red colour was observed 

within the cell cytoplasm. The second method was similar until the final stages when a 

FTTC conjugated secondary antibody was used so that positive cells fluoresced green under 

ultraviolet light. A weak Harris’s haematoxylin counterstain was used in all sections to 

stain nuclei pale blue, and negative controls (where no primary antibody was included) 

were used for each. Sections of tonsil and intestine were used in each run as positive 

controls, although most sections contained blood vessels which acted as internal positive 

control regions. The staining was carried out on a total of sixteen Dupuytren’s specimens 

each with previously clinically defined areas of nodule and cord. Three carpal ligament 

samples were also studied.
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3.2.4. Results

Figure 3.2.1. Section of Dupuytren’s nodule stained for a-SMA using alkaline 
phosphatase and vector red final substrate method at x 200 magnification. There is 
widespread positive red staining of most of the cells within this field. This is especially 
strong in the upper left comer (arrows)

Both methods of staining for a-SMA yielded similar results neither appearing to be 

superior to the other. Representative areas of nodules using both methods are shown in 

figures 3.2.1 and 3.2.2 at x 200 magnification. The positive staining myofibroblasts are 

generally clustered in areas of high cellularity and are easily identifiable adjacent to regions 

of non-staining cells where only the pale blue counterstained nuclei can be seen.

Figure 3.2.2. Similar section of Dupuytren’s nodule as above stained for a-SMA using 
a FITC conjugated secondary antibody viewed under uv light at x 200 magnification.
There is again widespread positive green staining of most of the cells within this field.
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At higher power (x 400) the positive staining can be seen very clearly and is observed to 

localise around the cell nuclei often towards the periphery of the cytoplasm (figure 3.2.3). 

Not all areas of high cellularity contained myofibroblasts (figure 3.2.4); indeed 3 of the 

nodules contained no identifiable a-SMA positive staining cells.

Figure 3.2.3. Section of Dupuytren’s nodule stained for a-SMA using alkaline 
phosphatase and vector red final substrate method at x 400 magnification. At this 
higher power the distribution of the positive red staining is evident localised within the 
cytoplasm surrounding cell nuclei. It appears as longitudinal filaments (solid arrows) or 
dense circles (arrow heads) depending on whether actin fibres have been sectioned along 
their length or transversely.

Regions defined as cord with sparse fibroblast numbers and thick parallel orientated 

collagen bundles as described in section 3.1.4, contained virtually no positive staining cells 

using either method. Figures 3.2.5 and 3.2.6 illustrate this at x 200 magnification. In three 

of the specimens, however there were regions within the area defined as cord that were 

more cellular, as noted in standard histology (section 3.1.4) and it was in these regions that 

some myofibroblasts were identified. This is illustrated in figure 3.2.7 where obvious cord 

type morphology is interrupted by a highly cellular focus that stains intensely for a-SMA.
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Figure 3.2.4. Section of Dupuytren’s nodule stained for a-SMA using alkaline 
phosphatase and vector red final substrate method at x 200 magnification. Note in this 
specimen (As in 3 out of 16 specimens) there is no positive red staining despite the high 
cellularity (cell nuclei shown with arrow heads). Vascular smooth muscle cells however 
have stained positively around blood vessels (arrows)
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Figure 3.2.5. Section of Dupuytren’s cord stained for a-SMA using alkaline 
phosphatase and vector red final substrate method at x 200 magnification. There is no 
positive red staining of cells within this field, (cell nuclei shown with arrow heads)
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Figure 3.2.6. Section of Dupuytren’s cord stained for a-SMA using a FITC conjugated 
secondary antibody viewed under uv light at x 200 magnification. There is again no
positive staining.

Figure 3.2.7. Section of Dupuytren’s cord stained for a-SMA using alkaline 
phosphatase and vector red final substrate method at x 200 magnification showing a 
“nest” of densely positive staining myofibroblasts (arrows). This is completely encircled 
by more typical sparsely populated cord tissue, negative for a-SMA (arrow heads).
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Carpal ligaments were uniformly negative for a-SMA as shown in figure 3.2.8. Table 3.2.1 

summarises the results, indicating the distribution of nodules and cords that stained 

positively for a-SMA. A grading system has been used indicating the degree of positive 

staining in each section. This is illustrated in figure 2.3. in the methods section, where no 

positive staining is represented by a 0, rising to +++ where there is intense widespread 

staining. The overall percentage of positive staining nodules, cords and carpal ligaments is 

displayed graphically in figure 3.2.9. with the bar chart divided to indicate the level of 

positive staining.

Sample
Dupuytren’s Nodule Cord Carpal

Ligament
1 ++ + 1 0
2 0 - 2 0
3 +++ - 3 0
4 +++ + Total Positive 0
5 +++ ++
6 +++ -

7 + -

8 + -

9 + ++
10 +++ -

11 + -

12 0 -

13 +++ -

14 +++ -

15 - -

16 ++ -

Total Positive 13 4
Table 3.2.1. Summary of the results of staining for a-SMA in 16 Dupuytren and 3 
Carpal Ligament specimens. The level of positive staining is indicated by the legend (+, 
++ or +++) see Chapter 2.3 for method of determination.
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Figure 3.2.8. Section of carpal ligament stained for a-SMA using alkaline phosphatase 
and vector red final substrate method at x 200 magnification. There is no positive red 
staining of within this field except for the smooth muscle cells surrounding two blood 
vessels in the top left comer (arrows).
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Figure 3.2.9. Histogram showing the percentage of specimens of Dupuytren’s disease 
nodule and cord and control carpal ligament where positive staining for a-SMA was 
identified. The level of positive staining is indicated by the legend (+, ++ or +++). Note 
that more than half of the positive nodules were graded as +++, compared with none of the 
cords.
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3.2.5. Discussion

Several authors have used immunohistochemical staining by means of a monoclonal 

antibody against a-SMA to identify myofibroblasts. Benzonana et al (1988) identified cells 

positive for a-SMA in a range of pathological tissues including Dupuytren’s nodules and 

found these to correlate with the presence of non-muscle myosin. Darby et al (1990) found 

it transiently expressed in experimental wound healing.

Others have specifically studied Dupuytren’s disease, with Bemt et al (1994) 

finding the co localisation of laminin and fibronectin with regions positive for a-SMA in 

Dupuytren’s nodules. McCann et al (1993) using a similar method to the one utilised here, 

found myofibroblasts present in the dermis overlying Dupuytren’s tissue as well as in the 

hypercellular diseased fascia. They did not find positive staining in hypocellular fibrous 

regions, but failed to delineate regions as nodules or cords.

Having separated Dupuytren’s specimens clinically into nodule and cord the 

findings here, of myofibroblast phenotype cells appearing prominently within Dupuytren’s 

nodules are consistent with those of several other authors. Badalamente et al (1983) 

examined the ultrastructural features of Dupuytren’s disease tissue, identifying 

myofibroblasts by the presence of nuclear and cytoplasmic indentations, well-developed 

rough endoplasmic reticulum and bundles of 60 to 80 A intracellular microfilaments. All of 

the 21 nodules they examined contained myofibroblasts but these were not identified in the 

cords. They found a positive reaction for ATPase (adenosine triphosphatase) localised to 

the myofilaments within cells in nodules and correlated this to the residual clinical 

contracture following surgery. Thus they related the myofibroblast activity in the nodules 

with clinical outcome and possible recurrence. Gelberman et al (1980) have also related the 

presence of myofibroblasts in excised Dupuytren’s specimens with the recurrence of 

disease.
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Vande Berg et al (1984) found a lack of myofibroblasts within Dupuytren’s cords, 

again using ultrastructural studies, confirming their findings from a previous study (Vande 

Berg et al, 1982) when they analysed the relationship of overlying skin to nodules and 

cords. In both studies not all nodules investigated demonstrated cells possessing the 

myofibroblast phenotype, in keeping with the results here. This was also found by 

Pasquali-Ronchetti et al (1993), although in contrast to others, they found only five out of 

fifteen nodules to contain myofibroblasts. They are however the only authors to note the 

presence of myofibroblasts within cords, all be it in a single specimen. This is consistent 

with the findings presented here where 3 of the samples defined as cords were seen to 

contain myofibroblasts.

By grading the degree of intensity of positive staining an attempt has been made to 

quantify the level of myofibroblasts in these tissue specimens. It is accepted that this is a 

subjective and semiquantitative method, however it is interesting to note the differences in 

intensity between nodules and cords where positive staining is encountered. More than half 

of the nodule specimens were graded “+++” whereas none of the positive staining cords 

reached this score.

By careful observation of the distribution of positive cells using a-SMA staining it 

has been possible to document the fact that these myofibroblasts occur where there are 

regions of cords with increased cellularity, which has not been stated before. These foci 

of increased cellularity are often completely surrounded by more typical cord tissue, 

appearing like microscopic “nodules”. With the demonstration of myofibroblast phenotype 

cells within these, it is interesting to speculate upon the origin and role of these regions.

Luck (1959) and others (Hueston in Dupuytren’s Disease, 1990) proposed that 

nodules progress to residual cords, in which case these foci could be the last remnants of 

such a nodule. Alternatively the focus could represent the reactivation of Dupuytren’s 

tissue within a residual stage cord surrounding an area of microtrauma (McGrouther, 

Dupuytren’s disease in Methods and Concepts in Hand Surgery, 1986) or microvessel 

angiopathy (Pal et al, 1987). It could be destined to develop into a new, large macroscopic
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nodule. Physical shortening of the resident contractile phenotype cells would pull directly 

on the surrounding cords leading to clinical contractures.

The lack of positive staining cells for a-SMA in carpal ligament tissue was not 

unexpected, as there is no functional reason for the presence of myofibroblasts. Normal 

mesenchymal tissue has been shown to be generally negative for a-SMA (Benzonana et al, 

1988) and myofibroblasts appear only to be prevalent in normal organs where a high degree 

of remodelling is required (Desmouliere and Gabbiani, 1994). Furthermore Pasquali- 

Ronchetti et al (1993) also failed to demonstrate myofibroblasts in control normal palmar 

fascia or clinically unaffected fascia from patients with Dupuytren’s disease.

SUMMARY:-

• Eighty one percent of Dupuytren’s disease nodules contained widespread positive 

staining for myofibroblasts in contrast to cords. More than half of these positive 

nodules were graded at “+++”.

• Contrary to most previous reports, cells exhibiting the myofibroblast phenotype 

were found to be present in 25% of cord specimens. By examination of the 

distribution of these it is clear they occur in hypercellular foci within the substance 

of established cords.

No other authors have previously reported the presence of the myofibroblast 

phenotype in cord tissue to this extent.
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3.3. Myofibroblast Phenotype in Two-Dimensional Cell Cultures From 
Dupuytren’s Nodules, Cords and Control Carpal Ligament

3.3.1. Introduction

As has been outlined in chapter 3.2.1 the myofibroblast is thought to play a central 

role in the pathogenesis of Dupuytren’s disease and contracture formation. Dupuytren’s 

fibroblasts grown in vitro have been shown to contain a proportion of a-SMA positive cells 

(Vande Berg et al, 1984), however a clear comparison of myofibroblast quantities has not 

been made between specific nodular derived and cord derived cell cultures. This gap in the 

current knowledge of Dupuytren’s disease and the myofibroblast phenotype is addressed in 

this chapter.

Furthermore, having demonstrated that there are quantifiable differences in the 

presence of myofibroblasts in Dupuytren’s nodule and cord tissue, if these differences 

persist into specific cell cultures from the two regions, then separating cultures in this way 

is a valid means of investigating cellular differences in subsequent experiments.

3.3.2. Aim

To prove that the cell phenotype persists from tissue into fibroblast culture by determining 

the percentage of myofibroblast phenotype cells in cultures derived specifically from 

Dupuytren’s nodules and cords (and to compare these to control fascial fibroblast cultures 

derived from carpal ligament.)

3.3.3. Materials and Methods

Eighty thousand cells in established cultures from nodules, cords and carpal ligaments were 

seeded onto sterilised 22mm x 22mm cover slips in 6 well plates as detailed in chapter 2.4. 

After incubation for four days the cells were fixed on the cover slips and then stained for 

alpha smooth muscle actin using the immunohistochemical protocol in chapter 2.4. Nuclei 

were counterstained with propidium iodide allowing cells negative for a-SMA to be 

identified. The numbers of a-SMA positive fibroblasts were counted in three random 

microscope fields at x 200 magnification for each cover slip. Each cell line was examined
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in triplicate. The percentage of cells with a myofibroblast phenotype was calculated, as 

determined by positively stained intra cellular micro filaments, see figure 3.2.1. The results 

were compared using the Student’s t-test.

3.3.4. Results

Figure 3.2.1 illustrates a positively stained myofibroblast at high power (x 400 

magnification). Bright green staining intracellular microfilaments are clearly seen 

throughout the cell with the nucleus counterstained red. Negative stained cells are seen at 

the periphery of the image. Figure 3.2.2 shows a typical field at x 200 magnification for 

nodular derived cells. There are scattered positively stained myofibroblasts throughout the 

field. Figure 3.2.3 shows a similar field from cord-derived cells, whilst figure 3.2.4 is from 

carpal ligament cells. In both there is a virtual absence of cells positive for alpha smooth 

muscle actin. Often when cells were found to be positive the staining, although still located 

along microfilaments, was noticeably weaker than in nodule cells.

Figure 3.3.1. A myofibroblast at x 400 magnification. Staining demonstrates numerous 
fine intracellular microfilaments staining positively (green) for alpha-smooth muscle actin 
(solid arrow). The nucleus is counterstained (red) with propidium iodide (open arrow).
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Figure 3.3.2. Cells in culture derived from Dupuytren’s nodule at x 200 magnification 
stained for a-smooth muscle actin and counterstained with propidium iodide. Cells 
with green cytoplasmic filaments are positive (arrows). Note the high proportion of positive 
staining cells (mean 9.65%) compared with figure 3.3.3.

Figure 3.3.3. Cells in culture derived from Dupuytren’s cord at x 200 magnification 
stained for a-smooth muscle actin and counterstained with propidium iodide. Cells 
with green cytoplasmic filaments are positive (arrows). Note the lower percentage of 
positive staining cells (mean 2.74%) compared with figure 3.3.2. above.
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Figure 3.3.4. Cells in culture derived from control carpal ligament at x 200 
magnification stained for a-smooth muscle actin and counterstained with propidium 
iodide. In this field there is only a single, weakly positive cell with green cytoplasmic 
filaments centrally (arrow).

Figure 3.2.5 is a histogram indicating the mean proportion, expressed as a percentage of the 

total cell number, of myofibroblasts present in nodule, cord and carpal ligament cell 

cultures. The percentages are low, however nodule contains three times as many positively 

stained cells at 9.65% (SD ± 4.48, n=9) compared with cord cell cultures at 2.74% (SD ± 

1.50, n=10) the difference being statistically significant, p<0.001. Carpal ligament cell 

cultures contained even fewer myofibroblasts at 1.3% (SD ± 1.89, n=4), again being 

significantly different from nodule (p<0.01) but not from cord (p= 0.16).
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* *

Nodule

Figure 3.3.5. The mean percentage of myofibroblasts in cell cultures derived from 
Dupuytren’s nodule (n=7), Dupuytren’s cord (n=8) and control carpal ligament tissue 
(n=4). The error bars represent standard deviations. There was a significant difference 
between nodule and cord *, p<0.001, and nodule and carpal ligament **, p<0.01, but not 
between cord and carpal ligament.

3.3.5. Discussion

Within these two dimensional fibroblast cultures, significant differences in the 

presence of myofibroblasts between the cell types studied have been demonstrated. In 

keeping with previous studies by Vandeberg et al (1984) these results have shown the 

persistence of the myofibroblast phenotype from the in vivo tissue of nodules to fibroblasts 

cultured specifically from these areas. Vandeberg et al used electron microscopy to study 

the ultrastructural features allowing myofibroblast identification. Here by the use of a- 

SMA staining it has been possible to quantify the actual number of cells within a 

population of cultured fibroblasts that demonstrate the myofibroblast phenotype.

Despite finding very few myofibroblasts within only four of the sixteen cord tissue 

specimens examined (see section 3.2.), and many previous authors finding none (Vande
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Berg et al, 1984; Badalamente et al, 1983), or few (Pasquali-Ronchetti et al, 1993), there 

were a small percentage present in all cord derived cell cultures. This was contrary to 

Vande Berg et a /’s work and was also the case for carpal ligament specimens, a fact that 

has not been reported before.

There are several potential reasons for this difference between the in vivo and in 

vitro findings. Explant culture of fibroblasts inherently produces some degree of cellular 

heterogeneity and this may be additionally exacerbated by the nature of the tissue 

categorised as cord. It is occasionally observed on standard histology sections of cord (see

3.1.4.) that there are foci of increased cellular diseased tissue within the sparsely fibroblast 

populated, thick parallel collagen bundles. If these cell “nests” become incorporated into 

the explanted tissue, increased myofibroblasts numbers may result. Indeed it is these areas 

that contain positive cells when tissue sections are stained for a-SMA (Section 3.2.4.).

Secondly, culture of fibroblasts in 2 dimensions on the base of a tissue flask or glass 

coverslip provides a stiff environment for the cells to attach to and has been shown to 

stimulate stress fibre formation (Tomasek et al 2002). Some of the above reasons could be 

the explanation for the finding of some, all be it very small numbers of myofibroblasts in 

carpal ligament cultures. No evidence was found of myofibroblasts in vivo (Section 3.2) 

and their presence would not be in keeping with the general function of this tissue. This in 

part was the reason for choosing carpal ligament as an appropriate comparative tissue or 

control. It is a fascial tissue of the distal upper extremity but not involved in Dupuytren’s 

disease, whilst functionally acting as a static sheath.

Dugina et al (2001) used Dupuytren’s nodule fibroblasts in a study of focal 

adhesions in myofibroblasts. Using a similar immunohistochemical method to that 

presented here they found only 3% myofibroblasts in untreated cultures. This was however 

in serum free conditions whereas cultures here were incubated with 10% serum, which is 

likely to account for the higher basal level of expression.
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Some authors have stated that nearly all cells within nodules are myofibroblasts 

(Vande Berg et al, 1984), however by determination of a-SMA positivity in our specimens 

this does not appear to be the case. Certainly there are areas of tissue in specimens where 

strong staining occurs and most of the cells within a region are positive. There are also 

several areas within all of the nodules observed where there is no staining evident (see 

figure 3.2.4.). This corresponds with the findings presented here in cultured nodule cells 

where despite the significantly increased levels of myofibroblasts above cord cells, there 

are still only 9.65% positively stained. It is possible that the nodules these authors studied 

showed particularly high myofibroblast populations, one might speculate that this could be 

the case in recurrent disease, whereas all of the specimens in this study were from primary 

procedures. It may also be that their use of ultrastructural observation demonstrated 

widespread intracellular microfilaments or stress fibres, many of which were not actually 

a-smooth muscle actin, but other isoforms (eg f-actin). Recently Tomasek et al (2002) have 

termed these cells proto-myofibroblasts with only true “differentiated myofibroblasts” 

expressing a-SMA.

The finding of higher basal myofibroblast percentages in nodule cultures compared 

with both cord and carpal ligament, suggests that specific regional cultures retain some of 

their in vivo characteristics at least in the early passages that have been used for these 

studies. It further supports the theory that it is the nodule and its resident cells that 

constitute the active stage of Dupuytren’s disease as stated by several authors (Hueston, 

1985, Moyer et al, 2002). Disease activity is implied by a spectrum of features including 

cellularity, proliferation, presence of myofibroblast phenotype, collagen production 

(specifically type III indicating turnover and new collagen) and contraction.

Strong links have been made between the myofibroblast and tissue contraction from 

the time it was first identified in granulation tissue (Gabbiani, 1971). Indeed subsequently, 

cellular contraction and myofibroblast or a-SMA content have been correlated (Tomasek 

and Rayan, 1995 and Hinz et al 2001). Because of the prevalence of myofibroblasts within 

nodules on electron microscopy but relative paucity or absence in cords it has been 

suggested that the nodules are the source of clinical contractures in Dupuytren’s disease
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(Moyer et al, 2002). The results here support the theory that nodule cells are more active 

than those derived from cords or indeed comparison carpal ligament fibroblasts if one 

accepts that myofibroblasts correlate with disease activity and contractile capacity.

Following from these results, should an appropriate non-surgical therapy become 

available, for example to inhibit myofibroblast proliferation or activity, the delivery of this 

would be of critical importance to its effectiveness. Certainly for a local or topical agent 

one would need to target the nodular disease tissue to ensure the desired effects, because 

this is where myofibroblasts are present (as demonstrated by results in chapter 3.2. and the 

persistence of this phenotype into specific cultures here). Cord tissue and cell behaviour 

may remain unchanged from the natural disease progression, there being much fewer 

myofibroblasts to target.

SUMMARY:-

• The percentage of a-SMA +ve staining myofibroblasts in nodule derived cell 

cultures is significantly higher than in cord derived cell cultures.

• Cord cell cultures are more like carpal ligament cultures in terms of the 

myofibroblast numbers.

These findings support the theory that the nodule is the active form of the disease.

The nodule should be targeted if a non-surgical therapy for Dupuytren’s disease became 

available, as it is the active form.

