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Cardiovascular diseases (CVD) are the leading cause of
morbidity and mortality in the United States.1 Primary

prevention and secondary prevention of CVD are public
health priorities.2 Substantial data indicate that CVD is a life
course disease that begins with the evolution of risk factors
that in turn contribute to the development of subclinical
atherosclerosis.3,4 Subclinical disease culminates in overt
CVD.5,6 The onset of CVD itself portends an adverse prog-
nosis with greater risk of recurrent events, morbidity, and
mortality.7,8 It is also increasingly clear that although clinical
assessment is the keystone of patient management, such
evaluation has its limitations.9–12 Clinicians have used addi-
tional tools to aid clinical assessment and to enhance their
ability to identify the “vulnerable” patient at risk for CVD, as
suggested by a recent National Institutes of Health (NIH)
panel.13,14 Biomarkers are one such tool to better identify
high-risk individuals, to diagnose disease conditions promptly
and accurately, and to effectively prognosticate and treat patients
with disease. This review provides an overview of the molecular
basis of biomarker discovery and selection and the practical
considerations that are a prerequisite to their clinical use.

What Is a Biomarker? Definition and Types
The term biomarker (biological marker) was introduced in 1989
as a Medical Subject Heading (MeSH) term: “measurable and
quantifiable biological parameters (eg, specific enzyme concen-
tration, specific hormone concentration, specific gene phenotype
distribution in a population, presence of biological substances)
which serve as indices for health- and physiology-related assess-
ments, such as disease risk, psychiatric disorders, environmental
exposure and its effects, disease diagnosis, metabolic processes,
substance abuse, pregnancy, cell line development, epidemio-
logic studies, etc.” In 2001, an NIH working group standardized
the definition of a biomarker as “a characteristic that is objec-
tively measured and evaluated as an indicator of normal biolog-
ical processes, pathogenic processes, or pharmacologic re-
sponses to a therapeutic intervention” and defined types of
biomarkers (Table 1).15

A biomarker may be measured on a biosample (as a blood,
urine, or tissue test), it may be a recording obtained from a
person (blood pressure, ECG, or Holter), or it may be an
imaging test (echocardiogram or CT scan).

Biomarkers can indicate a variety of health or disease
characteristics, including the level or type of exposure to an
environmental factor, genetic susceptibility, genetic re-
sponses to exposures, markers of subclinical or clinical
disease, or indicators of response to therapy. Thus, a simplis-
tic way to think of biomarkers is as indicators of disease trait
(risk factor or risk marker), disease state (preclinical or
clinical), or disease rate (progression).16 Accordingly,
biomarkers can be classified as antecedent biomarkers (iden-
tifying the risk of developing an illness), screening biomar-
kers (screening for subclinical disease), diagnostic biomark-
ers (recognizing overt disease), staging biomarkers
(categorizing disease severity), or prognostic biomarkers
(predicting future disease course, including recurrence and
response to therapy, and monitoring efficacy of therapy).15

Biomarkers may also serve as surrogate end points (Table
1).15 Although there is limited consensus on this issue, a
surrogate end point is one that can be used as an outcome in
clinical trials to evaluate safety and effectiveness of therapies
in lieu of measurement of the true outcome of interest. The
underlying principle is that alterations in the surrogate end
point track closely with changes in the outcome of inter-
est.17–19 Surrogate end points have the advantage that they
may be gathered in a shorter time frame and with less expense
than end points such as morbidity and mortality, which
require large clinical trials for evaluation. Additional values
of surrogate end points include the fact that they are closer to
the exposure/intervention of interest and may be easier to
relate causally than more distant clinical events. An important
disadvantage of surrogate end points is that if clinical
outcome of interest is influenced by numerous factors (in
addition to the surrogate end point), residual confounding
may reduce the validity of the surrogate end point. It has been
suggested that the validity of a surrogate end point is greater
if it can explain at least 50% of the effect of an exposure or
intervention on the outcome of interest.20