In light of these results and the current understanding of cellular and tissue contraction, 

it was hypothesised that nodule derived fibroblasts would demonstrate increased 

contraction compared with cord or carpal ligament fibroblasts.
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3.4. Baseline Contractility of Dupuytren’s Nodule, Dupuytren’s Cord and Control
Carpal Ligament Derived Cell Cultures in 3 Dimensional Fibroblast
Populated Collagen Lattices

3.4.1. Introduction

The nature of Dupuytren’s disease as a fibroeontractive disorder has lead to a great 

deal of interest in the mechanism of diseased tissue contraction. Current theories suggest 

that the matrix physically shortens due to a combination of cell mediated contraction and 

matrix remodelling (Brickley-Parsons et al, 1981).

The main method of investigating cell mediated matrix contraction has been the 

study of fibroblast populated collagen lattices. Cell contraction of a 3D matrix has been 

shown to be serum dependent (Tomasek et al, 1992; Rayan and Tomasek, 1994, Brown et 

al, 2002) and related to the initial collagen concentration of the gels seeded (Bell et al, 

1979; Zhu et al, 2001).

Several authors have compared Dupuytren’s fibroblast contraction in circular 

lattices (usually choosing a stress-relaxed model) with other fibroblast types (Rayan and 

Tomasek, 1994; Tarpila, et al, 1996). Others have studied the effect of varying inhibitory or 

activating factors on the ability of Dupuytren’s fibroblasts to reduce collagen gel diameter 

(Sanders et al, 1999; Rayan et al, 1996; Badalamente et al, 1988; Hurst et al, 1986). 

Tomasek and Rayan have also correlated the of-smooth muscle actin expression of 

Dupuytren’s fibroblasts with the contraction of stress relaxed fibroblast populated collagen 

lattices. The mechanism of free-floating collagen lattice contraction, which is generally a 

slow sustained process, is believed to be based upon cell attachment to the matrix and 

migration or locomotion through it (Grinnell, 1994).

In contrast tethered collagen lattices develop isometric force as the resident cell 

population contracts against the fixed points. Myofibroblasts develop with the formation of 

Gf-smooth muscle actin and on release of the gel from its attachments a rapid contraction 

occurs proportional to the isometric force build up. All of the above studies employ a very
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simple circular lattice model and this suffers from being only a semi-quantitative method of 

assessment based upon changes in lattice diameter. Furthermore, under no circumstances 

are cells in vivo ever suspended in a free-floating matrix, they are always under some 

degree of tension. Thus both models, free-floating and stress-relaxed, create an artificial 

environment to study cellular contraction.

The culture force monitor developed by Eastwood et al, (1994) has allowed the 

measurement of actual forces developed within a fibroblast populated collagen lattice in 

real time. This not only permits the measurement of a peak force generated but also the 

pattern of force development over time in the form of a contraction profile. Thus 

differences in the rate of force generation at various times can be observed so quantifying 

how cells attach to the matrix and go on to achieve tensional homeostasis. Contrary to the 

circular collagen gel models the FPCL remains under tension at all times thus representing 

a more accurate in vivo environment. There have been no published studies to date 

investigating Dupuytren’s fibroblasts or carpal ligament fibroblasts using the culture force 

monitor model. Additionally there has only been one recently published study comparing 

contraction between nodule and cord derived fibroblasts. It appeared in print as this 

experimental work was drawing to a close but used a free-floating gel contraction assay, so 

providing only limited semi-quantitative data (Moyer et al, 2002).

Using the precise analysis possible with the culture force monitor model it was 

proposed to investigate the basic contraction profiles of Dupuytren’s cord and nodule 

derived fibroblasts, comparing them with each other and carpal ligament cells. These carpal 

ligament fibroblasts are of a similar type of fascial tissue origin, in the upper limb as non 

diseased palmar fascia and have been used by previous authors as controls in contraction 

studies for Dupuytren’s disease (Rayan and Tomasek, 1994; Tomasek and Rayan, 1996).

The increased cellularity, increased tissue myofibroblast phenotype and increased cell 

culture myofibroblast phenotype in Dupuytren’s nodules demonstrated in the preceding 

chapters should theoretically result in increased cellular contraction by nodule fibroblasts.
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3.4.2. Aim
To determine if Dupuytren’s nodule derived fibroblasts had different basic 

contractile properties than fibroblasts derived from Dupuytren’s cord, whilst comparing 

both to normal fascial fibroblasts.

3.4.3. Methods
Fibroblasts from nine Dupuytren’s nodule cell lines, ten Dupuytren’s cord cell lines 

and four carpal ligament cell lines were examined using the culture force monitor. As 

detailed in section 2.5, fibroblasts to be used were grown under standard conditions to near 

confluence in T225 tissue culture flasks. Five million cells were then seeded into a 5 ml 

collagen lattice, prepared between two floatation bars. The lattice was allowed to gelate in 

an incubator for 30 minutes before being floated and placed on the culture force monitor 

stage and attached to the force transducer.

The system was allowed to equilibrate in terms of temperature (37°C) and CO2 

(5%) levels for 5 minutes before recordings were commenced. Each gel was then left to 

contract over 20 hours with the computer taking real time measurements of the tension 

developed within the system at 1 second intervals. For each cell line run the data was 

converted to one minute data points by using a DOS Macro which determined the mean 

force for each minute from the 60 readings recorded. A contraction profile could then be 

plotted as seen in 3.4.1 for each cell line.

The mean contraction profiles along with standard deviations and standard errors 

for each cell type, nodule, cord and carpal ligament, were calculated by amalgamating the 

minute data points within Microsoft Excel spreadsheets. The mean force generated at 20 

hours per 5 million cells for each fibroblast type was determined as were the gradients of 

the contraction profiles at two points in the contraction. The gradient of the early phase of 

contraction was calculated by dividing the difference in the force readings at 1 hour and 2 

hours by 60 to give a value of rate of change of force in dynes per minute per five million 

cells. This was labelled the “2 hour” gradient, whilst the “20 hour” gradient was derived in 

the same way at the end of the experiment using the difference in force readings at 19.5 

hours and 20.5 hours.
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3.4.4. Results

The contraction profiles of the nine different Dupuytren’s nodule cell lines are 

displayed in figure 3.4.1. There is a range of differences between cell lines and this is 

especially apparent early in contraction where some profiles show an early rapid 

contraction whilst others display a delay in the onset of contraction. Profiles 2 and 5 

illustrate the extremes of these two patterns. Profile 2 shows a delay of some four hours 

during which time tension in the system even decreases before there is onset of contraction. 

This is then continuous to the end of the experiment with only a slight shallowing of the 

contraction profile and certainly no plateau. Profile 5 shows a rapid initial contraction, 

which climbs well above the other profiles but by 5 hours demonstrates some plateauing of 

force. This never stops climbing however, and by the end of the experiment the rate of 

increase of force has increased again. Between these two extremes the majority of profiles 

fall within a tighter range.

200 i

Time (hours)

Figure 3.4.1. A graph showing all 9 of the Dupuytren’s nodule fibroblast contraction 
profiles, with force generated by 5 million fibroblasts plotted against time. Note the 
variability in the early stages of contraction especially in series 2 where there is a delay in 
the onset of contraction (solid arrow) and series 5 where there is a sustained rapid early 
generation of force (open arrow).
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The mean Dupuytren’s nodule contraction profile illustrated in figure 3.4.2. shows 

the more typical overall contraction profile and despite inter cell line variation the standard 

errors of the means shown at hourly intervals along the contraction curve are not 

disproportionate. Figure 3.4.3. shows the mean contraction profiles with standard errors of 

the means for all three cell types investigated. Mean contraction by Dupuytren’s nodule 

fibroblasts (n=9) is greater throughout the 20-hour period than cord derived fibroblast 

contraction (n=10). There is divergence of the contraction profiles by 2 hours, where 

nodule has reached 33 dynes but cord only 28 dynes. These become further separated as 

time progresses although the pattern of contraction remains similar in both cell types.
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Figure 3.4.2. The mean contraction profile of n=9 Dupuytren’s nodule fibroblast cell 
lines. The error bars represent the standard errors of the mean at hourly intervals.
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Nodule Carpal Lig Cord
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Figure 3.4.3. The mean contraction profiles of n=9 Dupuytren’s nodule, n=10 
Dupuytren’s cord and n=4 carpal ligament fibroblast cell lines. The error bars represent 
the standard errors of the mean at hourly intervals.

The carpal ligament derived fibroblast, however demonstrate a very different 

profile. As noted already when assessing the reliability and reproducibility of the technique 

(Chapter 2.5.3), carpal ligament cells produce very little contractile force. There is an initial 

moderate increase in force to 15 dynes after about 2 hours with subsequent very gradual 

rises in force until 17 hours where the profile plateaus at only 40 dynes (range 36 to 68 

dynes, SEM ± 13.1). When the mean force generated at 20 hours is compared between cell 

types as displayed graphically in figure 3.4.4., both nodule and cord cell lines generate 

significantly greater force than carpal ligament (p<0.001 and p<0.05 respectively).
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■  Control, No Cells
■  Nodule 
□  Cord
■  Carpal Ligament
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Figure 3.4.4. The mean force generated at 20 hours by Dupuytren’s nodule (n=9), 
Dupuytren’s cord (n=10) and carpal ligament (n=4) fibroblast cell lines. The error bars 
represent the standard errors of the mean at hourly intervals. Note the pale blue bar 
represents the force generated by control, acellular collagen gels (n=3) which do contract to 
a minimal degree. Nodule values are statistically significantly greater than both cord and 
carpal ligament, whilst cord is statistically significantly greater than carpal ligament.
* p<0.001
t  p<0.05
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The force generated at 20 hours by nodule fibroblasts of 145 dynes (range 106 to 

184 dynes, SEM ± 7.9) is also significantly greater than the 109 dynes (range 52 to 192 

dynes, SEM ± 14.2) produced by cord fibroblasts (p<0.05). There were two particular 

points of interest in the rate of change of force generated by the fibroblast populated 

lattices, indicated by the gradient of the contraction profiles.

The first was early in contraction at 2 hours where there appeared to be a failure of 

the carpal ligament cells to generate rapidly increasing force. These 2-hour gradients are 

graphically displayed in figure 3.4.5. The rate of increase of force is virtually identical at 

this time point in Dupuytren’s nodule and cord cell lines at 0.35 dynes per minute (SEM ± 

0.07 and 0.08 respectively). In carpal ligament, however the value is less than half of this at 

0.16 dynes per minute (SEM ± 0.07), although this fails to reach statistical significance 

(p=0.11 and p=0.15 when compared with nodule and cord respectively).

The second time point of interest was at the conclusion of the experiment where 

both Dupuytren’s cell types appeared to still be contracting, having rising contraction 

profiles. This was in contrast to the carpal ligaments that had essentially plateaued at this 

point and was also different to contraction profiles of dermal fibroblasts, which have been 

shown in several published studies to plateau after 8 to 12 hours (Eastwood et al, 1996, 

Brown et al, 1998). A histogram showing the mean gradients of the contraction profiles 

from each cell type is displayed in figure 3.4.6. The gradients of both the Dupuytren’s 

nodule fibroblast profile, at 0.086 dynes per minute (SEM ± 0.02), and the Dupuytren’s 

cord fibroblast profile, at 0.044 dynes per minute (SEM ± 0.01), are significantly greater 

(p<0.05) than the carpal ligament gradient of 0.004 dynes per minute (SEM ± 0.001). 

Additionally there is a strong trend for nodule fibroblasts to be contracting at a greater rate 

at 20 hours than cord, the mean profile climbing nearly twice as quickly, although this just 

fails to reach statistical significance (p=0.068).

117



Results

0.5

0.45 -
3?
3 0.4 -
C

E 0.35 -
L_
0)
a 0.3
wa>e 0.25
>

0.2
ca> 0.15
'"6
2 0.1O

0.05

■ Nodule 
□ Cord
■ Carpal Ligament

Figure 3.4.5. The mean contraction profile gradient at 2 hours in Dupuytren’s nodule 
(n=9), Dupuytren’s cord (n=10) and carpal ligament (n=4) fibroblast cell lines. The
error bars represent the standard errors of the mean at hourly intervals. Differences just 
failed to reach statistical significance.
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Figure 3.4.6. The mean contraction profile gradient at 20 hours in Dupuytren’s 
nodule (n=9), Dupuytren’s cord (n=10) and carpal ligament (n=4) fibroblast cell lines.
The error bars represent the standard errors of the mean at hourly intervals. There was a 
statistically significant difference between both Dupuytren’s cell lines and the carpal 
ligament cell lines, * p<0.05, but not between the nodule and cord cell lines themselves.

118



Results

This failure of Dupuytren’s fibroblast force generation to plateau in the first 20 

hours is in contrast to previously studied cell types and control carpal ligament cells, and is 

a new finding. This may provide a fascinating insight into the development of diseased 

matrix contraction.

3.4.5. Discussion

The culture force monitor model allows accurate quantitative assessment of the cell- 

mediated effects of collagen matrix contraction (Eastwood et al, 1994). It is currently 

believed that this, in concert with continuous matrix remodelling is the mechanism behind 

physical shortening of affected fascia in Dupuytren’s disease (Brickley-Parsons et al, 1981) 

Most of the published work using this model has concentrated on the contraction patterns 

of dermal fibroblasts, although other cell types are now beginning to be investigated.

Dermal fibroblasts have been described as having a three-phase contraction profile 

evident over the first 20 to 24 hours (Eastwood et al, 1996). Phase 1 is thought to be due to 

cellular attachment and locomotion through the matrix and is characterised by an early 

rapid contraction to around 8 hours. From this point on there is a plateauing of force 

generation in phase 2 and finally from 15 hours a steady state with balanced forces of cell 

contraction versus matrix tension becomes established.

Here the Dupuytren’s fibroblasts of both nodule and cord origin differed from this 

typical pattern. There did appear to be an identifiable first phase in most cell lines where 

there was a rapid production of tension, although as shown in figure 5.5.1, some of the 

nodule cell lines displayed a delay before the onset of contraction and there was notable 

variability in this early phase of contraction. The reason for this is not clear, however, if the 

mechanism of this early generation of force is the attachment and spreading of cells 

through the newly formed matrix, one can speculate that there is a degree of heterogeneity 

in the ability of explanted fibroblasts to do this. Part of this may be natural inter-patient 

variability, whilst some heterogeneity may develop as a result of the explant process,
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certain fibroblasts being better able to migrate from the tissue. Furthermore pieces of tissue 

selected for explantation may contain varying degrees of cellularity and 

fibroblast/myofibroblast activity as has already been demonstrated in chapters 3.1 and 3.2.

Subsequent to this first phase of contraction there is a failure of the Dupuytren’s 

fibroblast contraction profiles to plateau in contrast to the pattern observed for dermal 

fibroblasts. There is a reduction of the rate of contraction but as demonstrated by the mean 

traces for both cord and nodule cell lines (figure 3.4.3.) this continues to rise at a steady 

rate from 8 hours onwards, until the termination of the experimental period at 20 hours. 

Both nodule and cord profiles are in stark contrast to that obtained by carpal ligament cells, 

however these also demonstrate a very different pattern from a classical dermal fibroblast, 

which has not been described before in the literature.

The mean force generated at 20 hours by Dupuytren’s nodule cells of 145 dynes or 

29 dynes per million cells, corresponds with values published for dermal fibroblasts, which 

vary between 22 and 60 dynes per million cells (Eastwood et al, 1996; Brown et al, 1998), 

all be it in the lower end of the range. Cord force generation falls below this, whilst carpal 

ligament cellular force generation is very much lower.

The study of cell viability at 24 hours (Chapter 2.5.3.) confirmed that the 

differences seen in contractile properties at this early stage were not due to differential cell 

death or proliferation within the collagen gels and hence altered cell numbers. This would 

have been an unlikely explanation as several authors have studied cell proliferation or 

apoptosis in 3D collagen gels. Although apoptosis has been described in a free-floating 

model (Fluck et al, 1998) or when tension is released (Grinnell et al, 1999) this is not the 

case in fixed or tethered gels analogous to this model. Kasugai et al (1990) found a small 

rise in cell number in dog periodontal fibroblasts over 24 hours although this increased 

dramatically by 5 days. Kolodney and Wysolmerski (1992) found no replication of 

fibroblasts within their collagen gels attached to an isometric force monitoring apparatus 

over 48 hours, whilst Greco and Ehrlich (1992) demonstrated that rat fibroblasts started
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proliferating within 24 hours but human and gorilla fibroblasts failed to proliferate until 

day 3.

Interestingly when Eastwood et al (1996) examined rabbit endotendon fibroblasts, 

they only demonstrated a modest level of contraction to around 9 dynes per million cells at 

24 hours. This level of tension is equivalent to that seen here with our carpal ligament cells 

although the onset of rabbit fibroblast contraction was delayed until 12 hours. The low 

force generation in both may reflect the original environment, being consistent with their 

function in vivo. These cell types surrounded by thick collagen matrix with little 

remodelling are stress shielded (Eastwood et al, 1998).

The only other study to investigate differences in contractile properties of nodule 

and cord derived fibroblasts was published as this thesis was in preparation (Moyer et al, 

2002), also finding higher levels of contraction by nodule fibroblasts than cord. This was 

conducted using a free-floating collagen lattice model and the authors found that in late 

passage cells the differences disappeared, nodular contraction becoming more like that seen 

with early cord cells. They proposed this as further evidence for the theory that nodules 

progress to cords as the Dupuytren’s fascia evolves over time.

Other authors have also compared contraction of carpal ligament fibroblasts to 

those derived from Dupuytren’s disease. In contrast to our results Rayan and Tomasek 

(1994) found an equivalent contraction by carpal ligament fibroblasts to that developed by 

Dupuytren’s nodule fibroblasts. They used a stress-relaxed circular gel contraction assay 

and lattices were left for 5 days before release. It is impossible to make direct comparisons 

with these other studies as the models used are different, although the culture force monitor 

provides a closer representation to the in vivo environment of the cells as discussed above 

in section 3.4.1.

In a subsequent study the same authors (Tomasek and Rayan, 1995) demonstrated a 

significant difference between carpal ligament and Dupuytren’s nodule fibroblast 

contraction in a sub-population of nodule cells expressing high levels of Of-SMA (>15%).
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When one looks at figure 3.4.7a, which shows a-SMA expression (as determined in chapter 

3.3) plotted against force generation, for those cell lines where data is available on both, the 

populations of carpal ligament fibroblasts is clearly separate from the Dupuytren’s nodule 

cells. This is in complete agreement with Tomasek and Rayans second study, despite lesser 

of-SMA percentages. The picture is less clear when the data available for cord cell lines is 

included as in figure 3.4.7b. with this population merging with carpal ligament fibroblasts. 

Although there appears to be more of a continuum, the R (linear regression coefficient) 

value for the data as a whole is only 0.25.

Tarpila et al (1996) compared contraction of dermal fibroblasts with Dupuytren’s 

nodule cells using a free-floating circular lattice model. In their study there was a 

significantly greater contraction by dermal fibroblasts at 36 hours of 35% than the 19% 

diameter reduction by Dupuytren’s cells. The findings presented here appear somewhat 

contrary to these, although no formal comparison with dermal fibroblasts has been made. 

The amounts of force generated by nodule fibroblasts are similar although at the lower end 

of the published range. The free-floating model however is not analogous to the culture 

force monitor.

Grinnell (1994) has suggested two basic models of cell mediated collagen gel 

contraction. In the free-floating model tension is developed within the matrix as cells attach 

to it and subsequently move through the substrate organising collagen fibres. Ehrlich and 

Rajaratnam (1990) also elegantly demonstrated these cell locomotion derived forces by 

observing gels with either a donut or wedge configuration.

The second model of tension development is the tethered fibroblast populated 

collagen lattice. Whilst tethered no physical contraction can take place and isometric 

tension builds up. This is believed to stimulate the formation of stress fibres and a-SMA as 

fibroblasts take on the myofibroblast phenotype (Tomasek et al, 2002). On release of the 

gel’s attachments there is a rapid contraction in proportion to the amount of isometric force 

developed.
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Figure 3.4.7a. Scatter plot of force generated by a particular cell line at 20 hours on 
the culture force monitor against the Of-SMA content of the cell line determined by 2D 
immunoflourescence staining. The oblique line represents the division between the two 
populations.
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Figure 3.4.7b. Scatter plot of force generated by a particular cell line at 20 hours on 
the culture force monitor against the a-SMA content of the cell line now including 
Dupuytren’s cord cell lines. There is no longer such a clear division with more of a 
continuation of points.
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Although the early phase of contraction seen with the culture force monitor has been linked 

with cell attachment and locomotion (Eastwood et al, 1996) as in free floating gels, the 

later phases all occur within a tethered system, contraction occurring against the force 

transducer.

Part of the reason nodules cells here generated similar forces as quoted dermal 

fibroblast values may have been their tendency to continue contracting throughout the 20 

hour period of the experiment. This continued contraction at 20 hours represented by the 20 

hour gradient was also observed in cord fibroblast to a lesser extent but not in carpal 

ligament cells.

By 20 hours dermal fibroblasts have been shown to reach tensional homeostasis 

(Brown et al, 1998) where the forces generated by the cells are equal to the resistance of 

the force transducer. This plateau phase (phase 3) indicates the preferred level of tension at 

which the cells exist. Subsequent increases in tension within the system by mechanical load 

cause a cellular response with cells relaxing to take off this tension and return the force to 

the preferred level. Conversely decreases in force will cause cell contraction in an attempt 

to maintain equilibrium.

The continuing contraction of Dupuytren’s cells at 20 hours may represent a delay 

in the acquisition of tensional homeostasis, which additionally might occur at a much 

greater force than seen here. This could only be clarified by a series of additional 

experiments, leaving the culture force monitor gels to contract over an extended period of 

time to determine if a plateau phase was attained. These experiments were beyond the 

scope of the current investigation. This delay in homeostasis does not occur in normal 

carpal ligament fascial fibroblasts and thus alterations in tensional homeostasis may be 

crucial to understanding the development of Dupuytren’s disease.
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Affected fibroblasts may have escaped normal tensional controls, preferentially 

existing within the diseased matrix at a higher level of tension than normal fascial 

fibroblasts. This could cause an increase in the cell-mediated tension on the matrix 

resulting in slow but progressive tissue shortening and digital flexion deformities.

SUMMARY:-

• Dupuytren’s nodule fibroblasts generate significantly greater force than cord 

fibroblasts in the culture force monitor model. Both nodule and cord fibroblasts 

generate significantly greater force than normal carpal ligament fascial cells.

• The contraction profile shape of Dupuytren’s cells is different to that of published 

dermal fibroblasts or carpal ligament controls, with significant continuing force 

generation at 20 hours.

•  These differences indicate a delay in reaching tensional homeostasis, which occurs 

at a higher level of tension in Dupuytren’s fibroblasts, and especially those derived 

from nodules.

Abnormalities in tensional homeostasis could go some way to explaining fibroblast 

behaviour in the formation of clinical contractures.

In order to investigate the tensional homeostasis of Dupuytren’s disease fibroblasts further 

it was decided to observe the response of these cells to mechanical stimuli within the 

culture force monitor model.
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3.5. The Response of Dupuytren’s Nodule, Cord and Carpal Ligament Fibroblasts 
within Collagen Lattices to Mechanical Stimuli.

3.5.1. Introduction

Most cells in vivo exist in a dynamic environment, attached and embedded within a 

matrix. This often has constantly changing external stresses placed upon it and these cause 

changes in the tension or forces across the matrix. These forces are transmitted to the cells 

through cell matrix adhesion molecules such as integrins (Riikonen et al, 1995). Within the 

dermis vast alterations in tension can occur depending on whether the skin is stretched or 

relaxed, pressure is being applied or it is affected by gravity. It is in the cells of the dermal 

matrix, dermal fibroblasts, that the theory of tensional homeostasis has been elucidated 

(Browne/a/, 1998).

Experimental data suggests that a basal “preferred level” of cell-matrix tension can 

only be maintained if cells react to changes in stress in the short term, relaxing to take off 

increases in tension across the matrix, and contracting when forces decrease. Longer 

periods of tensional change will in addition, undoubtedly result in tissue remodelling. 

Within a tissue such as the palmar fascia there are particularly rapid and continuous 

changes in matrix loading as hands are used for every day tasks and fingers flex and 

extend. In Dupuytren’s disease the changes in loading may be exacerbated because of the 

matrix thickening and increased stiffness. Attempting to extend ones fingers against a tight 

band of diseased fascia will cause huge increases in external force, particularly as the 

extending force is aligned with the longitudinal direction of the fascia. In certain 

circumstances when an extending force is enhanced by continually increasing external 

splinting (Messina & Messina, 1993) this is sufficient to activate tissue remodelling (Bailey 

et al, 1994) and the shortened fascia can be elongated to allow extension of the digit. As 

soon as the splint is removed for any length of time, however the contracture returns, 

possibly at a more rapid rate than would normally be expected.

It has also been reported that patients with early disease who constantly stretch their 

fingers in fear of developing Dupuytren’s contractures, actually rapidly acquire thick 

fibrous cords (Skoog, 1963). These observations suggest that mechanical stimuli
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Figure 3.5.1. Diagram illustrating the applicability of the Culture Force Monitor 
model to Dupuytren’s contracture, a) The newly set fibroblast populated collagen lattice 
is equivalent to non contracted Dupuytren’s disease tissue, b) Dupuytren’s disease with a 
shortened nodule/cord complex causing a digital flexion deformity is analogous to a fully 
contracted collagen gel on the CFM. c) Loading of the contracted collagen gel is equivalent 
to the clinical situation where attempts are made to extend a digital flexion deformity.

and abnormal responses of Dupuytren’s fibroblasts to these, may play a role in the 

progression of disease. Having therefore proposed in the previous chapter that the 

acquisition and basal level of tensional homeostasis were altered in Dupuytren’s 

fibroblasts, the work presented in this chapter investigates the responses of cells to a 

defined directional mechanical stimulus.

As alluded to above, the direction of the force being applied is a very important 

consideration and in the case of Dupuytren’s disease these forces generally have a specific 

orientation. Cords and nodules are aligned longitudinally in the hand and fingers, causing 

contractures in this direction and hence forces are also concentrated along this axis. In this 

respect the culture force monitor provides an excellent model for investigating this type of 

force change. As illustrated in figure 3.5.1. the collagen lattice can be likened to the 

Dupuytren’s disease tissue that shortens as cell mediated contraction progresses. This
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generates a longitudinally orientated tension applied to the force transducer in a similar 

fashion as the Dupuytren’s disease tissue would itself apply force to an affected digit. It is 

proposed that attempts to apply an extending force to the digit will transmit an increased 

uniaxial loading force to the diseased fascia, which is analogous to the uniaxial overloading 

one can apply to the culture force monitor. It is this type of mechanical stimulus that will be 

investigated in this chapter.

3.5.2. Aim

To test the effects of mechanical overloading on Dupuytren’s nodule, cord and 

carpal ligament fibroblasts.

3.5.3. Methods

Contraction experiments were set up as described in chapter 3.4. At the conclusion 

of each experimental run on the culture force monitor at 20 hours a series of uniaxial 

tensional overloads were applied to the fibroblast populated collagen lattice. This was 

achieved by moving the culture force monitor mounting stage away from the force 

transducer as detailed in chapter 2.5.4. by manually turning the stage micrometer wheel 

through 30 micrometers. The culture force monitor was then left for 30 minutes to record 

the subsequent changes in force in this “post overload” period. A series of overloads were 

performed sequentially in exactly the same way and the post overload responses recorded 

for each as described in detail in chapter 2.5.4. Three acellular control gels were subjected 

to this pattern of serial overloads first and then nine Dupuytren’s nodule, ten Dupuytren’s 

cord and four control carpal ligament cell lines were investigated. The gradient of the 

contraction profile over the thirty minute post overload period was calculated as the rate of 

change in force in this 30 minutes.
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3.5.4. Results

A typical control, acellular lattice contraction profile during the overloading 

sequences is displayed in figure 3.5.2. Each overload indicated by a block arrow is 

characterised by a sharp rise in the force being recorded through the transducer. In these 

control gels during each post overload period there is a steady decrease in force being 

recorded and the rate of this decrease (y) is constant in all four periods. There are no cells 

in these gels and therefore this response is a result of the elastic properties of the 

matrix/collagen gel. In other words the collagen lattices appear to have a degree of 

pliability and there is some relaxation in the gel after loading. This relaxation only appears 

to occur over the first 30 to 35 minutes after the loading as shown after the fourth
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Figure 3.5.2. Contraction profile of a control acellular collagen lattice undergoing a 
series of four tensional overloads (arrows). The subsequent post overload periods are 
numbered 1 to 4. Note the uniform negative, downward gradient of each of these periods.
X represents the increase in stiffness of the collagen matrix induced by the series of four 
overloads. The gradient of “relaxation” y, represents the elastic properties of the matrix.
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overload in figure 3.6.2. where the gel was left for 60 minutes. The trace has plateaued after 

35 minutes and there is no further change in force in the system. Following each overload 

the reduction in force because of the gels elastic properties, never fully returns to the pre 

loading level of tension, so that with each overload there is a stepwise increase in the 

underlying tension.

Recent unpublished observations from the same laboratory (M. Marensa personal 

communication, 2002) suggest that this increased tension corresponds to a rise in the 

stiffness of the collagen matrix. The point where the trace plateaus after relaxation 

represents the increased level of matrix stiffness, thus the overall change in force from the 

pre-loading state to the plateau following the fourth overload is equivalent to the increase in 

stiffness in the collagen matrix induced by the complete sequence of overloads (see X in 

figure 3.5.2).

The gradient of the control traces in each overload period (y in figure 3.5.2) is 

negative and the means of three runs are illustrated in figure 3.5.3.

Overload Period  
1 2  3  4

-0.3 J

Figure 3.5.3. A histogram showing the mean post overload period gradients for 
control, acellular collagen lattices (n=3). Error bars represent standard errors of the 
means. Each period has a similar negative gradient.
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In the first overload period the gradient was -0.23 dynes per minute (SEM ± 0.03) 

with subsequent overload periods being nearly identical at -0.20, -0.23 and -0.24 dynes 

per minute. There was no significant difference between these results.

When carpal ligament fibroblasts were seeded into the collagen lattices and the 

same overloading sequence was performed at 20 hours a very similar pattern to the 

acellular control was observed. Again gradients were negative in the post overload periods 

and the values of these did not differ significantly either between overloads 1 to 4 or from 

acellular control values. The mean results of four cell lines are displayed graphically along 

side the control data in figure 3.5.4.
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Figure 3.5.4. Histogram comparing the control and carpal ligament mean post 
overload gradients for periods 1 to 4. Error bars represent standard errors of the means. 
There is no significant difference between the two groups in any of the periods.

The mean first overload period gradient was -0.16 dynes per minute (SEM ± 0.02), slightly 

less than controls but not reaching statistical significance (p= 0.112). The mean second, 

third and fourth post overload period gradients were -0.24 dynes per minute (SEM ± 0.02), 

-0.22 dynes per minute (SEM ± 0.04) and -0.23 dynes per minute (SEM ± 0.08) 

respectively. This was not what we had expected as the theory of tensional homeostasis
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would suggest that the cells, having undergone an increase in force would relax to take off 

this tension. The cells appeared to have no effect above that seen by the elastic properties 

of the control gel.

When Dupuytren’s fibroblasts were seeded within the collagen gels results were 

even more unexpected. Unlike the control blank gels and carpal ligament fibroblast seeded 

gels, the gradient of the contraction profile in the first post overload period was, more often 

than not (6 out of 9 nodule and 6 out of 10 cords), positive as shown by a typical nodule 

trace in figure 3.5.5. .
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Figure 3.5.5. A typical contraction profile trace from a nodule cell line seeded collagen 
lattice undergoing a series of four tensional overloads (arrows).
The subsequent post overload periods are numbered 1 to 4. Note the very different pattern 
in the first period where there is actually contraction (arrow head) in response to the 
overload.

Even in those three nodule and four cord cell lines where the gradient was negative 

the values were far less than the controls, suggesting that in every case the Dupuytren’s 

fibroblasts were responding to the increased load by increased cellular contraction. The 

nodule fibroblasts tended to contract to a greater degree than the cord fibroblasts and this is 

graphically represented in figure 3.5.6. where the relative mean gradients in the first post
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overload period are displayed for each cell type and the control gels. The mean nodule 

gradient for this first post overload period was +0.1 dynes per minute (SEM ± 0.05) whilst 

for cord it was +0.05 (SEM ± 0.04). The differences seen between nodule and cord failed to 

reach statistical significance (p=0.4) however the nodule gradient was statistically 

significantly greater than both carpal ligament and controls in the first post overload period 

(p<0.01). This was also the case for Dupuytren’s cord fibroblasts (p<0.01).
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Figure 3.5.6. The mean gradients of the first post overload period for control gels 
(n=3) carpal ligament (n=4), Dupuytren’s nodule (n=9) and Dupuytren’s cord (n=10) 
fibroblast seeded collagen lattices. Error bars represent standard errors of the means. 
There are significant differences between both nodule and cord and the control and carpal 
ligament groups as indicated. * p<0.01.

In subsequent post overload periods the gradients recorded returned towards control 

and carpal ligament values. In the second period the mean nodule gradient was -0.21 dynes 

per minute (SEM ± 0.03) and the corresponding value for cord was -0.15 dynes per minute 

(SEM ± 0.04). Neither of these values was significantly different from each other or control 

and carpal ligament gradients. Values were similar for the gradients in post overload
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periods three and four, again with no significant differences. This total mean data is shown 

in figure 3.5.7 where the mean gradients are shown for each of the post overload periods 

and all cell types.
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Figure 3.5.7. A histogram showing the mean gradients for control gels (n=3), carpal 
ligament (n=4), Dupuytren’s nodule (n=9) and Dupuytren’s cord (n=10) fibroblast 
seeded collagen lattices for all for of the post overload periods. Error bars represent 
standard errors of the means. There are no significant differences between the groups 
except in the first post overload period as shown already in figure 3.5.6.
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3.5.5. Discussion

The culture force monitor model (Eastwood et al, 1994) or equivalent (Delvoye et 

al, 1991) is the only device that has the ability to monitor actual forces in real time within a 

fibroblast populated collagen lattice. Circular free floating or fixed released gels may give 

an indication of relative, overall contractile properties however they cannot provide a 

quantitative assessment as has been done here. Cellular responses to changes in tension or 

loading have therefore only recently begun to be investigated, despite this being an integral 

part of most fibroblasts behaviour.

Tensional homeostasis has been elucidated in dermal fibroblasts using the 

tensioning culture force monitor (tCFM) (Brown et al, 1998). These cells contract to reach 

a steady state equilibrium within a collagen lattice where the force remains constant over 

time. If, however, the collagen gel is subjected to an overloading force, the fibroblasts relax 

to take this tension off of the matrix returning the force in the system towards the preferred 

steady state. A reduction in force within the system by underloading the gel causes a 

contraction by resident cells, so increasing the force in the lattice and again returning to the 

equilibrium tension. Delvoye and co workers (1991) saw a similar phenomenon using their 

comparable model but did not expand on this observation.

In their study of tensional homeostasis Brown et al (1998) used the tCFM to 

overload FPCLs over 15 minutes studying subsequent cell mediated responses over a 

further 15 minutes. They did state that similar responses were observed when loading 

occurred over a shorter period of time. This chapter studies the effect of a very rapid 

overload (2 to 4 seconds) by manually moving the CFM mounting stage by a set distance 

with the micrometer wheel. In many ways this is more in keeping with the in vivo nature of 

tissue loading in the hand where fingers are flexed and extended in a matter of seconds 

rather than over many minutes. Fibroblasts therefore may also display rapid responses.

The reduction of force after loading of control acellular gels (gradient y in figure 

3.5.2) has not been noted before but is thought to be due to elastic properties of the 

collagen lattice itself. After a rapid overload the compliance of the lattice allows a gradual
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reduction of force in the system as a degree of relaxation occurs. This was probably not 

seen by Brown et al (1998), because their system of overloading was somewhat different to 

that used here, taking place using a mechanical motor gradually over 15 minutes. 

Compensation in the lattice compliance would have occurred during their slower overload. 

The relaxation appears to last for about 30 minutes (see figure 3.5.2) and does not return 

the gel to the level of tension prior to overloading but a new higher level is established. 

This higher level corresponds with matrix stiffening, as has recently been demonstrated in 

this laboratory, and is an important finding as a stiffer matrix will affect both the way 

resident fibroblasts generate force and they way in which changes in force are perceived by 

the cells.

This is the first study of the response by Dupuytren’s cells or carpal ligament 

fibroblasts to changes in tension. Carpal ligament fibroblast seeded FPCLs demonstrated 

no significant difference in response to overloading forces when compared to control 

acellular gels. The reduction in force after each overload could therefore have been 

accounted for by the elastic properties of the gel alone. If these fibroblasts do exhibit 

tensional homeostasis the responses may be at such a low level after this rapid overloading, 

that in this experimental model they are indistinguishable from the initial elastic properties 

of the gel. Nevertheless, whether such cells would exhibit tensional homeostasis under the 

experimental conditions used by Brown et al (1998) is unknown. A low level of 

responsiveness could be in keeping with their poor overall contraction as demonstrated in 

section 3.5 and their in vivo properties. As discussed in 3.4.5, the surrounding dense 

collagen matrix with relatively low turnover or remodelling may provide a stress shielded 

environment (Eastwood et al, 1998) requiring little in the way of force generation or 

homeostatic control. An alternative explanation is that these fibroblasts are relatively 

“mechano-insensitive” and would require much greater changes in force to initiate a cell 

mediated response than the forces used in this model. Modified or different models would 

be required to investigate these hypotheses, allowing study of either very large or very 

small changes in forces.
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The responses seen by both nodule and cord Dupuytren’s derived fibroblasts after 

rapid uniaxial tensional overload were unexpected and contrary to the theory of tensional 

homeostasis. In general the increase in force of each overload was around 20% to 30% of 

the total developed force, which should have been sufficient to elicit a typical cell mediated 

homeostatic response (Brown et al, 1998). These cells exhibited a contractile response to 

the first overload, increasing the force still further and overcoming the elastic properties of 

the collagen gel. Nodule fibroblasts showed a greater response than cord in keeping with 

the emerging trend from this work of nodule cells being more active or contractile, 

although the difference failed to reach significance. This contraction in the first post 

overload period could be seen as highly abnormal in the context of tensional homeostasis 

and might be viewed as causing a positive feedback loop, where an increase in force causes 

cell mediated contraction of the matrix and a further increase in force.

This abnormal response however, disappears by the second post overload period 

and for this and the subsequent periods values do not differ significantly from control 

acellular gels. As with carpal ligament FPCLs this may be because tensional homeostasis is 

weak within Dupuytren’s derived fibroblasts and indistinguishable from the forces caused 

by elastic changes within the gel. Alternatively it could be that tensional homeostasis does 

or would occur but could not cause a physical reduction in force at a greater rate than the 

elastic properties of the collagen gels (-0.2 to -0.3 dynes per minute). Had studies 

continued, to observe cell responses from 30 to 60 minutes it may have been apparent by a 

continued reduction in force that tensional homeostasis was occurring in an attempt to 

return the system to equilibrium. Contradicting this are the findings of several greater 

negative post overload gradients by Brown et al (1998), suggesting that collagen gel 

relaxation is not a rate-limiting factor. Different cell types are being investigated here, 

however, and as the interplay between gel elasticity, cell mediated contraction and 

responses to changes in tension are not yet understood it is difficult to draw a firm 

conclusion.

It is not clear why the abnormal response is observed in only the first post overload 

period. It may be linked to the continuing rise in force seen at the start of overloading in
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Dupuytren’s fibroblasts. If the cells have yet to reach tensional homeostasis and are still 

contracting they will continue to contract if the force of the overload is insufficient to attain 

the level of homeostasis. When the gradients at 20 hours (derived from data presented in 

chapter 3.4) are compared with the gradient of the first overload period as illustrated in 

figure 3.5.8. there is some correlation. As the gradient of the contraction profile at 20 hours 

increases, indicating a higher level of continuing contraction, there is an increasing gradient 

of the first post overload. The R2 value for the resultant line of regression is 0.5.
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Figure 3.5.8. A scatter plot of the contraction profile gradients at 20 hours and the 
gradient of the corresponding first post overload period including nodule, cord and 
carpal ligament cell lines. Note the line of best fit indicating increasing post overload 
gradient as the 20 hr gradient increases.

It is conceivable that the second overload will increase the force to such a level that 

the homeostatic equilibrium is achieved and no further contraction need occur to attain this. 

This theory would suggest that the level of force at homeostatic equilibrium is between 1 

and 2 overloads greater, or 30 to 40% more than the force generated by fibroblasts at 20 

hours. Alternatively this contraction in response to applied load could be an inherent 

abnormal response from Dupuytren’s cells and would act as a positive feedback loop 

causing further cell-mediated contraction.
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In order to test this theory one would have had to leave the collagen gels until a 

steady state had been achieved and then undertake the overloading sequence in the same 

way. If the responses were the same it could be deduced that there was an inherent 

abnormality. There are potential difficulties with continuing experiments using the CFM 

for extended periods of time. The culture system is not strictly enclosed as there are 

openings in the lid for the “A” frame bars (see appendix III) and thus infection often occurs 

during long-term experimentation. There are additional practical issues regarding the use of 

limited equipment resources over long periods of time and therefore the above experiments 

were not performed.

A second alternative hypothesis as to why the abnormal contractile response is only 

observed in the first overload period, hinges on the matrix stiffening, which as described 

earlier is induced by loading of the matrix. One way of stiffening a matrix is by increasing 

the collagen concentration and this has been shown to alter the cell-mediated contraction 

(Bell et al, 1979; Zhu et al, 2001). A second way is by loading the matrix. The stiffer 

matrix transmits less force to resident cells; essentially stress shielding them, so that they 

perceive less of any additionally applied force. It is conceivable that in my experimental 

model the second and subsequent overloads increased matrix stiffness to such an extent that 

the resident cells were no longer able to perceive the change in tension. If they cannot 

detect the change they will not react to it and thus the only response to these overloads will 

be that relating to the elastic properties of the gel (see figure 3.5.9). The cells become 

mechano-unresponsive. Actually, the fact that there is an abnormal response by 

Dupuytren’s fibroblasts to the first overload may be even more significant, given the 

increased matrix stiffness and thus decreased force perceived by the cells following even 

this first loading.