Characteristics of an Ideal Biomarker
The overall expectation of a CVD biomarker is to enhance the
ability of the clinician to optimally manage the patient. For
instance, in a person with chronic or atypical chest pain, a
biomarker (eg, treadmill stress test or dobutamine stress
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echocardiogram) may be expected to facilitate the identifica-
tion of patients with chest pain of an ischemic etiology
(angina). In a patient presenting to the emergency department
with acute severe chest pain (suspected acute coronary
syndrome), a biomarker may help to differentiate patients
with an acute myocardial infarction (MI) from those with
unstable angina (eg, troponin I or T), acute pulmonary
embolism (eg, D-dimer or ventilation perfusion scan), or an
aortic dissection (eg, transesophageal echocardiogram) in a
timely fashion to facilitate targeted management. In a patient
with an established acute MI, a biomarker may be able to
assess the likelihood of the following: a therapeutic response
(eg, ECG ST-segment elevation indicating need for
thrombolysis); the extent of myocardial damage (eg, tropo-
nin); the severity of underlying coronary disease (eg, coro-
nary angiography); the degree of left ventricular dysfunction
(eg, echocardiography); the risk of future recurrences (eg,
exercise stress test); and progression to heart failure (eg,
B-type natriuretic peptide [BNP]).

Regardless of the purpose for its use, a new biomarker will
be of clinical value only if it is accurate, it is reproducibly
obtained in a standardized fashion, it is acceptable to the
patient, it is easy to interpret by clinicians, it has high
sensitivity and high specificity for the outcome it is expected
to identify, it explains a reasonable proportion of the outcome
independent of established predictors consistently in multiple
studies, and there are data to suggest that knowledge of
biomarker levels changes management (Table 2).21 Table 2
displays the desirable properties of biomarkers overall and of
biomarkers of screening, diagnosis, and prognosis.22–29

The desirable properties of biomarkers vary with their
intended use.30 For screening biomarkers, features such as
high sensitivity, specificity, and predictive values, large
likelihood ratios (discussed below), and low costs are impor-
tant. For diagnostic markers of acute cardiac disease (such as
acute MI), in addition to the aforementioned characteristics,
rapid sustained elevation, high tissue specificity (indicating
myocardial origin), release proportional to disease extent, and
assay features conducive to point-of-care testing are critical.22

For biomarkers monitoring disease progression or response to
therapy, features such as sensitivity or specificity are less
important because the patient serves as his or her own control
(baseline values are compared with follow-up values). Nar-
row intraindividual variation and tracking with disease out-
come or therapy are critical. Costs may be less important for
prognostic markers because only people with disease are
tested. Some biomarkers (eg, exercise stress test) may be used
for both diagnostic and prognostic purposes. Establishing the
prognostic utility of a biomarker is more challenging because
it requires a larger sample and a prospective design, whereas
demonstrating its value as a diagnostic test requires a smaller
sample and a cross-sectional design.31

Regardless of the intended use, it is important to remember
that biomarkers that do not change disease management
cannot affect patient outcome and therefore are unlikely to be
cost-effective (judged in terms of quality-adjusted life-years
gained). Typically, for a biomarker to change management, it
is important to have evidence that risk reduction strategies
should vary with biomarker levels, and a biomarker-guided
approach translates into better patient outcomes compared
with a management scheme (usually the current standard of
care) without biomarker levels. It also means that biomarker
levels should be directly or indirectly modifiable by therapy
on the basis of evidence from prospective clinical trials.
Biomarkers that do not result in medical intervention may
still serve other useful purposes, such as the reassurance value
of a negative exercise test in an asymptomatic airline pilot.32

There are other examples of psychological benefits accruing
from negative biomarker test results such as testing for
genetic susceptibility for cancer33 or Alzheimer disease.34 In
other situations, biomarkers may serve as research tools by
providing insights into disease mechanisms.

Defining Abnormal Biomarker Values
Defining abnormal values is a critical step before the clinical
use of a biomarker.30 It is important to characterize the
distribution of the markers in people in the community and in
patient samples on whom the biomarker will be tested. Thus,

TABLE 1. Biomarkers: A Basic Glossary15

Biological marker (biomarker): A characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic
processes, or pharmacological responses to a therapeutic intervention.

Type 0 biomarker: A marker of the natural history of a disease and correlates longitudinally with known clinical indices.

Type I biomarker: A marker that captures the effects of a therapeutic intervention in accordance with its mechanism of action.