A possible third hypothesis to be considered as an explanation why a response is 

only seen following the first overload could be that this response, being an active cellular 

process, requires certain intracellular elements. Intracellular pools of these elements, be 

they for example ions (eg Calcium ion flux) or proteins linked to mechanotransduction, 

may be finite and therefore used up by the first response. Subsequent overloads were
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applied relatively soon following each other and these elements may not have had 

sufficient time to reach the desired levels or even be manufactured once more. Thus the 

cells may have a refractory or latent period in a similar way that nerve and muscle cells 

have to electrical impulses and contraction (Guyton and Hall, 1996). The fibroblasts might 

only be able to react again once this refractory period is over.

In any of the three hypotheses presented here, an abnormal cellular contractile response to 

loading in Dupuytren’s fibroblasts is an important finding and could suggest the basis by 

which flexion deformities of the digits occur and progress. Taking these results in context 

with those from 3.4 a clinical scenario could be envisaged where Dupuytren’s cells are 

continually striving to reach tensional homeostasis but failing to attain it. Further external 

forces, as simple as finger extension would place increased tension on the resident cells 

within the diseased tissue, causing additional cellular contraction as seen here following the 

first overload. This positive feedback would exacerbate the condition.

Even these high cell mediated contractile forces produced would not be strong 

enough to overcome the extending force of the digital extensor tendons, however at times 

of rest rapid matrix turnover and remodelling could “set” the matrix at this new shortened 

length. The increased ratio of type III to type I collagen found in Dupuytren’s tissue, 

especially nodules (Bazin et al, 1980; Brickley-Parsons et al, 1981) suggests the matrix 

being laid down is new and immature and there is also evidence of increased matrix 

turnover with higher levels of MMP expression when under tension (Tarlton et al, 1998; 

Bailey et al, 1994). Once this has occurred, resident cells might then relax and make new 

attachments to the matrix before the whole process repeats itself in a minutely stepwise but 

continuous, progressive fashion. Thus one can see how fibroblast contraction in 

combination with matrix remodelling could cause unchecked disease progression.
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Fibroblast Mechano-insensitive
Fibroblast

a) Unloaded collagen gel

■

Abnormal Cell Mediated Contractile Response to Overload 
---------------► M------- -

b) Gel overloaded once

c) Gel overloaded twice'

Figure 3.5.9. Diagram representing the proposed effect of collagen gel loading on 
fibroblast perception of force. Prior to loading cells are able to perceive force and 
respond to it. The first overload causes a stiffening of the matrix (Darker colour B ) but the 
cells are still able to perceive the force. The second overload stiffens the matrix still further 
(Much darker colour B ) which prevents the force being transmitted to and perceived by 
the fibroblasts(^^), so they are unable to respond to it ( ) .
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This may also explain the observation that in patients who continually manually 

stretch their fingers in an attempt to overcome the disease, thick aponeurotic cords develop

with rapid clinical contractures (Skoog, 1963; Flint and Poole, 1990 in Dupuytren’s 

Disease). The regular extension would provide an external loading of the Dupuytren’s cells 

causing not only additional collagen deposition but also further cell contraction. Similarly 

in patients who have undergone continuous elongation techniques (Messina and Messina, 

1991) to extend severely contracted digits prior to surgery, it is noted that the contractures 

recur very quickly if the operation is delayed once traction is removed (Bailey et al, 1994). 

In this situation the external stretching or overloading force applied to the resident cells 

could be providing strong positive feedback and as soon as the external fixation is removed 

there is an aggressive cell mediated contraction combined with the high matrix remodelling 

that has been shown to exist during this procedure (Bailey et al, 1994).

SUMMARY:-

• Rapid overloading of acellular control collagen lattices causes a subsequent gradual 

reduction in force over 30 minutes because of the gel’s elastic properties, which is 

highly reproducible in all four post overload periods.

• Overloading of lattices seeded with carpal ligament fibroblasts causes no significant 

differences in the 30 minute post overload periods when compared with acellular 

control gels.

• Overloading of lattices seeded with Dupuytren’s fibroblasts causes an 

abnormal contractile response during the first post overload period.

This abnormal response and the altered level of tensional homeostasis in Dupuytren’s 

fibroblasts found in chapter 3.4, could when combined with matrix remodelling, underlie 

the development of progressive flexion deformities clinically.

The next step would be to identify potential factors that cause or are key modulators of 

these abnormal responses, and establish their role in the processes that have been 

discovered. Transforming growth factor betai is a likely candidate.
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3.6. Myofibroblast Phenotype in Two-Dimensional Cell Cultures From 
Dupuytren’s Nodules, Cords and Control Carpal Ligament Treated with TGF 
pi

3.6.1. Introduction

Transforming growth factor betai (TGF Pi) is a pleotropic polypeptide growth 

factor with wide and varied cellular effects. It has been linked in particular to the processes 

occurring in response to injury, healing and fibrosis (Border and Noble, 1994). It has been 

shown to both stimulate and inhibit cellular proliferation depending on circumstances and 

cell type (eg inducing proliferation of mesenchymal cells such as fibroblasts and inhibiting 

growth of ectodermal cells (Roberts et al, 1986). In addition ECM production and 

especially collagen synthesis is stimulated by TGF p (Roberts et al. 1986; Petrov et al, 

2002; Serini and Gabbiani, 1999) and several studies have demonstrated the up regulation 

of fibroblast to myofibroblast transformation by it (Desmouliere et al, 1993; Desmouliere 

and Gabbiani, 1994). The myofibroblast itself has been proposed as the common 

denominator in fibrocontractive disorders (Ariyan et al, 1978) because of its prevalence in 

such conditions and this type of cells contractile phenotype. These facts make it likely that 

TGF p plays a key role in tissue fibrosis. Dupuytren’s disease is a fibrotic pathology, where 

all of these are important. Indeed TGF p stimulation of cell proliferation (Badalamente et 

al, 1996), collagen production (Alioto et al, 1994; Bulstrode, MD Thesis 2001) and 

myofibroblast transformation (Jemec, MD Thesis 1999; Vaughan et al, 2000) have also 

been established in Dupuytren’s disease.

It is unclear however if there is a different response to TGF p from cells originating 

in different regions of the Dupuytren’s lesion such as nodule and cord, having already 

shown differences in the cell types in monolayer culture (Chapter 3.2). It was hypothesised, 

given the differing basal levels of myofibroblasts in nodule and cord cell cultures, that the 

response to TGF Pi stimulation would be different between these two cell types.

Furthermore could responses and fibroblast behaviour such as contraction be simply 

due to the myofibroblast percentage and thus TGF Pi, or are there inherently altered 

responses? (Addressed in Chapters 3.7 and 3.8)
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3.6.2. Aim

To determine the upregulation of the myofibroblast phenotype in fibroblast cell 

cultures obtained from Dupuytren’s nodule, Dupuytren’s cord or control carpal ligament 

when stimulated with TGF pi.

3.6.3. Material and Methods

The same protocol was used as for section 3.3.3. however at 24 hours after seeding 

fibroblasts in the six well plates, the normal growth media was replaced by normal growth 

media supplemented with 2 ng per ml of TGF Pi. Cells were fixed on the cover slips 72 

hours later and stained and counted as before. Seven nodule, seven cord and four carpal 

ligament cell lines were studied and differences between the groups analysed using the 

student’s t test.
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3.6.4. Results

Figure 3.6.1 illustrates the typical appearances of a Dupuytren’s nodule cell line 

after three days treatment with TGF Pi at 2 ng per ml. There is an obvious increase in the 

percentage of positively staining myofibroblasts when compared with figure 3.3.2, an 

untreated nodule.

Figure 3.6.1. Cells in culture derived from Dupuytren’s nodule at x 200 magnification 
stained for a-smooth muscle actin and counterstained with propidium iodide after 
stimulation with TGF pi. Cells with green cytoplasmic filaments are positive (arrows). 
Note the significant increase in positively staining cells when this image is compared with 
figure 3.3.2.

This is even more striking in cord cell lines (figure 3.6.2) where the untreated cord 

contained few if any myofibroblasts (figure 3.3.3). Unexpectedly TGF pi treatment had 

little effect on the myofibroblast percentage in comparison carpal ligament cell lines where 

figure 3.3.4 illustrates the appearance of a typical cell line following stimulation.
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Figure 3.6.2. Cells in culture derived from Dupuytren’s cord at x 200 magnification 
stained for a-smooth muscle actin and counterstained with propidium iodide after 
stimulation with TGF pi. Cells with green cytoplasmic filaments are positive (arrows). 
Note the significant increase in positively staining cells when this image is compared with

Figure 3.6.3. Cells in culture derived from control carpal ligament at x 200 
magnification stained for a-smooth muscle actin and counterstained with propidium 
iodide after stimulation with TGF Pi. Note there is no significant increase in positively 
staining cells (arrows) when this image is compared with figure 3.3.4.
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Overall the mean myofibroblast percentages are displayed in figure 3.6.4 along side 

of the untreated results from section 3.3. In nodule cell lines treated with TGF pi at a 

concentration of 2 ng per ml for three days myofibroblasts made up 25.4% (SD ± 5.5%, 

n=7) of the cell population. This was a significant rise over the non-treated levels of 9.7% 

with p<0.001. The mean myofibroblast percentage in cord cell lines after TGF pi treatment 

was 25.7% (SD ± 5.8%, n=7), which was again highly significant when compared with 

untreated levels of 2.7%, p<0.001. TGF Pi treated nodule and cord cell lines were not 

significantly different from each other in terms of the myofibroblast phenotype, p=0.90. 

The mean myofibroblast percentage in TGF pi stimulated control carpal ligament cell 

cultures was 2.6% (SD ± 0.7%, n=4), which was not significantly different from untreated 

levels of 1.3% (p=0.23), however it was highly significant when compared with both 

stimulated nodule and stimulated cord cell lines (p<0.001). If one looks at the overall 

increase in myofibroblasts from unstimulated, basal levels, for each cell line the mean rise 

for nodules was 3 fold whereas the mean rise for cord was 11.6 fold. The individual 

percentage increases fail to fall within a normal distribution and thus a Mann-Whitney 

Rank Sum test was used to compare these differences, which just reached significance 

(p<0.05).
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*

Nodule Carpal Lig

■  NGM
■ TGF B

Figure 3.6.4. The mean percentage of myofibroblasts in cell cultures derived from 
Dupuytren’s nodule (n=7), Dupuytren’s cord (n=7) and control carpal ligament tissue 
(n=4) following stimulation with TGF-Pi at 2 ng/ml for three days I  . The error bars 
represent standard deviations. Shown along side are the corresponding unstimulated 
percentages H  . There was a significant difference between treated and untreated 
percentages in both nodule and cord, * p<0.001, but not in carpal ligament. Both nodule 
and cord cultures when stimulated with TGF-pi were significantly different from 
stimulated carpal ligament values as shown.
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3.6.5. Discussion

The transforming growth factors are part of a family of polypeptides, which play 

significant roles in cell signalling, activation and suppression within an array of 

physiological and pathological settings. Most interest within the group has been focused 

upon the transforming growth factor betas and in particular transforming growth factor-Pi. 

This has been shown to be important in wound healing, abnormal scarring and fibrotic 

diseases (Border and Noble, 1994).

The work in this chapter has demonstrated increased differentiation of the 

myofibroblast phenotype in Dupuytren’s disease derived fibroblasts after stimulation with 

TGF-p i. TGF-Pi has been shown to induce myofibroblast transformation from fibroblasts 

in several studies (Desmouliere et al, 1993; Yokozeki et al, 1997; Vaughan et al, 2000). 

Currently it is believed that fibroblasts are stimulated to differentiate into proto- 

myofibroblasts and then “differentiated myofibroblasts” expressing a-smooth muscle actin 

by TGF-Pi in addition to a range of other factors, which can act in concert (Tomasek et al, 

2002). Desmouliere et al (1993) demonstrated an upregulation of myofibroblasts in a rat in- 

vivo model after subcutaneous injection of TGF-pi to granulating wounds. They 

subsequently found a corresponding increase in a-smooth muscle actin synthesis in 

cultured fibroblasts from both rat and humans using Western blot analysis. This occurred 

across a whole range of TGF-pi concentrations from lng/ml to lOng/ml. In this study a 

concentration of 2ng/ml has been used, which is the standard concentration used in our 

laboratory for stimulation of myofibroblast differentiation, and falls within this range. The 

same concentration has been used by previous workers in this laboratory investgating 

Dupuytren’s disease (Jemec MD Thesis, 1999; Bulstrode, N. MD Thesis, 2001).

Dugina et al (2001) used Dupuytren’s nodule fibroblasts to study the formation of 

focal adhesions in myofibroblasts in response to TGF-P treatment. After TGF-p stimulation 

for 5 days they found an increase in myofibroblast numbers to 71% (from 3%), 

significantly more than encountered here. In the studies presented in this thesis however,
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cultures were stimulated for three days. Additionally Dugina et al used TGF-P2 rather than 

TGF-pi but did state that similar changes were observed with both growth factors, which 

has been found in other studies (Serini and Gabbiani, 1999). They also used a concentration 

of 5ng/ml, more than double the amount used here and this is most likely to account for the 

differences observed. Other authors (Vaughan et al, 2000) have determined myofibroblast 

percentages in stressed fibroblast populated collagen lattices by staining for a-smooth 

muscle actin. They used a maximum concentration of lng/ml of TGF-pi, showing an 

increase from 7.9% to 23.4% after stimulation of Dupuytren’s derived fibroblasts for 5 

days.

Several groups have demonstrated the presence of TGF-pi in Dupuytren’s tissue or 

Dupuytren’s derived fibroblasts using a variety of techniques (Badalamente et al, 1996; 

Baird et al, 1993; Bemdt et al, 1995; Zamora et al, 1994; Kloen et al, 1995) . Zamora et al

(1994) only found TGF-p in early nodules whilst Bemt et al (1995) showed a greater 

intensity of staining for TGF-p 1 protein in proliferative nodules and co-localisation of TGF- 

Pi synthesis and the myofibroblast phenotype to these regions.

The evidence in the literature therefore, combined with the proposed role of the 

myofibroblast, point to this growth factor playing a central function in the development and 

progression of Dupuytren’s disease. Fibroblasts resident within cords of Dupuytren’s tissue 

may be quiescent as indicated by the absence of myofibroblasts shown by previous 

histochemical studies, or the low levels demonstrated in section 3.2. These in vivo tissue 

differences were maintained in fibroblast culture as proved in section 3.3 by the basal, 

unstimulated results, however here when exposed to TGF-P 1 stimulus they became as 

equally differentiated as the traditionally active nodule cells. In fact, when one compares 

the overall increase in the myofibroblast phenotype, nodules demonstrate on average a 

three-fold rise whereas cord cultures had an eleven-fold rise. One can only speculate if this 

is a result of cord cells actually being more sensitive to TGF-P 1 however it is equally 

possible that cord simply has a lower basal expression of the myofibroblast phenotype 

within a population of similar diseased cells. Both nodule and cord fibroblasts would then 

respond to an equal degree following the same level of TGF-pi stimulation. This would
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ultimately lead to a similar overall maximal upregulation of myofibroblasts leading to the 

result encountered here.

Carpal ligament cultures appeared completely insensitive to the stimulatory effects 

of TGF-p i, showing no increase in myofibroblast phenotype. This is in keeping with 

previous unpublished work in our laboratory examining carpal ligament cells in this way 

(Jemec MD thesis, 1999). As discussed above all other fibroblast types investigated in the 

literature show some up regulation of myofibroblasts in response to TGF-pi, this therefore 

is a significant finding. As with the poor contractile properties of carpal ligament cells, this 

lack of response to TGF-pi may reflect the nature and activity of these cells in vivo. The 

fact that Dupuytren’s cells irrespective of their origin show highly significant differences to 

the control fascial tissue suggest there is a specific cellular abnormality of the diseased cells 

rather than being normal cells stimulated to behave aberrantly by external factors. This 

could be at the level of the cell membrane receptors, for example Kloen and co workers

(1995) showed a different pattern of TGF-P i receptors in Dupuytren’s fibroblasts compared 

with dermal fibroblasts.

The equal differentiation of the myofibroblasts phenotype in nodule and cord 

derived cells has important implications for clinical practice and could explain the high 

recurrence rate following treatment for Dupuytren’s disease, other authors having 

correlated recurrence with presence of myofibroblasts (Gelberman et al, 1980). Any factors 

causing increased tissue levels of TGF-Pi will lead to activation of Dupuytren’s fibroblasts 

and an increase in the myofibroblast phenotype. Even the local trauma of surgical excision 

and the natural wound healing response will lead to release of large amounts of TGF-P i 

(Bennett and Schultz, 1993) and any residual tissue of nodule or cord origin will be 

susceptible to stimulation, myofibroblast transformation, cell proliferation, collagen 

deposition and the cycle of recurrent disease. Obvious nodules are of course usually 

excised during fasciectomy however small remnants of fibrous cord tissue are impossible to 

completely eradicate and are inevitably left within the wound bed. The results presented in 

this chapter suggest that recurrent disease could as equally develop from these remaining 

foci as from grossly diseased tissue.
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SUMMARY:-

• Stimulation of fibroblast cultures with TGF-Pi causes a significant up regulation of 

the myofibroblast phenotype in both nodule and cord derived cultures to the same 

level despite basal differences.

• Stimulation of carpal ligament derived fibroblast cultures with TGF-Pi had no 

effect on the already low level of myofibroblasts present.

Dupuytren’s fibroblasts appear to have a specific abnormal difference from control 

cells in their sensitivity to TGF-P 1 stimulation. This in itself could explain some of the 

pathological features of the disease. In addition the fact that cord cells are equally 

responsive to stimulation could be a key reason why there is such a high recurrence rate 

following any type of surgical treatment.

Having established the changes in 2 dimensional cell culture of the contractile cell 

phenotype, myofibroblasts, it was logical to see if there were corresponding changes in 

fibroblast contractility using the culture force monitor model.
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3.7. The Contractility of Dupuytren,s Nodule, Cord and Carpal Ligament Derived 
Fibroblasts Following Stimulation with TGF-pi.

3.7.1. Introduction

In addition to the increased cell proliferation, collagen production and 

myofibroblast differentiation that were discussed in 3.6.1., TGF-Pi has been shown to 

increase cellular contraction. Using three dimensional fibroblast populated collagen lattices 

(FPCLs) several authors have demonstrated that TGF-P i induces an increase in contraction 

of both free-floating lattices (Montesano and Orci, 1988; Tingstrom et al, 1992; Reed et al, 

1994; Riikonen et al, 1995; Arora et al, 1999) and of the stress-relaxed model (Arora et al, 

1999) using dermal fibroblasts. Other workers have found similar responses by 

Dupuytren’s fibroblasts (Vaughan et al, 2000). Once again these experimental models 

suffer from providing only semi-quantitative data. Brown et al (2002) have used the culture 

force monitor model providing actual measurements of the increased force generation by 

dermal fibroblasts in response to TGF-Pi and TGF-p3 stimulation. Many of these authors 

have investigated the effects of direct addition of TGF-p to the contraction assays however 

to maintain consistency within the work in this thesis it was decided to pre-treat fibroblasts 

with TGF-pi in exactly the same way, and using identical doses, as was done in chapter 

3.6.

The levels of myofibroblasts and the degree of cell mediated collagen lattice 

contraction have been found to correlate (Tomasek, J. and Rayan, GM., 1995; Hinz, B. et 

al, 2001) and thus, having demonstrated an increase in the myofibroblast phenotype in 

Dupuytren’s cell cultures when stimulated by TGF-pi, it was hypothesised that FPCL 

contraction would be similarly enhanced in Dupuytren’s cell lines but not in carpal 

ligaments.

3.7.2. Aim

To quantify the cell mediated contraction of collagen lattices seeded with 

fibroblasts from Dupuytren’s nodule, cord and carpal ligament that had been stimulated 

with TGF-Pi comparing them to untreated results from 3.4.
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3.7.3. Methods

Fibroblast populated collagen lattices were prepared and set up on the culture force 

monitor in exactly the same way as described in section 3.4 and explained in detail in 

chapter 2.5. Prior to preparation however the fibroblasts had been stimulated with TGF-Pi. 

This was achieved by exchanging the normal growth media bathing the cells in T225 tissue 

culture flasks with a similar volume of normal growth media supplemented with 2ng/ml of 

TGF-Pi three days prior to the experiment. This media change was carried out when flasks 

were approximately 60% confluent such that cells at the time of use would be around 90% 

confluent. Two T225 flasks were required to provide five million cells for each gel. The 

TGF-pi supplemented media was added only once and then the flasks incubated without 

further media changes in standard conditions (37°C and 5% CO2) for the subsequent 3 days 

so matching the conditions used for myofibroblast determination in chapter 3.6.

Eight Dupuytren’s nodule, eight Dupuytren’s cord and four carpal ligament cell 

lines were investigated in this way with experiments once again left to contract over 20 

hours after equilibration. The same mean contraction profiles and parameters were 

calculated as in chapter 3.4 so that direct comparisons could be made. Differences were 

analysed using the student’s t test.

3.7.4. Results

Figure 3.7.1 illustrates the mean contraction profile of TGF-p 1 stimulated nodule 

derived cell lines plotted along side the untreated contraction profile from section 3.4. 