Surrogate end point (type 2 biomarker): A marker that is intended to substitute for a clinical end point; a surrogate end point is expected to predict clinical
benefit (or harm or lack of benefit or harm) on the basis of epidemiological, therapeutic, pathophysiological, or other scientific evidence.

Risk factor: A risk factor is associated with a disease because it is in the causal pathway leading to the disease.

Risk marker: A risk marker is associated with the disease (statistically) but need not be causally linked; it may be a measure of the disease process itself.

Clinical end point: A characteristic or variable that reflects how a patient feels, functions, or survives.

Intermediate (nonultimate) end point: A true clinical end point (a symptom or measure of function, such as symptoms of angina frequency or exercise
tolerance) but not the ultimate end point of the disease, such as survival or the rate of other serious and irreversible morbid events.

Validation of a biomarker (assay or method validation): A process for assessing performance characteristics (ie, sensitivity, specificity, and reproducibility) of
a biomarker measurement or an assay technique.

Qualification of a biomarker (clinical validation): The evidentiary process linking a biomarker to disease biology or clinical outcome.

Evaluation of a biomarker: A process of linking biomarkers to outcomes, often with a view to establish surrogate status.

Adapted from Reference 15.
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TABLE 2. Desirable Features of Biomarkers of Atherosclerotic CVD

All Biomarkers
“Screening” Biomarkers to Identify

“Vulnerable” Patients
“Diagnostic” Biomarkers to Identify

Ischemia or Injury22 “Prognostic/Treatment” Biomarkers

General features Known “reference limits” High myocardial specificity Known reference limits

Measure a specific pathology Add to known CHD index such as the
FHS risk score

Not present in normal serum/noncardiac
tissue

Add to known prognostic index

Add to clinical assessment Change in c statistic or AUC
(discrimination)

Zero baseline, immediate release (early
detection)

Change in marker alters management

Acceptable to patient Acceptable calibration Long t1/2 Affect choice of drug

Linear relation between change in
marker and change in pathology

“Rule in” strategy with high specificity
more important to avoid mislabeling
asymptomatic individuals

Permit long time window for diagnosis Change dose of drug

Stable product Account for a moderate or greater
proportion of CHD in the community

But �24 h to permit diagnosis of
recurrent ischemia

Indicate tolerance

Single measure representative Change management Release proportional to injury size or
ischemic burden

Indicate safety margin

Applicable to men and women,
different ages, different ethnicities

Reclassify risk in patients at
intermediate risk

Convenience for point-of-care testing Used for monitoring progression of
disease

Replication in multiple studies Target individuals with increased
levels of biomarker superior to
conventional Rx for reducing risk

Rapid test (results available in �1 h) Trajectory of marker correlates with
disease progression

Cost-benefit ratio favorable No special sample preparation needed “Rule out” strategy with high specificity
more important to avoid mislabeling
asymptomatic individuals

Assay/measurement features (see Table
3 also)

Inexpensive Cost-effective

Internationally standardized Readily available REMARK guidelines26

Accuracy Diagnostic cutoff well defined and
accepted

Precision Known discrimination limits or action
thresholds

Change management, triage, or specific
treatment

Assay application features “Rule out” strategy

Tested in a spectrum of people with
varying degrees of pathology

With high sensitivity; more important
to avoid missing disease

High sensitivity and specificity Cost-effective

Laboratory features23 STARD guidelines25

Automation

High throughput/short turnaround time

Connectivity to laboratory information
management systems

Compatibility with existing laboratory
processes

Desirable features for in vitro diagnostic
industry23,24

Address unmet patient needs

Return on investments

Requirements for research and
development phases

Manufacturability

Marketability including barriers to
entry

Postsales customer support

Other market features (acceptance,
competition, regulatory issues,
reimbursement, third party patent
rights)
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variation in levels with age, sex, ethnicity, and prevalent
disease and the relations of biomarkers to known risk factors
must be characterized.35

At least 3 potential approaches exist for defining abnormal
biomarker levels (Figure 1). Reference limits are generated
with the use of cross-sectional analyses of a reference sample
(usually a healthy sample free of the disease of interest), and
an arbitrary percentile cutpoint (typically the 95th or 97.5th
percentile) is chosen to define abnormality.36–38 The refer-
ence range is the interval between the minimum and the
maximum reference values. Approximately 200 individuals

are required within each category for the formulation of
reference limits for subgroups (eg, defined by age and sex).39