There was an early divergence of the traces with a statistically significant difference 

apparent even by 1 hour, p<0.05 (mean lhr nodule force:- 15.6 dynes SEM ± 6.1; mean 

lhr nodule + TGF-Pi force:- 35.6 dynes SEM ± 7.1). The TGF-pi stimulated mean trace 

continued to climb rapidly until around 5.5 hours where there was a plateauing of the force 

at 228 dynes. Subsequently an interesting pattern was observed, not seen in un-stimulated 

cell lines, where there was actually a small gradual reduction in the force generated or the 

cells appeared to relax from 6 hours until 8 hours. Throughout this period the force
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generated remained significantly higher in the stimulated fibroblasts than un-stimulated 

nodule cells (p<0.001). Finally from 11 hours onwards there was a continuous increase in 

the force generated up to the conclusion of the experiment at 20 hours. Overall, because of 

the reduction in the force at 6  to 8  hours the contraction profile took on a saddle shaped 

form. There was variability within individual cell lines, some demonstrating no saddle 

shape and others showing much more pronounced dips at similar time points.
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Figure 3.7.1. The mean contraction profile of TGF-Pi stimulated Dupuytren’s nodule 
fibroblasts (n=8) plotted along side the mean non-treated nodule fibroblast 
contraction profile (n=9). Error bars represent the standard errors of the means. Note the 
approximate doubling of the force generated by 2 0  hours (arrow) and the rapid force 
generation by stimulated fibroblasts (arrow head) in the first few hours causing an early 
significant divergence of the traces. The TGF-P i stimulated profile takes the form of a 
saddle shaped trace.
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A similar graph is shown in figure 3.7.2. for Dupuytren’s cord cell lines again 

comparing TGF-pi stimulated fibroblasts with non-treated. Exactly the same pattern is 

encountered here as with nodule cells. There is rapid early contraction by stimulated cells 

causing the traces to diverge and again leading to a significant difference by 1 hour, p<0.05 

(mean lhr cord force:- 11.8 dynes SEM ± 3.5; mean lhr cord + TGF-pi force:- 27.9 dynes 

SEM ± 7.1). In TGF-pi stimulated cord cells the mean profile develops less of a 

pronounced saddle shape than nodules, although the plateauing of force and then further 

increase occur at the same time points.
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Figure 3.7.2. The mean contraction profile of TGF-Pi stimulated Dupuytren’s cord
fibroblasts (n=8) plotted along side the mean non-treated cord fibroblast contraction 
profile (n=ll). Error bars represent the standard errors of the means. Note the approximate 
doubling of the force generated by 2 0  hours (arrow) and the rapid early force generation by 
stimulated fibroblasts (arrow head). The TGF-Pi stimulated profile has a less pronounced 
saddle shape than that of TGF-pi stimulated nodules (figure 3.7.1).
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Interestingly carpal ligament cells when stimulated by TGF-p i showed a marked 

increase in contraction from the initial very poor force generation. This is illustrated in 

figure 3.7.3. where the mean contraction profiles of un-stimulated and TGF-pi stimulated 

fibroblasts are displayed together. As with both Dupuytren’s cell types there was a more 

rapid generation of force by the stimulated fibroblasts, leading to significant differences in 

the generated force by one hour when compared with untreated carpal ligament fibroblasts, 

p< 0.05 (mean lhr carpal ligament force:- 1.0 dynes SEM ± 1.5; mean lhr carpal ligament 

+ TGF-Pi force:- 28.3 dynes SEM ± 9.1). There was a plateauing of this initial force 

generation between 6  and 8  hours at 131 dynes, about 1 hour later than the plateauing 

observed in Dupuytren’s cell lines. There was then no significant relaxation of the tension 

before a gradual consistent increase in force occurred from 10.5 hours onwards. At the 

conclusion of the experiment the rate of increased force generation again appeared to be 

lower when compared to Dupuytren’s cell lines.
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Figure 3.7.3. The mean contraction profile of TGF-Pi stimulated carpal ligament 
fibroblasts (n=4) plotted along side the mean non-treated carpal ligament contraction 
profile (n=4). Error bars represent the standard errors of the means. Note the quadrupling 
of the force generated by 2 0  hours (arrow) and the rapid early force generation by 
stimulated fibroblasts (arrow head). The first plateau (open arrow) occurs later than in 
TGF-pi stimulated Dupuytren’s cell lines.
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In order to compare all of the contraction profiles of TGF-(3i stimulated and un

stimulated Dupuytren’s and carpal ligament fibroblasts the mean profiles presented above 

in figures 3.7.1 to 3.7.3 have been plotted together in figure 3.7.4. As with the untreated 

curves stimulated Dupuytren’s nodule cells display a greater generation of force than both 

cord or carpal ligament cells and the cord profile falls between the two. With all of the 

profiles viewed together it becomes clear that not only are there significant differences in 

the overall force generated at 2 0  hours, but that this appears to be due to the differences in 

the rate of early contraction, indicated by the 2 hour gradient (arrow). These parameters are 

important as they provide clues as to when and how the fibroblasts are generating force by 

both attachment to the matrix and cell mediated contraction of it. They will now therefore 

be analysed in detail.
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Figure 3.7.4. The mean contraction profile of TGF-pi stimulated Dupuytren’s nodule 
(n=8), cord (n=8) and carpal ligament fibroblasts (n=4) plotted along side the mean 
non-treated Dupuytren’s nodule (n=9), cord (n=10) and carpal ligament (n=4) 
contraction profiles. The differences in mean force generated at 20 hours (arrow) appear 
to be largely due to the rate of early contraction (arrow head).

158



/

Results

The mean force generated at 20 hours for each cell type following TGF-pi 

stimulation is displayed in figure 3.7.5 along side the untreated values from section 3.4. 

TGF-pi stimulated nodule fibroblasts generated 280 dynes (range 180 to 373 dynes, SEM ± 

27.1), significantly more than similarly treated carpal ligament at 165 dynes (range 80 to 

239 dynes, SEM ±32.7), p<0.05. TGF-pi stimulated Dupuytren’s cord fibroblasts generated 

a mean force at 20 hours of 214 dynes (range 113 to 292 dynes, SEM ±25.4) which 

although corresponding with the general trend for cord cells to contract less than nodules 

and more than carpal ligaments, differences with both of these groups just failed to reach 

statistical significance (p=0.097 and p=0.277 respectively). In all three cell types the 

increased mean force generation after TGF-p i stimulation was significant when compared 

with the untreated values (Nodule 145 dynes, p<0.01; Cord 109 dynes, p<0.01; Carpal 

ligament 40 dynes, p<0.05).
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Figure 3.7.5. The mean force generated at 20 hours by TGF-pi stimulated 
Dupuytren’s nodule (n=8), cord (n=8) and carpal ligament fibroblasts (n=4) plotted 
along side the mean non-treated values. Mean non-treated 20 hour forces are from 
Dupuytren’s nodule (n=9), cord (n=10) and carpal ligament (n=4). There is a significant 
increase in force generated by TGF-p i stimulated cells when compared to untreated values 
as shown. Stimulated nodule fibroblasts generate significantly more force than stimulated 
carpal ligament fibroblasts but the differences between these and stimulated cord cells do 
not reach statistical significance. * = p<0 .0 1 ; |  ^l^O.OS
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The relative increase in force generation at 20 hours was then compared for each

cell type after TGF-p i stimulation by calculating the percentage increase in 20 hour forces

in treated experiments from matched untreated cell lines. The mean percentage increases in

20 hour force generation following TGF-Pi stimulation are shown in figure 3.7.6.

Dupuytren’s nodule and cord cell lines showed a similar percentage rise following TGF-pi

stimulation (91% SEM ±16.2% and 79% SEM ±15.3% respectively) however the

corresponding rise in carpal ligaments was 344% (SEM ±35.4%). This was highly

significantly different from both Dupuytren’s fibroblast types (p<0.001).
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Figure 3.7.6. The mean percentage increase in 20 hour force following TGF-pi 
stimulation of cell cultures compared with un-stimulated values for nodule (n=8), cord 
(n=8) and carpal ligament (n=4). Error bars represent the standard errors of the means. 
The percentage increase in force generation by stimulated carpal ligament cells is 
significantly greater than both nodule and cord. * p<0 .0 0 1 .

Figure 3.7.7 displays the early rate of force generation, the 2 hour gradients, that 

appear to be of importance in the overall generation of force after stimulation with TGF-pi. 

This was calculated as outlined in chapter 3.4 by dividing the difference in the force 

readings at 1 hour and 2  hours by 60 to give a value of rate of change of force in dynes per 

minute per five million cells. The stimulated nodule, mean 2 hour gradient of 1.25 dynes 

per minute (SEM ±0.16) was significantly (p<0.05) greater than stimulated cord values of 

0.69 dynes per minute (SEM ±0.15) and stimulated carpal ligament values (0.52 dynes per
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minute SEM ±0.10). This was in contrast to un-stimulated cells where nodule and cord 2 

hour gradients were identical. The difference between stimulated cord fibroblasts and 

stimulated carpal ligament fibroblasts failed to reach statistical significance (p=0.153).

When the effect of TGF-p 1 stimulation is studied for each cell type by comparison 

with un-stimulated values (section 3.4) the most notable difference was in nodules where 

there was a four-fold increase in the early rate of force increase or 2  hour gradient, 

p<0.001. Differences in carpal ligament were also statistically significant (p<0.05), 

however TGF-p 1 stimulation of cord fibroblasts did not quite cause a significant rise 

(p=0.059), although there was a definite trend towards this pattern and had larger numbers 

been studied this may have reached significance.
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Figure 3.7.7. Histogram displaying the effect of TGF-Pi stimulation on the 2 hour 
contraction profile gradient for Dupuytren’s nodule (n=8), Dupuytren’s cord (n=8) 
and carpal ligament (n=4) fibroblasts. Note the large increase in nodule cells following 
treatment. Statistical differences are indicated. * =p<0.05; f  =p<0.001.
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The final parameter that was used for comparison was the rate of continued force 

generation at the conclusion of each experiment, the late or 20 hour gradient. This was 

calculated as outlined in chapter 3.4 by dividing the difference in the force readings at 19.5 

hours and 20.5 hours by 60 to give a value of rate of change of force in dynes per minute 

per five million cells. Figure 3.7.8 illustrates these values for both TGF-Pi stimulated and 

un-stimulated fibroblasts of each type. Following TGF-p i stimulation there was a rise in all 

of the mean 20 hour gradients when compared to un-stimulated values (chapter 3.4). In 

nodule cell lines the mean gradient increased from 0.086 to 0.147 dynes per minute (SEM 

±0.04), cord increased from 0.044 to 0.093 dynes per minute (SEM ±0.02) and carpal 

ligament increased from 0.004 to 0.063 dynes per minute (SEM ±0.016). The increases 

seen in cord and carpal ligament are both significant (p<0.05), however the increased 

nodule 20 hour gradient following TGF-p i stimulation failed to reach statistical 

significance (p=0.18). Despite the trend for the nodule 20 hour gradient to be greater than 

cord, and this in turn to be greater than carpal ligament, none of the TGF-p i stimulated 

mean 2 0  hour gradients was significantly different from the others.
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Figure 3.7.8. Histogram displaying the effect of TGF-Pi stimulation on the 20 hour 
contraction profile gradient for Dupuytren’s nodule (n=8), Dupuytren’s cord (n=8) 
and carpal ligament (n=4) fibroblasts. Note the increased gradient in all cell types 
following TGF-pi stimulation and the continuing trend of nodule>cord>carpal ligament.
* =p<0.05.
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3.7.5. Discussion

The studies of three dimensional fibroblast populated collagen lattice contraction 

have provided fascinating insights into cell motility and force generation. The findings 

have been related to both pathological processes such as wound contraction (Grinnell et al, 

1999) and physiological processes such as tooth eruption (Bellows et al, 1981). In the last 

ten years factors that influence the cell-mediated contraction have begun to be elucidated 

using the same models. Lysophosphatidic acid (LPA) has been shown to stimulate 

contraction, as has platelet derived growth factor (PDGF) (Grinnell et al, 1999; Tingstrom 

et al, 1992). In Dupuytren’s disease Rayan et al (1996) studied a range of factors, finding 

LPA, Angiotensin II, serotonin and prostaglandin F2<* to be agonists of fibroblast 

contraction and that prostaglandins Ei and E2 , nifedipine and verapamil antagonised the 

effects of LPA. Sanders et al (1999) found that interferon-o&b reduced contraction in both 

control and Dupuytren’s fibroblasts.

Transforming growth factor beta 1 (TGF-jSi) has been extensively studied, in part 

because of its stimulatory effects on myofibroblast (i.e. the contractile fibroblast 

phenotype) differentiation. Several studies have demonstrated increased contraction 

following TGF-/?i stimulation using the free-floating gel model. An early study by 

Montesano and Orci (1988) found significant increased contraction in three different 

fibroblast lines in response to 5 ng/ml TGF-jSi added to the media bathing the lattices after 

release. Reed et al (1994) found a similar increase in contraction by both young and aged 

dermal fibroblasts in response to 10 ng/ml TGF-/?i. Other groups have used much lower 

doses ofTGF-ft, for example Vaughan et al (2000) used 1 to 1000 pg/ml, as did Grinnell 

and Ho (2002). In this work I have used the same dose of TGF-jSi, of 2 ng/ml, as for 

stimulation of myofibroblast differentiation in monolayer cultures (Chapter 3.6). Unlike the 

above studies where TGF-/?i was added to the media bathing the collagen gels, here the 

fibroblasts to be used in seeding within the collagen gels have been pre-treated, whilst still 

in monolayer culture. This would cause in increase in the myofibroblast phenotype in the 

population of cells to be investigated, whereas simple addition of TGF-/?i to the bathing 

media of floating unstressed assays does not achieve this for two reasons. Firstly it has been
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shown that fibroblast to myofibroblast differentiation takes time with optimal stimulation 

only occurring between 3 and 5 days (Arora et al, 1999; Grinnell and Ho, 2002). The 

experiments within this study are only run over 24 hours. Secondly it has been shown that 

in free-floating lattices differentiated myofibroblasts fail to appear, only occurring in 

stressed gels (Vaughan et al, 2000; Arora et al, 1999).

Although Vaughan et al (2000) used Dupuytren’s fibroblasts in their work, there 

have been no specific studies to date comparing the effects of TGF-j3i stimulated 

contraction of collagen gels from Dupuytren’s and control fibroblasts, or of Dupuytren’s 

fibroblast from different stages of disease such as nodule and cord. This work has 

addressed both of these gaps in our knowledge and additionally by using the culture force 

monitor, has used the most realistic tissue environment model currently available. There 

has only been one other study published looking at the effects of TGF-/? stimulation on 

dermal fibroblast contraction using the culture force monitor (Brown et al, 2002). The other 

models, free-floating and stress-relaxed, as discussed earlier are far from physiological, 

although can be useful to answer specific questions, whereas the set up of the culture force 

monitor allows the development of balanced cell-mediated / matrix forces which can be 

measured in real time. Thus the patterns of contraction and differences in the way that 

fibroblasts develop force can be studied in detail. This has been particularly interesting in 

this study where not only has the overall force generation increased following TGF-/?i 

stimulation but also the shape of the contraction profile leading to the development of this 

tension was altered. This allows one to hypothesise as to the reasons for the greater 

contractile ability, furthermore it has been demonstrated that TGF-/?i has an important role 

in the very early stages of fibroblast attachment and contraction, which cannot be shown 

using other experimental models.

The finding here of increased force generation after TGF-/?i stimulation corresponds 

with all of the previous studies where TGF-/?i consistently causes increased contraction 

irrespective of the method or time of growth factor delivery. In particular, they correspond 

with a number of studies that have now examined pre-incubation of fibroblasts with TGF- 

ft, where their subsequent contractility is increased (Arora et al, 1999; Grinnell and Ho,
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2002; Liu et al, 2001; Wen et al, 2001; Yokozeki et al, 1997). Several authors have also 

correlated the level of of-smooth muscle actin in fibroblast cultures with the increased 

degree of contractility. Tomasek and Rayan, (1995) compared increased monolayer 

myofibroblasts with stress-relaxed collagen gel contraction whilst Arora, et al (1999), 

Vaughan et al (2000) and Grinnell and Ho (2002) used Western blotting of cells extracted 

from the FPCLs to determine a-smooth muscle actin content. Here it has not been possible 

to quantify Qf-smooth muscle actin content of the cells as the gels were fixed and stained 

and technical limitations made accurate assessment impossible (see chapter 3.9). If 

however one compares the force generated on the CFM with the monolayer myofibroblast 

percentages following TGF-j3j stimulation, some interesting differences are observed.

Firstly myofibroblast percentages increased to the same level in monolayer nodule 

and cord fibroblast cultures, however there was still a trend for the CFM force generated by 

nodule fibroblasts to be greater than cord at 20 hours, despite this not reaching significance. 

Similarly the shape of the contraction profile was altered with significant differences in the 

2-hour gradient between nodule and cord cells. Secondly the carpal ligament fibroblasts did 

not show any increase in the myofibroblast percentages in response to TGF-jSi stimulation 

of monolayer cultures, however there was a highly significant increase in force generation 

by these cells on the CFM, which actually exceeded the basal level of nodule fibroblast 

contraction. This means that when one compares the percentage of myofibroblasts in 

cultures with the force generated after TGF-/?i stimulation as shown in figure 3.7.9 there is 

no identifiable trend as was seen in un-stimulated fibroblasts (figure 3.4.7).

In terms of the a-smooth muscle actin expression and force generation the 

population of nodule and cord cells where data is available for both, overlap to some 

extent, however the carpel ligament population of cells are separated due to their lack of 

myofibroblasts despite force generation of up to 246 dynes. When results for both TG¥-(3\ 

stimulated and un-stimulated fibroblast cell lines are combined (figure 3.7.10.) there is a 

general but weak trend for increasing myofibroblast percentages to correlate with greater 

force production however the R2 coefficient is only 0.38. The group of TGF-jSj stimulated 

Dupuytren’s fibroblasts (both nodule and cord) is distinct from all the other cell lines

165



Results

including TGF-/?i stimulated carpal ligaments. A virtually identical trend with a weak 

correlation is encountered when earlier time point force generation, at 2 hours, is plotted 

against the myofibroblast percentages (figure 3.7.11.; R2= 0.39).
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Figure 3.7.9. A scatter plot comparing the percentage of myofibroblasts in monolayer 
cultures after stimulation with TGF-/?i with the force generated by corresponding cell 
lines that were stimulated with TGF-/3j before seeding into collagen gels. Note that 
there is no trend apparent of increasing force with increasing myofibroblasts, however the 
carpal ligament cells appear to make up a separate population.
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Figure 3.7.10. A scatter plot of all TGF-ft stimulated and un-stimulated cell lines 
from nodule, cord and carpal ligament origin, comparing myofibroblast percentages 
and the force generated at 20 hours on the CFM. There is a weak correlation of the two
parameters.
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Figure 3.7.11. A scatter plot of all TGF-/J1 stimulated and un-stimulated cell lines 
from nodule, cord and carpal ligament origin, comparing myofibroblast percentages 
and the force generated at 2 hours on the CFM. There is a weak correlation of the two
parameters.

Pre-treatment with TGF-/J1 certainly up regulates myofibroblasts in Dupuytren’s 

fibroblast cultures. The subtle differences, however, in contraction profile shape between 

nodules and cords as well as the up regulation of carpal ligament force production without 

myofibroblast phenotype increase, indicate that cell mediated contraction in the culture 

force monitor model is not merely a function of oi-smooth muscle actin expression. One 

can speculate from the changes in contraction profile shapes and the highly significant 

changes in 2 hour gradients, that TGF-/5] stimulation enhances the early phase of 

contraction. This is consistent with studies by Grinnell and Ho (2002) where TGF-/3i 

stimulation mediated enhanced contraction of collagen lattices by elevated myofibroblast 

levels but also appeared to act as a direct agonist of collagen lattice contraction in free 

floating models where no myofibroblast differentiation had occurred.

This direct agonist effect may be of additional significance given the fact that TGF-/3i has 

been shown to induce it’s own expression in several studies (Yokozeki et al, 1997; Van et 

al, 1988).

Eastwood et al (1996) have suggested that early force generation on the CFM is a 

result of cell attachment to the matrix and locomotion of cells and their processes as they
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spread to form a network from their initially rounded state. A number of groups have 

shown an increase in integrin expression following TGF-/?i stimulation of fibroblasts 

(Riikonen et al, 1995, Dugina et al, 2001, Brown et al, 2002). These cell surface receptors 

are a family of molecules, which enable matrix to cell binding, thus allowing cell mediated 

force transmission to the matrix (For review see Hynes, 1992). The differences observed 

here between nodule and cord would fit with a different pattern or increased expression of 

these integrins. If this was the case, the fact that 2 hour gradients were identical in non 

TGF-/?i stimulated nodule and cord cell lines would further suggest that there are inherent 

differences between nodule and cord cells in the way they respond to TGF-/?i stimulation, 

nodule fibroblasts being more sensitive.

Brown et al (2002) also used the culture force monitor when they investigated the 

effects of TGF-/3i and TGF-& stimulation of dermal fibroblasts. Not only did they use a 

different cell type than those studied here but they only added TGF-/3 to the bathing media 

and did not pre-treat cultured cells as has been done in this thesis. Similar increases in force 

generation were however observed with an early rapid rise in contraction, although this 

plateaued without further contraction. This is consistent with the dermal fibroblasts 

reaching tensional homeostasis and is in contrast to the findings here in Dupuytren’s cells 

where tensional homeostasis appears even more delayed after TGF-/?i stimulation. Brown 

and co-workers, however also demonstrated an inconsistent temporal relationship between 

the increased expression of integrin receptors and the generation of force, concluding that 

this was not the means by which TGF-/3 caused enhanced early force generation. They 

suggested instead that this was a direct effect of TGF-/3 on cytoskeletal force output during 

cell traction. Integrin up regulation cannot be ruled out as a cause of the increased early 

force generation in the model used in this work, as pre-treatment by TGF-/3j would allow 

sufficient time for stimulated expression of these molecules. Of course, defining a single 

change as the cause of altered force generation may be a highly simplistic view as it is 

likely that there is a more complex interplay of multiple factors, which may include 

increased integrin expression, direct stimulation of cytoskeletal forces and responses to the 

matrix itself.
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Whatever the actual effect of TGF-/3i on the cell population that cause the observed 

changes, from the results presented here, it is clear that the fibroblasts have some 

“memory” of the stimulation or undergo an at least semi-permanent modification. The 

differences were apparent after direct stimulation was withdrawn and the cells had been 

merely pre-treated and then trypsinised and reseeded into collagen lattices, where there was 

no additional TGF-jSi present.

Having stated that the early phase of contraction in the culture force monitor model 

is due to cell-matrix attachment, so called traction forces (Brown et al, 2002; Eastwood et 

al. 1996; Ehrlich and Rajaratnam, 1990), the later stages of contraction, for example after 

10 hours, have been seen as a function of the active cellular contraction of fibroblasts 

within the matrix. This is when tensional homeostasis becomes important and it is here that 

the role of myofibroblasts may be more apparent. In the results presented in this chapter, 

the mean 20 hour gradients were all increased following TGF-/?i stimulation although this 

failed to reach significance in nodule cell lines. This failure of force generation to plateau 

may, as discussed in chapter 3.4, represent a delay in acquiring tensional homeostasis.

Thus, TGF-j8i appears to exacerbate further this delay, or cause cells to have an 

even higher “preferred” tensional force where equilibrium is maintained. Furthermore, 

control carpal ligament fibroblasts begin to demonstrate this delay. As with the total force 

generation there is no strict correlation of the 20 hour gradients with myofibroblast 

percentages in monolayer culture following stimulation with TGF-j3i. This is confounded 

once again by increases in carpal ligament 20 hour gradients but not in myofibroblast 

numbers, and similarly by equal levels of myofibroblasts in nodule and cord cultures 

stimulated with TGF-ft but apparent differences in the CFM model. Despite the hypothesis 

that this latter profile of force generation is myofibroblast dependent this may not represent 

the complete mechanism. It may be that the three dimensional nature of the CFM model or 

the cell-matrix interactions plays a role. It has been shown that the nature of the matrix 

influences cell behaviour within it (Arora et al, 1999; Grinnell and Ho, 2002; Bell et al, 

1979; Zhu et al, 2001) and one could speculate that the combination of TGF-01 stimulation 

and the collagen gel environment bring about further alterations in myofibroblast
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phenotype expression, above those seen in two dimensions. To establish this would require 

further analysis of a-smooth muscle actin content of the collagen gels following CFM runs, 

which was beyond the capacity of the current work.

SUMMARY:-

• TGF-jSi stimulation of fibroblasts caused a significant increase in the mean 

generation of force in all cell types at 20 hours, which was accompanied by a 

change in the shape of the contraction profile in Dupuytren’s cells.

• The increased force was due largely to a rapid early rate of contraction indicated by 

the increase in 2-hour gradients. This was particularly significant in nodule-derived 

fibroblasts.

• There was a further delay in reaching tensional homeostasis following TGF-/3i 

stimulation of Dupuytren’s cell lines, indicated by increased 20 hour gradients. 

Carpal ligament fibroblasts also began to demonstrate this continuing contraction 

throughout the experimental periods.

This stimulation of increased force generation and additional alterations in tensional 

homeostasis of Dupuytren’s cells by TGF-/3i may imply a role for this growth factor in the 

progression of clinical contractures in Dupuytren’s disease. As with the stimulation of 

myofibroblast differentiation, demonstrated in chapter 3.6., factors which cause release of 

TGF-ft such as trauma or surgery and the subsequent wound healing process, will 

exacerbate the abnormal contractile properties of Dupuytren’s fibroblasts. This could 

trigger rapid disease progression following trauma as has been reported (McFarlane and 

Shum, 1990; Hueston and Seyfer, 1991) or fluctuating basal levels of TGF-jSi could 

underlie the slower but insidious natural disease progression.

Having demonstrated that fibroblast contractility and tensional homeostasis were 

altered by TGF-j3i stimulation the next chapter addresses the response of stimulated cells to 

mechanical loading, which is in keeping with the in-vivo environment of these cell types 

where the system is not static and forces are constantly changing.
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3.8. The Response of Dupuytren’s Nodule, Cord and Carpal Ligament Fibroblasts 
within Collagen Lattices to Mechanical Loading Following TGF-fr 
Stimulation.

3.8.1. Introduction

An inherent feature of maintaining tensional homeostasis (Brown et al, 1998) is the 

ability of fibroblasts to respond to external stresses; altering the amount of force they 

generate to preserve the equilibrium. In chapters 3.4. and 3.5. it was demonstrated that 

tensional homeostasis was delayed and the initial responses to overloading were abnormal 

in Dupuytren’s fibroblasts. In the preceding chapter it has been shown that TGF-j3i 

stimulation of fibroblasts altered further the tensional homeostasis and thus it was logical to 

next determine the combined effects of TGF-01 stimulation and mechanical loading. 

Although there are several published studies of collagen gel contraction and the effects of 

TGF-01 the only one to use the culture force monitor was by Brown et al, (2002) and did 

not look at effects of changes in mechanical load. The culture force monitor or equivalent 

device is the only experimental model that allows measurement of real time cellular 

responses to mechanical changes, thus none of the other studies which use free floating or 

stress-relaxed models, have been able to asses this. The work presented here is therefore 

unique at the current time.

TGF-/3i is believed to play a central role in the development and progression of 

Dupuytren’s disease (Kloen, 1999) and here it has been shown that it acts consistently to 

exacerbate the abnormal features of Dupuytren’s fibroblasts in culture. It follows therefore 

that TGF-/?i stimulation of fibroblasts may also cause additional abnormal responses to 

mechanical loads.

3.8.2. Aim

To determine the responses of Dupuytren’s nodule, Dupuytren’s cord and carpal 

ligament fibroblasts to mechanical loading using the culture force monitor, after stimulation 

withTGF-/3i.
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3.8.3. Methods

As already described in chapter 3.5.3. at the conclusion of each CFM experiment 

the gels, this time populated with TGF-/3j stimulated fibroblasts, underwent a series of 

uniaxial tensional overloads. The method of overload was identical. The culture force 

monitor was then left for 30 minutes to record the subsequent changes in force in this “post 

overload” period. A second, third and fourth overloads were then performed in exactly the 

same way and the post overload responses recorded for each as described in detail in 

chapter 2.5.4. Eight Dupuytren’s nodule, eight Dupuytren’s cord and four control carpal 

ligament cell lines were investigated and the post overload period gradients were calculated 

as before.

3.8.4. Results

The contraction profile obtained during overloading of a TGF-01 stimulated 

Dupuytren’s nodule fibroblast cell line is displayed in figure 3.8.1. As with similar 

overloading traces shown in figures 3.5.2. and 3.5.5. the rapid rises in force indicated by 

arrows are the points when each uniaxial overload was applied and this is followed by a 

post overload period during which the responses of the cells are measured. Here there is a 

particularly profound contractile response in the first post overload period, with an increase 

in force by 30 dynes following the first overload. Although all TGF-j3i stimulated nodule 

fibroblasts demonstrated a contraction in response to the first overload this was the most 

dramatic reaction that was encountered.

In un-stimulated nodule cells this abnormal contraction following tensional loading 

was only seen in the first post overload period (figure 3.5.5.), however as can be seen in 

figure 3.8.1. there is also a further increase in force generated by nodule cells after the 

second and third overloads. Even in the fourth post overload period there is only a levelling 

of force rather than the consistent decrease seen in blank control gels (figure 3.5.2.). This 

pattern of abnormal contractile responses persisting into the second, third and even fourth 

post overload periods was typical of the traces obtained from TGF-j8i stimulated nodule 

fibroblasts.
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Figure 3.8.1. A contraction profile trace from a collagen lattice seeded with TGF-jSj 
stimulated nodule fibroblasts undergoing a series of four tensional overloads (arrows).
The subsequent post overload periods are numbered 1 to 4. Note the very large increase in 
force during the first period (arrow head). There is also contraction in response to the 
second and third overloads (open arrows), whilst even in the fourth period there is only a 
level trace rather than the decrease in force seen in control blank gels (figure 3.5.2.).

A similar overloading profile is shown in figure 3.8.2. this time from a typical cord 

fibroblast populated lattice after TGF-/?i stimulation. There is once again contraction in 

response to the first overload (arrow head) and, in contrast to the results from chapter 3.5., 

this abnormal contractile response is also seen in the second post overload period. By the 

third period there is a more characteristic decline in force although not to the same extent as 

in control blank gels (figure 3.5.2.). This rate of reduction in force is only approached in the 

fourth post overload period.

TGF- 0 1  stimulation also caused carpal ligament fibroblasts to demonstrate a 

contractile response to the first overload, which was in marked contrast to their mechano- 

insensitivity when not previously stimulated with TGF-/3i. Unlike Dupuytren’s cells 

however this new abnormal response did not persist into subsequent post overload periods.
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Figure 3.8.2. A contraction profile trace from a collagen lattice seeded with TGF- 0 1  

stimulated cord fibroblasts undergoing a series of four tensional overloads (arrows).
The subsequent post overload periods are numbered 1 to 4. Note the increase in force 
during the first period (arrow head), which is also seen in response to the second overload 
(open arrow). By the third post overload period the trace shows a reduction of force that by 
the fourth period is similar to that encountered in blank control gels (figure 3.5.2.).
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Figure 3.8.3. A contraction profile trace from a collagen lattice seeded with TGF-ft 
stimulated carpal ligament fibroblasts undergoing a series of four tensional overloads 
(arrows). The subsequent post overload periods are numbered 1 to 4. Note the increase in 
force during the first period (arrow head), which disappears by the second, third and fourth 
post overload periods where here the changes are similar to that encountered in blank 
control gels or un-stimulated carpal ligament fibroblast gels.

174



Results

As in chapter 3.5. the post overload responses were quantified by calculating the 

gradients of each post overload period for each cell line, expressed as the rate of change of 

force in dynes per minute. A positive value represented an increase in force over the period 

whilst a negative value represented a relaxation of the tension across the system. The mean 

gradients were then determined for each cell type, Dupuytren’s nodule, Dupuytren’s cord 

and carpal ligament fibroblasts. The TGF-/?i stimulated fibroblast results are graphically 

displayed along side of the unstimulated values in figure 3.8.4.

In the first post overload period the mean gradient for TGF-j3i stimulated nodule 

fibroblasts was +0.27 dynes per minute (SEM ± 0.12), which did not reach statistical 

significance when compared with the un-stimulated result (+0.1 dynes per minute, p=0.2). It 

was also not significantly different from the mean gradient of the first post overload period 

in TGF-j8 i stimulated cord fibroblasts of +0.19 dynes per minute (SEM ± 0.06)(p=0.39) or 

that ofTGF-ft stimulated carpal ligament fibroblasts of + 0.14 (SEM ± 0.06)(p=0.70). All 

of the TGF-j8 i stimulated mean first post overload gradients were, however, significantly 

greater than the blank control gel gradient (-0.23 dynes per minute, p<0.005) and the un

stimulated carpal ligament gradient (-0.16 dynes per minute, p<0.05). The mean first post 

overload gradient for TGF-/3i stimulated cord fibroblasts was +0.19 dynes per minute 

(SEM ± 0.07), which only just failed to reach statistical significance when compared with 

the un-stimulated result (+0.05 dynes per minute, p=0.06).

The trend in the second post overload period was for there to be a reduction in the 

mean gradients however this only returned to control blank gel or un-stimulated values in 

TGF-/?i stimulated carpal ligament fibroblasts (-0.26 dynes per minute, SEM ± 0.05). The 

nodule fibroblasts gradient was +0.07 dynes per minute (SEM ± 0.04), not significantly 

different from the first post overload gradients but highly significantly increased (p<0 .0 0 1 ) 

when compared to un-stimulated nodule second post overload period gradients. This was 

not the case for TGF-/?i stimulated cord fibroblasts at -0.05 dynes per minute (SEM ± 0.04; 

p= 0.173).

The abnormal contractile responses persisted in the third post overload period for 

both nodule and cord Dupuytren’s fibroblasts at 0.0 dynes per minute (SEM ± 0.06) and -
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0.01 dynes per minute (SEM ± 0.04) respectively. These values were significantly greater 

than corresponding third post overload period results in un-stimulated nodule and cord 

fibroblasts (p<0.01 and p<0.05 respectively). Only by the fourth post overload period were 

mean gradients in TGF-/3i stimulated Dupuytren’s fibroblasts similar to the control blank 

gel, or un-stimulated gradients although even here nodule fibroblasts showed a significant 

difference (p<0.01) following TGF-^i stimulation at -0.14 dynes per minute (SEM ± 0.04) 

when compared with un-stimulated period four gradients (-0.3 dynes per minute). Other 

results did not differ significantly from the non-stimulated or control values.

Overload Period
2 3

- 0.1 -

- 0.2 -

-0.3

-0.4 J

■  Control No Cells

■  Carpal Ligament

■  Nodule

□  Cord

D Nodule + TGF B

□  Cord + TGF B

■  Carpal Lig + TGF B

Figure 3.8.4. A histogram comparing the mean post overload gradients with and 
without TGF-/?i stimulation. Control gels (n=3), carpal ligament (n=4), Dupuytren’s 
nodule (n=9) and Dupuytren’s cord (n=10) are compared with TGF-/3i stimulated 
Dupuytren’s nodule (n=8), TGF-/3i stimulated Dupuytren’s cord (n=8) and TGF-01 
stimulated carpal ligament (n=4) fibroblast seeded collagen lattices for all for of the post 
overload periods. Error bars represent standard errors of the means. The trend for first post 
overload period gradients to be greater following TGF-(3\ stimulation is only significant in 
carpal ligament cells. Note also the persisting abnormal response to loading in Dupuytren’s 
fibroblasts into periods two and three following TGF-/?i stimulation.
* = p<0.05 ; f  = P<0.01 ; ** = p<0.001
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3.8.5. Discussion

The work contained in this section is unique for several reasons. Firstly in order to 

study the real time responses to mechanical stimulation a device such as the culture force 

monitor (Eastwood et al, 1994) or equivalent is required. Previously circular collagen gels 

were used to study fibroblast behaviour in three dimensions, however these provide only 

semi-quantitative and intermittent data. The recent development of the CFM overcomes 

these problems and is also ideally suited to investigate both the early stages of cell 

contraction and responses to changes in the tensional environment. Secondly the effects of 

TGF-/?i pre-stimulation have been investigated rather than the addition during the 

experimental procedures. This stimulation causes fibroblast differentiation prior to seeding 

into the collagen lattices. As demonstrated in chapter 3.7., despite the lack of continued 

stimulation the fibroblast population remains altered, evidenced by their changed basic 

contractile properties. This suggests a permanent or semi-permanent alteration of the 

fibroblasts or a “memory” of the stimulation provided. Finally no authors to date have 

looked at the combined effects of changes in mechanical load and TGF-ffi stimulation on 

the cell mediated contractile responses.

In contrast to the serial loading experiments in un-stimulated fibroblast populated 

collagen lattices (section 3.5) where there was contraction only in the first period, here the 

abnormal contractile response in Dupuytren’s fibroblasts persists into subsequent post 

overload periods. In fact a statistically significant difference in the response of TGF-ft 

stimulated Dupuytren’s nodule fibroblasts is still found in the fourth post overload period 

when compared with un-stimulated nodule cells. There is also a trend for the contractile 

response in the first post overload period to be greater following TGF-j3i stimulation. This 

is only significant in the carpal ligament fibroblast seeded lattices, however following 

stimulation the pattern of responses to serial overloading in these cells becomes almost 

identical to those exhibited by un-stimulated nodule cells.

If the lines of discussion brought out in chapter 3.5. are continued, the reasons for 

the changes in response to increased tension as each overloading is performed remain
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speculative. As was seen from observation of the TGF-/3i stimulated contraction profiles 

there are increases in overall force generation and a trend to increasing 2 0  hour gradients. 

This may suggest an even higher level of tensional homeostasis, which would take longer 

to attain. One reason proposed in chapter 3.5.5. for the abnormal response of Dupuytrens 

fibroblasts only being initially observed in the first overload period was that the 

equilibrium of tensional homeostasis was attained during the second overload after which 

the cells acted like controls, becoming relatively mechano-insensitive. This theory could 

also hold true with the TG¥-(3\ stimulated fibroblasts here, but the proposed higher level of 

tensional homeostasis following stimulation would mean the equilibrium is only attained 

around the fourth overload. Obviously there will be inter cell line variability, and being 

over a wider range of forces following TGF-ft stimulation, this would explain the stepwise 

reduction in mean post overload gradients as is seen in each subsequent period.

The second theory proposed for the differences observed in response with 

progressing overloads was that of matrix stiffening. The stiffer matrix produced with 

increasing applied forces caused less force to be perceived by the cells. This reduced the 

abnormal contractile response of Dupuytren’s disease fibroblasts subsequent to the first 

post overload period (figure 3.5.9.). Following TGF-0i stimulation the overall tension in 

the collagen gels is much greater and it follows that the matrix stiffness will also be 

significantly increased with cells perceiving less overall force, however the abnormal 

contractile responses to loading are still encountered. TGF-/?i may therefore greatly 

enhance the sensitivity of fibroblasts to changes in mechanical force. From the data 

presented here this seems to be especially so in Dupuytren’s fibroblasts but also occurs in 

control carpal ligament fibroblasts in the first post overload period. With each overload the 

matrix stiffness increases again, although at the higher levels of force with TGF-j8 i 

stimulation, the proportional increase in stiffness with each overload will be less than in un- 

stimulated gels. It might be a combination of this and the increased sensitivity of fibroblasts 

to mechanical stimuli (see figure 3.8.6 for explanation) that cause abnormal contractile 

responses to persist into later post overload periods, despite the fact that they may be 

perceiving less transmitted force each time the matrix stiffness increases.

178



Results

Fibroblast Mechano-insensitive
Fibroblast

TGF-/31 Stimulated 
Fibroblast

a) Unloaded collagen gel

Abnormal Cell Mediated Contractile Response to Overload 
---------------- ►  M--------—

b) Gel overloaded once

c) Gel overloaded twice'

 ► <--------

d) Gel overloaded twice seeded with TGF-/?i stimulated fibroblasts

Figure 3.8.5. Diagram representing the proposed effect of collagen gel loading on 
fibroblast perception of force and the result of TGF-/3i stimulation. Prior to loading and 
cells are able to perceive force and respond to it. The first overload causes a stiffening of 
the matrix (Darker colour S  ) but the cells are still able to perceive the force. The second 
overload stiffens the matrix still further (Much darker colour H  ) which prevents the force 
being transmitted to and perceived by the fibroblasts, so they are unable to respond to it

) and become mechano-insensitive ( ^ ^  ).Following TGF- (3\ stimulation, however 
the fibroblasts are more sensitive to applied mechanical forces (indicated by their brighter 
colour ) and despite the stiffer matrix they are still able to perceive and react to the
increased force of the overload.
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The third hypothesis put forward in chapter 3.5.5. to explain the loss of abnormal 

response to loading after the first overload was that of a refractory period. Here TGF-ft 

stimulation could be inducing the build up of increased intracellular stores of the factors 

(ions or proteins) that may be used up during cell-mediated contraction, or causing 

modification of the fibroblasts to manufacture more rapid and increased amounts of these 

factors. Thus, in stimulated fibroblasts the refractory period might initially be shorter or 

delayed so that the abnormal contractile response only diminishes following the third or 

fourth overload.

The mechanism by which TGF-/?i stimulation of fibroblasts could increase 

sensitivity to external mechanical stimuli is also not addressed by these experiments. 

Upregulation of cell/matrix interaction molecules such as integrins (Ingotz and Massague, 

1986) could occur along with an increase in cell process extension. Brown et al (2002) 

proposed that TGF-ft caused a direct effect on the cytoskeletal motor with enhanced 

integrin expression occurring later. An enhanced intracellular cytoskeleton, as is seen with 

differentiated myofibroblasts, could also improve perception of mechanical forces. 

Alternatively TGF-ft could upregulate any of the aspects of intracellular 

mechanotransduction pathways (Addario et al, 2001), which are thought to be involved in 

the way cells recognize and react to external forces.