Cutpoints that define abnormality are typically the lower and
the upper bounds of the 95% reference interval (between the
lower 2.5th percentile and upper 97.5th percentile), but they
may vary on the basis of the intent. The reference interval
may be moved up or down according to the tradeoff between
the implications (medical, ethical, social, psychological, and
economic) of false-negative and false-positive results, ie, the
consequences of missing disease, the availability and efficacy
of treatment for people with abnormal values, and the costs

TABLE 2. Continued

Measures of biomarker test performance27

Sensitivity is defined as the ability of a test to detect disease (condition of interest) when it is truly present, ie, it is the probability of a positive test result
given that the patient has the disease.

Specificity is the ability of a test to exclude the disease (condition of interest) in patients who do not have disease, ie, it is the probability of a negative test
result given that the patient does not have the disease.

Predictive value tells us how good the test is at predicting the true positives or true negatives, ie, the probability that the test will give the correct diagnosis.

The positive predictive value is the probability that a patient has the disease given that the test results are positive.

The negative predictive value is the probability that a patient does not have the disease or condition given that the test results are indeed negative.

An ROC curve is a plot of the sensitivity versus (1�specificity) of a diagnostic test, in which the different points on the curve correspond to different cut
points used to determine whether the test results are positive.

Prevalence is defined as the prior probability of the disease before the test is performed.

The likelihood ratio is a simple measure of diagnostic accuracy, given by the ratio of the probability of the test result among patients who truly had the
disease to the probability of the same test among patients who do not have the disease.

Likelihood ratio (test positive)�sensitivity/(1�specificity).

Likelihood ratio (test negative)�(1�sensitivity)/specificity.

Number needed to diagnose28 is derived from 1/�sensitivity�(1�specificity)�, number of tests that need to be performed to gain a positive response for the
presence of disease.

Number needed to screen29 is defined as the number of people that need to be screened for a given duration to prevent one death or adverse event.

Clinical trials of screening: number needed to screen is calculated as number needed to screen equals 1 divided by absolute risk reduction.

Other trials: number needed to screen is calculated by dividing the number needed to treat for treating risk factors by the prevalence of disease that was
unrecognized or untreated.29

FHS indicates Framingham Heart Study; t1/2, half-life; REMARK, Reporting recommendations for tumour MARKer prognostic studies; and STARD, STAndards for
Reporting of Diagnostic accuracy.

Figure 1. Approaches to defining “abnormal” biomarker values (see text for description). FN indicates false-negative; FP, false-positive;
TN, true-negative; TP, true-positive; Pts, patients; and F/U, follow-up.
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associated with follow-up of abnormal results. For instance,
the 99th percentile value has been used to define an abnormal
troponin or creatine kinase–MB value; values exceeding this
limit would indicate the presence of myocardial necrosis and
an acute MI.40,41 When less specific markers of myocardial
necrosis are used, a higher threshold may be used; for
example, if total creatine kinase is used for the diagnosis of
acute MI, a value twice the upper reference limit is
recommended.40

Several issues must be considered when reference limits
are interpreted. First, a select proportion of “normal” individ-
uals will exceed the reference limits on the basis of the
percentile chosen. Second, values that lie within statistically
defined reference limits may not indicate health in a given
individual, especially when the person comes from a group
inherently different from the one used to derive the reference
limits. Third, a change in values within the reference range
may indicate pathology. Accordingly, delta limits have been
formulated to evaluate the change in biomarker values within
an individual (in response to disease or therapy) relative to the
physiological intraindividual fluctuation of values. Fourth, a
value within the reference range may not necessarily be
desirable, especially when the prevalence of undesirable
values of a biomarker in the population is high. Thus,
abnormal blood pressure or cholesterol values are not defined on
the basis of the distributions of these risk factors in the
community; rather, “desirable” levels are defined (see below).

Discrimination limits are also used to indicate abnormal
biomarker values.42 Such limits are generated by evaluating
the degree of overlap between patients with and without
disease in cross-sectional studies.42 Discrimination limits
trigger decisions (they are referred to as decision thresholds).
The 99th percentile value of troponin for a reference sample
is in essence a discrimination limit because it identifies the
presence of a MI. The discrimination thresholds can be varied
depending on the relative importance of missing disease
versus that of misclassifying nondiseased individuals. For
example, a plasma BNP value �100 pg/mL with the Biosite
assay may trigger suspicion of heart failure in a dyspneic
individual.43 The reference limits of the Biosite assay exceed
this threshold in women aged �65 years (95th percentile is
120 pg/mL).44 A plasma value �200 pg/mL has been
suggested as a threshold indicating heart failure.45

A third method is to define “undesirable” biomarker levels
by relating values to the incidence of disease and seeking a
threshold beyond which risk escalates. For instance, a desir-
able systolic blood pressure may be �115 mm Hg because
incidence of vascular disease increases continuously above
this level.46 On a parallel note, low-density lipoprotein
cholesterol levels �100 mg/dL are deemed to be optimal.47

For most CVD risk factors, there is a continuous gradient of
risk across the range of risk factors, and a majority of
individuals in a population could be classified as having
undesirable levels. “Treatment” levels (especially for phar-
macological treatment) of risk factors may therefore differ
from undesirable levels, being defined by the risk factor
thresholds for which there is good evidence (typically from
large randomized controlled trials) that treatment for values
above a limit does more benefit than harm. Often such

treatment levels may be defined not only by the level of the
specific risk factor being evaluated but by taking into con-
sideration absolute risk of disease based on the values of
several other risk factors.48 Thus, a blood pressure level of
140 (systolic) or 90 (diastolic) mm Hg or more indicates
systemic hypertension.49 However, experts have argued that
blood pressure levels above or below this threshold could be
treated on the basis of the absolute risk of CVD events, which
in turn depends on the concomitant burden of other risk
factors.48 For other biomarkers, the choice of the optimal
cutpoint defining abnormality remains to be described and
may vary with the purpose. For instance, Framingham data
indicate that a plasma BNP value exceeding the 80th percen-
tile value in the cohort (20.0 pg/mL for men and 23.3 pg/mL
for women; Shionogi assay) is associated with a 76% in-
creased risk of CVD and a tripling of congestive heart failure
hazard.50 These values are below the 95th percentile value of
a healthy reference sample at any age (Shionogi assay).51

Therefore, cutpoints of plasma BNP that identify discrimina-
tion limits for a diagnosis of congestive heart failure may
differ from the upper reference limit, which in turn may vary
from desirable levels.

Once abnormal thresholds of markers are formulated by
any of the 3 aforementioned methods, biomarker performance
can be assessed with the use of principles outlined in the next
section.

Evaluation of Biomarker Performance:
General Principles

The exact yardstick for evaluating the performance of a
biomarker varies on the basis of the intended use. Good-
quality biomarker studies make an independent masked
comparison of the performance of a given biomarker with a
reference standard in an appropriate sample of consecutive
patients that represents an adequate spectrum of the disease.25

In general, the performance of biomarkers is seldom as good
in a second sample as in the sample in which they were
initially assessed. Consequently, it is desirable that biomark-
ers be evaluated initially in a derivation or training set and
then investigated in a validation or test set.52 Standards have
been proposed for designing and reporting the results of
studies evaluating the performance of biomarkers for diagno-
sis25 and for prognosis.26

The accuracy of a biomarker test is evaluated in terms of its
sensitivity (detection of disease when disease is truly present,
ie, identifying true-positives) and its specificity (recognition
of absence of disease when disease is truly absent, ie,
identifying true-negatives) at select cutpoints. Several CVD
biomarkers are continuously distributed quantitative vari-
ables, although there are some notable exceptions (for exam-
ple, gender, race, diabetes, hypertension, genotypes). It is
therefore critical to evaluate the information content of a
biomarker over a range of values, often with the use of
receiver operating characteristic (ROC) curves.53–55 The ROC
curves illustrate the tradeoff between sensitivity and speci-
ficity when biomarker levels are used clinically to identify
disease. Each point on the ROC curve indicates the condi-
tional probability of a positive test result from a random
diseased individual exceeding that from a random nondis-
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eased person.56 Likelihood ratios57 (LR) are calculated with
the use of sensitivity and specificity data (Table 2) and may
be more helpful to clinicians by answering the question of
interest: how likely are we to obtain a positive test result in
someone with disease compared with someone without dis-
ease (LR�), and how likely are we to get a negative result in
someone with disease compared with someone without dis-
ease (LR�)?