As with the initial loading experiments in chapter 3.5. an important finding is the 

fact that these fibroblasts are contracting in response to an increased load. This again 

contradicts the theory of tensional homeostasis and is seen as an abnormal response to the 

elevated tension. Here it is demonstrated that TGF-jSi stimulation causes exacerbation of 

these abnormal responses, which not only occur at a higher level of tension and to a greater 

degree, but also persist into subsequent post overload periods. TGF- 0 1  is thus implicated 

once more in triggering or progression of Dupuytren’s contractures by acting in synergy 

with a mechanical stimulus to cause more rapid or prolonged fibroblast contraction. If 

combined with rapid and continuous matrix remodelling the diseased tissue would, in 

theory shorten more rapidly than with non TGF-/?i stimulated fibroblasts.
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The clinical scenario is clearly a much more complex milieu of interacting factors 

and forces however the findings here may have clinical implications. For example the 

patients who Skoog described (1963) as continuously extending fingers to try and 

overcome their Dupuytren’s disease would be particularly susceptible to rapid disease 

progression if there were also high levels of TGF-ft within the hand. An injury or repetitive 

minor trauma could cause release of this, or even as some authors have suggested hypoxia 

from microvascular occlusion (Murrell, 1992). A small increase in TGF-/3i locally in 

susceptible individuals could be sufficient to reach a threshold where myofibroblasts 

differentiate, fibroblasts contract excessively and respond abnormally to external 

mechanical stimuli and Dupuytren’s disease would rapidly progress.

The question arises; should patients who have established Dupuytren’s disease and 

suffer hand trauma, or undergo surgery for other reasons, have vigorous physiotherapy? In 

this scenario there will be high levels of TGF-j3i present and continuous passive or active 

finger extension will constantly load the Dupuytren’s tissue. It is conceivable, given the 

results here, that this will cause an exaggerated abnormal contractile response from the 

resident Dupuytren’s disease fibroblasts, which in combination with remodelling will lead 

to rapid disease progression. This is not infrequently encountered in clinical practice with 

several reports of single injuries causing exuberant evolution of Dupuytren’s disease 

(reviewed by Hueston and Seyfer, 1991).

Of course these patients present challenging management problems and sensible 

judgement must be employed to maintain a balance of doing the most good for least harm. 

In hand injuries it is usually preferable to strive for the best range of movement possible, 

dealing with potential Dupuytren’s contractures later.

In operations for Dupuytren’s disease itself, TGF- 0 1  has already been proposed as a 

possible culprit for disease recurrence by reactivating residual cord tissue (Chapter3.6). Its 

synergistic role with mechanical stimuli may not be as directly involved here, as in most 

procedures the diseased matrix is divided or excised. Thus post operative physiotherapy
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although stretching the fingers in extension will not apply this force to the Dupuytrens’s 

fibroblasts. This would only be the case if a tissue gap were later bridged, for example by 

scar tissue or if the diseased tissue was incompletely released.

SUMMARY:-

• TGF-j3i stimulation of fibroblasts caused a trend for the abnormal contractile 

responses in the first post overload period to be increased, which was significant in 

carpal ligament cells.

• TGF-j3i stimulation of Dupuytren’s fibroblasts caused their abnormal contractile 

responses to loading to persist into subsequent post overload periods in contrast to 

the pattern seen in un-stimulated fibroblasts.

Once again TGF-/3i stimulation has been shown to exacerbate the features of Dupuytren’s 

fibroblasts that may underlie the fascial tissue shortening which leads to clinical 

contractures. Here by increasing the sensitivity of fibroblasts to mechanical stimuli and 

exacerbating the abnormal contraction in response to loading, in disagreement with theories 

of tensional homeostasis, it could accelerate disease progression. TGF-jSi’s role in the 

matrix biology of Dupuytren’s disease could, however, be turned to the surgeons advantage 

by acting as a potential therapeutic target. By locally blocking or reducing the effects of 

TGF-j3i the abnormal contraction, alterations in tensional homeostasis and abnormal 

responses to mechanical stimuli could be abrogated.
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3.9. The Cellular Morphology of Dupuytren’s Nodule, Dupuytren’s Cord and 
Carpal Ligament Fibroblasts Within Collagen Lattices.

3.9.1. Introduction

At the conclusion of experimental runs on the culture force monitor the collagen lattices 

were processed as detailed in chapter 2.5.6. Half of the gel was used for morphological 

studies; the resident cells being stained using two techniques (chapter 2.5.7. and 2.5.8).

Several techniques have been developed to observe cells seeded within three-dimensional 

lattices in order that morphological changes could be studied. These generally require 

fixation of the collagen gel and subsequent staining of the resident cells. Eastwood et al 

(1996 and 1998) have simply stained the lattices using 1% Toluidine blue which will turn 

the cells a deep blue, easily identified using light microscopy. Others have used fluorescent 

stains such as phalloidin or phallacidin, which stains all actin filaments (Tarpila et al, 1996, 

Rayan and Tomasek, 1994, Tomasek et al, 1992). Vaughan et al (2000) have selectively 

stained for of-smooth muscle actin, identifying myofibroblasts within the collagen gels.

These techniques of visualising fibroblasts within collagen lattices under varying 

conditions or at differing time points have allowed researchers to gain important insights 

into cellular contractile function by relating the observed morphology to gel contraction. 

For example Eastwood et al (1996) found that most of the early contractile force generated 

by dermal fibroblasts on the CFM occurred whilst fibroblasts were extending cell processes 

and filopodia, concluding that this tension was actually the result of tractional remodelling. 

Staining for a-smooth muscle actin has demonstrated that the myofibroblast phenotype 

only occurs after a period of time in a tethered system (Tomasek et al 2002), thus in the 

culture force monitor model this is likely to be later once balanced forces are attained.

Importantly Eastwood et al (1998) also showed that fibroblasts align themselves 

along the lines of isometric tension in a low aspect ratio gel such as the one I have used 

here. Lattices can be described as having a high or low aspect ratio depending on the 

orientation of the rectangular gel and the forces across these two alternatives vary. A low
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aspect ratio gel is attached to the floatation bars along the long sides of the rectangle and 

force changes across the gel are minimal and more evenly distributed. High aspect ratio 

gels are arranged longitudinally with the floatation bars attached to the short sides and force 

gradients are much greater. Eastwood et a /’s findings indicates that cells can both perceive 

loads and the direction that they occur in, and reacting accordingly by altering their 

cytoskeleten to change alignment.

On observing the collagen lattices that had been fixed and stained following CFM 

experiments in the studies presented here, it was noted that nodule fibroblasts appeared to 

display a high degree of orientation along the long axis of the collagen gel. Conversely the 

carpal ligament fibroblasts appeared much less organised, often stellate in appearance. This 

difference in orientation was fascinating as it broadly corresponded with the force that the 

fibroblasts generated.

It was of interest therefore to next quantify these differences in cellular orientation.

3.9.2. Aim

To quantify the degree of alignment of fibroblasts within collagen lattices following 

contraction and loading, comparing each cell type, with and without TGF-/?i stimulation.

3.9.3. Methods

The method was developed as detailed in chapters 2.5.8 and 2.5.9. Collagen lattices were 

stained by two techniques following fixation in 10% formal saline. 1% Toluidine blue 

staining allowed reasonable assessment of the gross appearances (see figure 3.9.1.) of cells 

within the gels. It was felt however that immunohistochemical staining for Of-SMA with a 

counter stain allowed better overall visualisation of the fibroblasts, their cytoskeleton in 

relation to the nuclei, and the particular orientation of cells (figure 3.9.2 illustrates a high 

power view of a myofibroblasts within a collagen lattice).

For an initial comparison the mean cell body heights at 90° to the long axis of the 

collagen gel were measured for nodule and carpal ligament fibroblast populated collagen
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lattices. This was compared with the mean angle of deviation from the long axis of the 

collagen gel of the bipolar fibroblasts that were in focus in a random 2D micrograph. After 

consideration, the later method was believed to be superior and this was then applied to 

random fields at 400 x magnification to a sample of all other cell types. The reasoning 

behind this decision was based upon several factors. Firstly by measuring the cell body 

height, at no point was the actual direction of orientation of the fibroblast determined. The 

measurement was simply an indirect way of attempting to assess this based on the 

hypothesis that fibroblasts orientated along the long axis would have smaller cell body 

heights in this direction. The second method at least made a direct measurement of the 

orientation of the cells, all be it subjective in nature. In addition it was observed that there 

was not uniformity of cell body height within cells displaying similar orientation. Thus the 

mean angle of deviation from the long axis of the gel of all fibroblast types with and 

without TGF-/3i stimulation was obtained.

The results were compared and statistical analysis performed using the student’s t test 

(Sigma Stat, Jandel Corps.)
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3.9.4. Results

Figure 3.9.1 illustrates a typical nodule fibroblast seeded collagen gel observed under 200 x 

magnification following staining with 1% Toluidine blue. This field is from a central area 

of the collagen gel (see figure 2.14) and longitudinal alignment of the fibroblasts can be 

observed. There is however little definition of the intracellular cytoskeleton. In contrast the 

high power image of a similar region of collagen gel stained using the 

immunohistochemical method shown in figure 3.9.2, illustrates well the cell processes, 

cytoskeleton and thus the true orientation of each cell in focus, or the cell body height can 

be better determined.

Long axis of 
collagen gel

Figure 3.9.1. Micrograph of collagen gel seeded with nodule fibroblasts (x400 
magnification). At the conclusion of the experimental run on the culture force monitor the 
gel was fixed in formal saline and then stained using 1% toluidine blue. A general trend in 
the fibroblast orientation can be observed in the direction of the long axis of the collagen 
gel.
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Long axis of 
collagen gel

Figure 3.9.2. Photomicrograph of collagen gel seeded with nodule fibroblasts (x400 
magnification). At the conclusion of the experimental run on the culture force monitor the 
gel was fixed in formal saline and then stained using the immunoflourescence technique 
described above. Once again alignment along the long axis of the collagen gel can be seen, 
however more cellular detail is visible using this method

Lower power immunohistochemical images of both nodule and carpal ligament fibroblasts 

within collagen lattices are displayed in figures 3.9.3. and 3.9.4., where there are 

observable differences in the degree and direction of alignment of these two fibroblast 

types. These differences were quantified using the methods outlined above.

The mean cell body height for the initial groups of Dupuytren’s nodules and carpal 

ligament fibroblasts within collagen lattices on removal from the CFM is charted in figure 

3.9.5. This was measured in arbitrary length units by using image analysis software 

(UTHSCSA Image tool) applied to images of random fields at a uniform magnification for 

6 nodule cell lines and 6 carpal ligament cell lines (four different cell lines, 2 repeated).
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Long axis of 
collagen gel

Figure 3.9.3. Dupuytren’s nodule fibroblasts within collagen lattice at the end of a 
culture force monitor experiment, stained for a-SMA (x 200 magnification). Note that 
there appears to be a general orientation along the line of the long axis of the collagen gel, 
which is represented at the side of the micrograph.

Long axis of 
collagen gel

Figure 3.9.4. Carpal ligament fibroblasts within collagen lattice at the end of a culture 
force monitor experiment, stained for Of-SMA (x 200 magnification). Note that in 
contrast to the previous figure, there is no discemable principal orientation in relation to the 
line of the long axis of the collagen gel, which is represented at the side of the micrograph.
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The mean cell body height for nodule fibroblasts was 91.6 units (SD ±13.1 units), whilst 

the mean cell body height in carpal ligament fibroblasts was 72.5 units (SD ±15.3 units). 

The difference between these two values does just reach statistical significance (p<0.05) 

however the difference is not as striking as that seen when the mean angles of deviation 

from the gel long axis are compared for the same set of images (figure 3.9.6).

■  Nodule

■  Carpal Ligament

Figure 3.9.5. The mean cell body height of Dupuytren’s nodule fibroblasts (n=6 ) 
compared with carpal ligament fibroblasts (n=6 ) within 3D collagen lattices at the end 
of experimental runs on the culture force monitor. Error bars represent the standard 
deviations of the values, which are measured in arbitrary units using image analysis 
software. * p<0.05

Here the mean angle of deviation of Dupuytren’s nodule cells from the gel long axis is 

12.9°, (SD ± 6.6 °) compared to a value of 38.9 0 (SD ± 4.4 °) for carpel ligament 

fibroblasts. This value is highly significant (p<0.001) and indicates that the Dupuytren’s 

fibroblasts display a much closer alignment to the long axis of the collagen gels than is seen 

in carpal ligament fibroblasts. This reflected in a quantitative manner, what were apparent 

observable differences in the stained collagen gels.
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50 i
■  Nodule

■  Carpal Ligament

Figure 3.9.6. The mean angle of deviation from the long axis of 3D collagen lattices of 
Dupuytren’s nodule fibroblasts (n=6 ) and carpal ligament fibroblasts (n=6 ) at the end 
of experimental runs on the culture force monitor. Error bars represent the standard 
deviations of the values. * p<0.001

Subsequently this technique of quantifying cellular alignment was used for all fibroblasts 

types, with and without TGF-/3i stimulation the results of which are displayed in figure 

3.9.7. As detailed above in section 3.9.3 and is discussed further in the following section 

(3.9.5) this second technique was not selected because of the greater statistical significance 

but because of the appropriateness to the question being raised. Further to the data already 

obtained for nodule and carpal ligament fibroblasts, the mean deviation of cord fibroblasts 

was calculated as 28.9 0 (SD ± 8.0°), which was significantly less than carpal ligament 

(p<0.05) and greater then nodule (p<0.01).
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Following TGF-/?i stimulation of fibroblasts seeded in CFM collagen gels, the mean 

deviation from the gel long axis was 7.8 0 (SD ± 1.9°) for nodule fibroblasts, 14.7° (SD ± 

6.1 °) for cord fibroblasts and 15.8° (SD ± 6.5°) for carpal ligament fibroblasts. Both cord 

and carpal ligament values were significantly less than the un-stimulated values (p<0.01 

and p<0.001 respectively) although a similar comparison between nodule and TGF-/?i 

stimulated nodule fibroblasts just failed to reach significance (p=0.08). Additionally the 

differences between alignment of both cord and carpal ligament fibroblasts following 

stimulation were significantly different from TGF-/3i stimulated nodule fibroblasts 

(p<0.05).

■  Nodule 
□  Cord
■  Carpal Ligament

ID Nodule TGF B
□  Cord TGF B
ID Carpal Ligament TGF B

Figure 3.9.7. The mean angle of deviation from the long axis of 3D collagen lattices of 
all fibroblast types, with and without TGF-/3j stimulation. Error bars represent standard 
deviations. Significant differences are shown. * p<0.05 ; ** p<0.01 ; f  p<0.001
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3.9.5. Discussion

Cellular morphology is able to provide many clues as to the functional aspects of 

behaviour. As such microscopic examination of fibroblast structure has frequently been 

undertaken in collagen lattice studies. In some of the first culture force monitor 

experiments performed by Eastwood et al (1996), staining of fibroblasts within the 

collagen gels at set time points from the beginning of experiments, allowed the authors to 

conclude that the early phase of contraction was due to tractional remodelling. The rapid 

generation of force correlated well with fibroblasts changing shape from rounded cells to a 

more elongated or bipolar shape and additionally the spreading of cellular processes. 

Importantly the same group (Eastwood et al, 1998) also demonstrated that dermal 

fibroblasts within CFM collagen gels responded to the lines of mechanical stress that are 

exerted across the gel. In low aspect ratio gels where lines of stress were poorly 

pronounced, fibroblasts showed no specific orientation. By contrast, in high aspect ratio 

gels, such as those used in this study, where high strain gradients are present the fibroblasts 

demonstrated a bipolar shape, aligned parallel to the principle iso-strain lines. These results 

in high aspect ratio gels correspond with the findings here in Dupuytren’s nodule 

fibroblasts. As can be seen from figures 3.9.2. and 3.9.3. there is a clearly observable 

alignment of the fibroblasts within the central areas of the collagen lattices. This was not 

the case in carpal ligament fibroblast populated collagen lattices where a much more 

random cellular orientation was observed, often with stellate rather than bipolar fibroblasts. 

This correlated with the appearances of fibroblasts observed by Eastwood et al (1998) in 

low aspect ratio gels.

The work here has gone one step further than them, however, and a method of 

quantifying the cellular alignment of fibroblasts within the collagen lattices has been 

developed. The second method tested, on reflection was more appropriate to apply to the 

study of cellular alignment and was therefore used for all subsequent quantification, 

although both techniques have flaws. In both methods it is necessary to select a random 

field from the stained collagen gel and then apply the image analysis to fibroblasts that 

appear in focus within a slice of the collagen gel. Therefore a 2 dimensional sample
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population of the cells in a 3D collagen gel are used to determine alignment. In the first 

method, measuring of cell body height at right angles to the collagen gel long axis, the 

value may be variable upon other factors than cell orientation. For example larger cells will 

clearly have a larger cell body and hence a greater cell body height irrespective of 

orientation. Myofibroblasts, for instance are generally larger cells than standard fibroblasts 

and therefore if a gel contains more myofibroblasts, such as may be the case in nodule 

cells, then the mean cell body height will be artificially elevated. This picture may be 

further complicated by the fact that stellate cells with no particular orientation often have 

larger cell bodies.

The second method of defining a longitudinal axis of each in focus cell within the selected 

field relies on the subjective assessment of the observer to define that axis. In many 

fibroblasts this is straightforward, however some such as stellate cells, have a much more 

difficult axis to define, so introducing observer error. Other authors have quantified 

alignment of cells, for example Umeno and Ueno (2 0 0 2 ) observing cell orientation caused 

by magnetic fields derived a figure between 1 and 0 , relating the direction of the cells of 

interest to the mean direction of the total cells observed. A value of 1 suggested complete 

orientation, whereas a value of 0 represented a random orientation. Harding et al (2000) 

used a similar method to the one developed here, constructing a line through bipolar 

fibroblasts and measuring the deviation of this line from the axis of fibronectin cables.

The alignment of fibroblasts in this work correlated with the amount of overall force 

generation, with the most consistently aligned nodule fibroblasts generating most force, 

followed by cord, whilst carpal ligament fibroblasts generated least force and were more 

randomly oriented. It is impossible from these studies to determine if the significant 

differences observed in the alignment of carpal ligament fibroblasts and both nodule and 

cord fibroblasts was cause or effect. From the results obtained by Eastwood et al (1998) 

referred to above it is conceivable that the fibroblasts, in generating more force, also 

therefore perceived this increased force and were stimulated to become orientated along 

these lines of stress. One cannot rule out, however, the possibility that the very reason that 

more force was generated was because of the enhanced ability of the resident cells to align
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parallel to the gels long axis. It could be hypothesised that Dupuytren’s fibroblasts attach to 

the matrix in a superior way (with tighter or multiple adhesion sites) to carpal ligament 

fibroblasts. They therefore would be both better at perceiving tensional forces across the 

gel (thus developing alignment) and transmitting their own cytoskeletal contractile forces 

to the matrix, so generating increased contractile force.

The results of the alignment studies presented here also showed that TGF-pi stimulated 

fibroblasts were better oriented along the long axis of the collagen gels than non-stimulated 

fibroblasts. This correlated with the tendency to generate increased force in all cell types 

following TGF-pi stimulation and therefore fits in with the above discussion. To date there 

has been no published literature demonstrating increased alignment of fibroblasts following 

TGF-Pi stimulation.

It was not possible to quantify the presence of myofibroblast phenotype cells within the 3D 

collagen gels, despite satisfactory staining for a-SMA. The fibroblast density in CFM gels 

is very high compared with that used in other lattice models (Rayan and Tomasek, 1994; 

Tarpila et al, 1996; Vaughan et al, 2000) this makes separation of individual fibroblasts 

difficult especially in slices of three dimensional gels where background staining of other 

cells can obscure or blur clear margins. This makes differentiation between negative 

staining red cells and positive staining green cells impossible unless the individual 

fibroblast is brought into direct focus. One method of achieving a quantification of Of-SMA 

in the collagen gels would have been cellular extraction and subsequent Western blotting 

for the protein in question. This technique has been used by other authors (Grinnell et al, 

1999; Vaughan et al, 2000) but was beyond the scope of the current investigation. In 

subsequent studies however, it would be interesting to compare ot-SMA in the 3D model 

between cell types comparing them with the results obtained in monolayer culture 

(Chapters 3.3 and 3.6). Interestingly Tomasek and Rayan (1995) correlated contraction of 

stress-relaxed circular FPCLs with monolayer a-SMA expression in Dupuytren’s 

fibroblasts, but only after dividing cultures into low (<10% Of-SMA +ive cells) and high 

(>15% a-SMA +ive cells). Later the same group (Vaughan et al, 2000) correlated increased 

3D Of-SMA positivity with fixed released lattice contraction.
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In their study of strain pattern and fibroblast alignment using high and low aspect ratio gels, 

Eastwood et al (1998) also demonstrated an area in high aspect ratio lattices close to the 

floatation bars where there was a very low strain gradient. In this so-called delta zone 

fibroblasts were randomly oriented, often stellate. The same pattern was observed with our 

Dupuytren’s fibroblast seeded collagen lattices when areas of delta zone (figure 2.13.) were

stained and observed as shown in figure 3.9.8.

< ------------ >

Long axis of
collagen gel

Figure 3.9.8. An area of delta zone from a nodule fibroblast populated collagen lattice 
stained for a-SMA. (viewed at 400x magnification). Note the random orientation of 
fibroblasts compared with the long axis of the gel and the stellate nature of many.

SUMMARY:-

• Observed differences in the degree of alignment of fibroblasts within lattices were 

quantified and it was determined that the nodule fibroblasts demonstrated 

significantly closer alignment to the line of the long axis of the collagen gels than 

the cord or carpal ligament fibroblasts.

• Degree of alignment corresponded with the degree of contraction measured.

• Stimulation of fibroblasts with TGF-(3i caused a significant increase in the mean 

alignment of fibroblasts within collagen gels in cord and carpal ligament cell types.
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Chapter 4 

General Discussion
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4. General Discussion

4.1. Background

In this thesis a series of experiments have been undertaken in order to understand the 

cellular mechanisms behind the development of the most disabling aspect of 

Dupuytren’s disease, the digital flexion deformities. Following an extensive review of 

the literature and evaluation of the current theories regarding contracture formation, it is 

apparent that digital flexion deformities occur as a result of physical shortening of the 

Dupuytren’s fascial fabric (Brickley Parsons et al, 1981). This is a consequence of two 

simultaneous processes. Firstly cell mediated contraction of the matrix and secondly 

matrix remodelling which fixes the matrix in the shortened position. The continuous 

stepwise progression of these process results in a shorter piece of fascia, which 

contracts the digits of the involved rays and prevents extension.

The study has focussed on the aspect of cell-mediated contraction whilst additionally 

addressing the hypothesis that nodule and cord derived fibroblasts may exhibit different 

phenotypes and behaviours and thus show differential matrix shortening properties. 

This may lead on to allow a better understanding both of the natural history of disease 

progression and of the relative contribution nodules and cords play in the pathogenesis 

of Dupuytren’s disease.

4.2. Experimental Evidence

Tissue cellularity has been quantified (Section 3.1) in those regions of Dupuytren’s 

fascia specifically defined as nodule or cord. Significant differences were established 

with nodule being three times more cellular than areas of cord. It was thus possible to 

be confident that tissue separation for explant cultures on the basis of gross morphology 

was valid.

The investigation into cell-mediated contraction began by assessment of the 

myofibroblast phenotype, firstly in tissue specimens of nodule, cord and carpal 

ligament. The myofibroblast, because of its morphological features and the presence of 

an a-SMA cytoskeletal network has been proposed as the contractile cell of
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Dupuytren’s contracture since it was first identified in the diseased fascia by Gabbiani 

and Majno in 1972.

By staining tissue sections for a-SMA it was demonstrated that the myofibroblast 

phenotype was prevalent in nodules, however it was also possible to established that 

myofibroblasts could be identified in 2 0 % of cords examined; a previously unreported 

finding. Furthermore the myofibroblasts that were present in cords tended to be in 

defined areas or foci of hypercellularity. Luck (1959) proposed that nodules progress to 

dormant fibrotic cords as the natural history of Dupuytren’s disease, in which case these 

areas may be old nodules that are in the final stage of regression. Alternatively they may 

be small foci of re-activated Dupuytren’s disease within previously dormant cords. 

Fibroblasts, stimulated by local factors may have begun to proliferate, as well as 

differentiate into myofibroblasts. In either case the presence of this contractile 

phenotype in cords suggests they may play at least some role in the cell mediated 

contraction, all be it to a lesser extent than nodules. In comparison to Dupuytren’s tissue 

no myofibroblasts were observed in carpal ligament tissue.

Results then demonstrated that these in-vivo findings of myofibroblast phenotype are 

maintained into populations of cultured fibroblasts from the specific regions 

(Section 3.3.). Such differences in the phenotype of fibroblast cultures from nodules and 

cords have not been previously shown, indeed many authors who have studied 

myofibroblasts in cultured cells have either used undefined tissue (Murrell et al, 1991) 

or only nodular tissue (Hurst et al, 1986; Rayan et al, 1996; Tarpila et al, 1996). Once 

more the prevalence of the myofibroblast phenotype in nodules suggests they may have 

a greater role to play in the eventual pathogenesis of contracted tissue. One could 

hypothesise that the active, myofibroblast rich nodule acts almost as a motor, pulling on 

the cord, creating a nodule-cord contractile unit. Thus the nodule might be a prime 

target for any future non-surgical therapy.

Having proved that there was a significant difference in the contractile cell phenotype 

between nodule and cord cultures, and indeed a significantly increased percentage in 

nodule cultures than non-diseased carpal ligament cultures, the subsequent experiments 

examined the actual cell-mediated contractile properties of these fibroblast types.
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In chapter 3.4 Dupuytren’s nodule fibroblasts were demonstrated to possess enhanced 

force generation over both cord and carpal ligament fibroblasts using the culture force 

monitor model. Cord fibroblasts were also more contractile than carpal ligament 

fibroblasts, however of even greater interest was the alteration in the typical CFM 

contraction profile (described in dermal fibroblasts by Eastwood et al, 1994), which was 

observed in both types of Dupuytren’s fibroblasts. As discussed in 3.4.5. this represents 

a delay in achieving the level of tensional homeostasis which may be encountered at a 

much higher level of tension. This finding alone is significant as it suggests 

Dupuytren’s fibroblasts have altered tensional homeostasis and may explain why these 

abnormal cells could continue to contract in an effort to reach this higher level when 

normal fibroblasts would not. This could underlie the progressive irreversible nature of 

clinical contractures. Further to this however, it was also shown in the subsequent 

loading experiments (Chapter 3.5) that the responses to increases in mechanical 

stimulation are not what would be expected given the theory of tensional homeostasis.

Dupuytren’s nodule fibroblasts, and to a lesser extent cord fibroblasts, in collagen gels 

contracted following a uniaxial loading stimulus. Clearly in the clinical setting this 

contraction would create an undesirable positive feedback, serving only to exacerbate 

the problem of cell-mediated contraction. This finding may also explain the anecdotal 

reports of excessive or rapid disease progression in patients who manually try to 

overcome the condition by continuous stretching (Skoog, 1963), as well as the 

observation that following continuous elongation techniques, if  fasciectomy is not 

performed contractures redevelop very rapidly (Messina and Messina, 1993).

The growth factor Transforming Growth Factor beta one (TGF-/?i) has been widely 

studied for its pro-fibrotic effects and its ability to cause fibroblast to myofibroblast 

differentiation (Tomasek et al, 2002). The differential effects of TGF-ft stimulation on 

nodule and cord fibroblast cultures have, however not been previously studied.

The rise in the percentage of the myofibroblast phenotype in nodule cultures 

corresponded with previous studies (Dugina et al, 2001; Vaughan et al, 2000) although, 

notably, cord fibroblasts were stimulated to differentiate into myofibroblasts at an equal 

percentage, whereas this was not the case with comparison carpal ligament fibroblasts. 

These results are proposed to indicate cord fibroblasts remain susceptible to activation
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or re-activation given an appropriate stimulus, even though they may appear quiescent. 

TGF-j3i can be released in a variety of scenarios and it is well accepted that levels are 

increased locally following trauma and in wound healing (Bennett and Schultz, 1993). 

The results presented here therefore, could offer an explanation for disease progression 

or onset following trauma (Hueston and Seyfer, 1991) where dormant fibroblasts could 

become activated and hyper-contractile, but furthermore, they may provide the reason 

why disease recurrence is so high in this condition. Even the simple wound healing 

response following procedures for the Dupuytren’s disease itself would provide an 

increase in local factors such as TGF-jSi causing activation of residual fibroblasts and 

early recurrence.

Following studies of the effects of TGF-fr on the contractile cell phenotype, the model 

of actual contraction was revisited (Section 3.7). The effects of simple pre-stimulation 

of fibroblasts with TGF-ft were striking. Overall contractile force generation was 

increased across all fibroblast types with a trend to increased 2 0  hour gradients on the 

CFM. This indicated increased abnormalities of tensional homeostasis with greater 

fibroblast contractility. The changes observed in the shape of the contraction profile, 

with rapid early contraction, also challenge the purity of the myofibroblasts role in this 

enhanced contraction. TGF-ft may be working at several levels to bring about up- 

regulated contraction of collagen lattices; as a direct agonist of contraction, by 

enhancing cell matrix interaction and by inducing myofibroblast differentiation.

Finally the responses to uniaxial loading of fibroblasts in collagen gels (Chapter 3.8) 

lends further evidence to the role of TGF-ft in abnormal Dupuytren’s fibroblast 

behaviour. Stimulated Dupuytren’s fibroblasts showed both enhanced and persisting 

abnormalities in their response to a loading force when compared with un-stimulated 

fibroblasts. As before these were at odds with the theory of tensional homeostasis and 

would serve only to exacerbate the unwanted abnormal cellular responses that appear to 

be taking place in Dupuytren’s fibroblasts. Clinically this might declare itself by rapid 

contracture development following splinting for an injury.

200



General Discussion

4.3. Unifying Theory of Contracture Development

In the light of the results from the experimental work presented here, combined with 

current knowledge of Dupuytren’s disease an attempt has been made to formulate an 

overall theory of the mechanism of clinical contracture development. This is illustrated 

in figure 4.1 with numbers indicating where findings of this current study fit in to the 

framework. It is proposed that the nodule or nests of such nodular like tissue are 

responsible for most of the disease features. However, although there may be a 

progression from nodule to dormant cord tissue this could be reactivated by factors that 

induce TGF-/?i such as trauma, and wound healing. This reactivation could cause 

recurrent disease after surgery or rapid progression in previously indolent disease. A 

proportion of fibroblasts would differentiate into myofibroblasts causing a period of 

active disease.

Resident cells, especially those within nodules would apply force to the surrounding 

matrix in an attempt to achieve a new higher level of tensional homeostasis. Cell 

contraction could be exacerbated by positive feedback from external forces as was seen 

in the overloading studies. Factors such as rapid, continuous matrix remodelling could 

have a duel effect by preventing the acquisition of homeostasis and causing physical 

tissue shortening leading to unchecked fascial shortening and resulting in clinical digital 

flexion deformities.
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Figure 4.1. Theory of Dupuytrens Contracture Development
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The investigations in this thesis have concentrated on the relative properties of nodule 

and cord derived cells and how these may be involved in the natural history of 

Dupuytren’s contracture. Studies of the contractile properties of Dupuytren’s fibroblasts 

and their response to tensional stimuli have provided a fascinating insight into how cells 

within the diseased matrix may behave to cause contracture development and 

progression. With further work to identify the interplay between these new features of 

abnormal fibroblast behaviour and the process of matrix remodelling, a clear 

understanding of why Dupuytren’s disease occurs and progresses could emerge.

Looking to the future, it may become possible to target the process of cellular 

contraction or even the more basic function of cell-matrix interaction. If the 

abnormalities of tensional homeostasis that have been elucidated here could be reversed 

or blocked there may be hope of developing therapies for this challenging and 

enigmatic condition to halt contracture advancement.
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4.4. Conclusions

• Quantification of cellularity in Dupuytren’s disease tissue determined that areas 

defined as nodule displayed significantly greater cellularity than areas of cord.

• The Myofibroblast phenotype was present in a greater number of nodule tissue 

specimens than cord and at a higher density.

• Differences in the myofibroblast phenotype were maintained into differential 

cultures of Dupuytren’s nodule, Dupuytren’s cord and carpal ligament cells.

• The myofibroblast phenotype in cultures as a percentage of total cell number 

was three times higher in nodules than cords.

• Dupuytren’s nodule fibroblasts generated significantly greater force than cord 

fibroblasts in the culture force monitor model. Both nodule and cord fibroblasts 

generated significantly greater force than normal carpal ligament fascial cells.

• Overloading of lattices seeded with Dupuytren’s fibroblasts caused an abnormal 

contractile response during the first post overload period.

• Stimulation of fibroblast cultures with TGF-P i caused a significant up regulation 

of the myofibroblast phenotype in both nodule and cord derived cultures to the 

same level despite basal differences.

• TGF-jSi stimulation of fibroblasts caused a significant increase in the mean 

generation of force in all cell types at 20 hours, which was accompanied by a 

change in the shape of the contraction profile in Dupuytren’s cells.
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• TGF-/3i stimulation of Dupuytren’s fibroblasts caused their abnormal contractile 

responses to loading to persist into subsequent post overload periods in contrast 

to the pattern seen in un-stimulated fibroblasts.

• Degree of fibroblast alignment within FPCLs removed from the culture force 

monitor corresponded with the degree of contraction measured.
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4.5. Future Direction

There is potentially interesting work within the current investigation which has not been 

undertaken due to constraints of time. For example of-smooth muscle actin content of 

the snap frozen stored CFM gels could be analysed by protein extraction and Western 

blotting. It might then be possible to relate this more directly to contractile force and 

draw comparisons with the a-smooth muscle actin content seen here in monolayer 

cultures. Differences might highlight the role of the environment that the cells exist 

within.

In addition, whilst the effect of an overloading stimulus has been examined it would 

also be of interest to study the effects of an equivalent underloading. Cells may also 

respond in an unexpected way to this stimulus, which might be analogous to the clinical 

setting of fasciotomy where tension is suddenly released from the matrix.

There are then two possible avenues to follow for the subsequent focus of the main 

research.

One main aim would be to try and find a means of reducing Dupuytren’s fibroblast 

contractility, either nodule, cord or both. This brings the current investigation back 

round towards it’s therapeutic goals.

One method of doing this might be to investigate the use of an anti-TGF-Pi antibody. 

As has been shown in this thesis TGF-P 1 appears to have a stimulatory role for the 

abnormalities that have been elucidated in contraction and tensional homeostasis, as 

well as its known role in the differentiation of myofibroblasts. By blocking TGF-P 1 

these abnormalities within the Dupuytren’s fibroblast population may be reduced thus 

diminishing the potential for contracture formation.

A second alternative could be to investigate the matrix changes brought about by the 

contracting cells. Dupuytren’s disease, as has been stated several times within this 

thesis, is a combination of cellular contractile forces coupled with constant matrix 

remodelling. This causes the permanent shortening of the diseased tissue and fixed 

contractures. Degree of matrix remodelling by contracting fibroblasts could be
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examined by the addition of cytoskeletal disrupting agents such as cytochalasin D. This 

would cause the release all cell mediated contraction and forces held by the cellular 

cytoskeleton, leaving only the gel shortening that had occurred due to collagen 

remodelling over the time course of the experiments. Using the culture force monitor 

this residual level of tension could be measured and comparisons made once more 

between nodule, cord and carpal ligament fibroblasts. Again the role of TGF-p i could 

be examined. This may provide evidence that Dupuytren’s fibroblasts, and possibly 

nodule fibroblasts in particular, are more adept at remodelling the matrix they reside 

within. Having investigated cell mediated contraction in this thesis, such an 

investigation of matrix remodelling could complete the picture of the cell biology of 

contracture formation.
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APPENDIX I: List of Dupuytren’s and control fibroblast cell lines.

Dupuytren’s cell lines
Patient Sex Age/yrs Hand Digit

1 M 49 L Little
2 M 45 L Ring
3 F 65 R Ring
4 M 72 L Ring
5 M 62 R Ring
6 M 70 L Ring & Little
7 M 55 L Little
8 M 70 R Ring
9 M 65 L Little
10 M 27 R Ring
11 M 71 L Ring & Little
12 M 75 R Ring & Little
13 M 62 L Middle
14 M 66 L Ring
15 F 79 L Ring & Little
16 F 71 R Little

Table I. The age of the patient, hand and ray that the Dupuytren’s scar was excised from.

Control (Carpal Ligament cell lines
Patient Sex Age/yrs Hand

1 F 55 L
2 M 72 R
3 M 73 R
4 F 62 R

Table n. The age of the patient and hand that the carpal ligament originated from.
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APPENDIX II: Recipes and Formulations of Solutions Used

Normal Fibroblast Growth Media (NGM 10% FCS)

Dulbecco’s Modified Eagles Media 
Gibco

500ml

Foetal Calf Serum 
No. 10106-169 Gibco

50ml

Pen/Strep 
No. 1540-122, Gibco

5ml

L-Glutamine 200MM (lOOx) 
No. 250030-024, Gibco

5ml

Hepes Buffer (lMpH8) 3.5ml

Trypsin : Versene Solution (1:10)

Trypsin (2.5%)
No. 15090-046, Gibco

2ml

Versene 
No. 15040-033, Gibco

18ml

Bufffered Formal Saline

Formaldehyde 
No. 284216N, BDH

1 litre

Sodium Dihydrogen Phosphate (dihydrate) 45g

Di-sodium hydrogen phosphate (anhydrous) 65g

Made up to a total of 10 litre with distilled water

Tris Buffered Saline + Tween (lOOmM Tris and 150mM NaCL, pH 7.6)

Distilled Water 950ml

Tris 12.1 lg

NaCl 8.75g

HCL Dropwise to reach a pH of 7.6

Made up to a total of 1 litre with distilled water
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Phosphate Buffered Saline without magnesium and calcium (PBS)

Distilled Water 1000ml

KC1 0.2g 2.685mM

NaCl 8.0g 0.13M

KH2PO4 0.2g 1.47mM

Na2HP04.2H20 1.435g 8.06mM

DABCO Mixture -  Anti Fade Agent for Immunofluorescence

14-Diazodicyclo 2,2,2 Octane 
(Sigma Aldrych D2, 780-2)

lg

PBS
(As made up above)

4ml

Glycerol 36ml

Stored at 4°C, wrapped in silver foil
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APPENDIX III: The Culture Force Monitor

Mould Composition
Silicone Elastomer Kit,

Sylgard 186: 63417 5U 
Dow Coming, USA

200g

Sylgard 186: 63417 7W 
Dow Coming, USA

20g

The above quantities of elastomer gel mix are combined in a beaker to form a smooth thick 

paste.

The resulting liquid mix is poured into 10cm Nalgene petri dishes (No. 8-0402, Nalgene, 

Nalge Company, Rochester, New York) around a standard sized, machined metal bar 

placed in the center of the dish where the well is to be. This is then placed in a vacuum 

cylinder and negative pressure applied until no further bubbles are evacuated from the gel 

(around 20 minutes). Bubbles on the surface of the gel are burst with a sterile needle and 

the mould is placed in the vacuum for a further 15 minutes again until no further bubbles 

are evacuated. Finally it is placed in an incubator at 37°C overnight to solidify. Once set the 

bar is removed leaving the mould ready for use after autoclaving.

Dimensions of Mould

7.5 cm
2.5 cm
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Dimensions and Composition of Floatation Bars and A Frames

0.3 cm

“A” Frames were constructed from lengths of 
surgical wire, bent and twisted to the dimensions 
indicated left and below.

2.5 cm

1.4 cm

1.2 cm

1.3 cm

0.9 cm
0.5 cm

2.1 cm

Floatation Bars were constructed from No. 10 Clear Mesh (Cat No. 33030-1, 
John Lewis Department Store, Haberdashery Dept.)
Four 8 x 3  square rectangles are joined together to form the floatation bars using 
nylon thread.
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APPENDIX IV: Calibrating The Culture Force Monitor

In order to ensure the continuing accuracy of the readings obtained on the culture 

force monitor, the force transducer needs to be calibrated. This is done on a monthly basis 

to obtain a calibration factor, which is entered into the appropriate box in the Lab VIEW VI, 

Program (National Instruments).

The calibration is carried out using a series of precise weights, which are placed in 

turn onto the force transducer. This is mounted using its clamp so that the weights will pull 

the force transducer vertically down in the same direction as a contracting collagen lattice 

would pull the lever arm if it were orientated horizontally.

Starting with no weight on the force transducer (0) the incubator door is closed and 

the system allowed to equilibrate for temperature and CO2 levels. The calibration factor in 

Lab VIEW VI is set to 1 and a one minute recording is made of the force measured. At this 

point the first in the series of weights is carefully placed onto the force transducer. This 

causes a deflection and an increase in the force reading. Once again the incubator door is 

closed and the system allowed to equilibrate, before a second one minute recording is 

made. This process is repeated for each weight in turn. For each one minute force recording 

the software will record 60 readings of force and the mean of these 60 readings is 

calculated to provide a relative mean force transducer reading for each weight.

This data is then tabulated against the weight used and the force in dynes that this 

weight corresponds to (1 dyne = 10'5 newtons). A sample table is shown below and from 

this a scatter plot of each computer reading and the equivalent standard force applied is 

generated. A best-fit line is drawn and providing the correlation coefficient (R ) is good, the 

slope of the graph corresponds to the calibration factor, which should be entered into the 

software (ie. the value the actual reading of the force transducer needs to be multiplied by 

to convert the figure to dynes). A sample graph and the relevant calculations are shown 

below the table.

214



Appendix

Weight Number Actual Weight 

(g)

Corresponding 

Force in Dynes

Mean Force 

Transducer 

Reading

Mean Force 

Transducer Reading 

-  0 Reading

0 0 -0.06154 0

1 0.03 29.4 15.18333 15.24487

2 0.05 49 27.91803 27.97957

3 0.2 196 108.7419 108.8035

4 0.3 294 162.9885 162.7501

5 0.5 490 270.2121 270.2737

Table showing actual weight used to calibrate the CFM force transducer, the corresponding 
force in dynes that this relates to and sample readings from a calibration run. The final 
column of mean force transducer readings for each weight with the zero value subtracted is 
then used to generate the scatter plot below.
NB. Force = Mass x Acceleration so here

The force (in Newtons) = Weight (kg) x Gravity (9.8)

And Dynes = 10'5 Newtons

y = 1.81x

600

500

400

300

200

100

100 150

Force Reading

200 250 300

Scatter Plot of Calibrating force in Dynes plotted against the CFM force transducer reading. 
Here the linear correlation is ideal (R2 =1) and the slope of this line gives the calibration 
factor to be used. In this case it is 1.81.
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