For example, if a biomarker is to be used to screen for an
uncommon condition in asymptomatic people (eg, preclinical
left ventricular systolic dysfunction), it should have high
specificity because a “rule in” (or confirm diagnosis) strategy
is more important in this situation (also called the SpIN
rule27). Expressed in terms of LR, a test with a greater LR�
(typically �10) is needed; this is because the costs of
mislabeling a healthy individual (predicting disease when
health is likely) may outweigh the costs of missing a rare
condition. Sometimes when multiple tests are considered for
screening, they are obtained in series.58 When multiple tests
are obtained in series and disease is considered positive when
all tests are positive (“AND rule”), specificity is enhanced but
sensitivity is diminished.23,59 For instance, Ng et al60 have
proposed that a sequential strategy of checking people with
an initial urine N-terminal pro-BNP (N-BNP) test followed
by a plasma N-BNP test (in urine “positive” cases) may
facilitate screening for asymptomatic left ventricular systolic
dysfunction in the community by reducing the need for
follow-up echocardiograms. When multiple tests are obtained
in parallel and disease is considered to be present when any
of the tests is positive (“OR rule”), sensitivity is increased at
the cost of specificity.23,59 For a biomarker to be accepted as
a routine screening test it is important to demonstrate that a
strategy of measuring the biomarker improves patient out-
comes relative to a conventional strategy that does not
include the biomarker measurement, usually in the context of
a randomized controlled clinical trial.61 Such clinical trials
prove the effectiveness of screening and also provide valu-
able data for cost-effectiveness analyses.

If a biomarker is used to diagnose a potentially life-
threatening condition in a symptomatic patient (eg, acute MI
in a patient with chest pain), it should have a high sensitivity
because a “rule out” (exclude disease) strategy is critical in
this setting (also called the SnOUT rule27). Expressed in
terms of LR, a test with a lower LR� (typically �0.10) is
needed; this is because the costs of missing disease (proj-
ecting health when disease is likely) outweigh the costs of
any additional testing or a false diagnosis.

Appropriate use of biomarker results requires use of a
Bayesian approach,62,63 ie, integrating pretest probabilities
with biomarker test results (expressed as sensitivity/specific-
ity or as LR) to estimate the posttest probability of disease.
Predictive values use this concept to facilitate interpretation
of test results, taking into consideration disease prevalence.
Even for a test with high sensitivity and specificity, false-
positive tests will outnumber true-positive tests when disease
prevalence is very low, and false-negative tests will outnum-
ber true-negative tests when disease prevalence is very high.
Pretest probabilities for estimating predictive values may be
generated on the basis of the published literature combined

with clinical experience. A nomogram is available that uses
the pretest probability of disease and the LR of a diagnostic
test to generate posttest probability of the condition.64

Biomarkers (whether for screening, diagnosis, or progno-
sis) are also evaluated in terms of their discrimination and
calibration65–67 capabilities. Discrimination refers to the abil-
ity of the biomarker (by itself or as part of a composite score)
to distinguish “case” from “noncase” in cross-sectional stud-
ies or to differentiate “those who will develop disease” from
“those who will not” in longitudinal investigations. Typically,
the c statistic (or concordance index) is used as the metric of
model discrimination and is equivalent to the area under the
ROC curve. The c statistic is the probability that in 2
randomly paired individuals (one with and one without
disease), a given test correctly identifies the one with disease.
It is important to note that the c statistic is a metric of overall
performance. It is possible for 2 tests to have the same c
statistic, yet one biomarker may be superior to the other in
terms of performance at select thresholds.

Calibration tells us how the ability of a biomarker (or a model
incorporating the biomarker) to predict risk relates to the actual
observed risk in subgroups of the population. The Hosmer-
Lemeshow goodness-of-fit statistic is often used as an indicator
of model calibration.68 For this purpose, the sample is divided
into deciles of risk, and the observed number of events is
compared with the expected number of events. Calibration is
particularly important in counseling of individuals when the
question of interest is the numeric probability of disease in a
given patient (rather than how sick they are relative to other
persons with disease).67 Thus, risk prediction algorithms have
been developed that incorporate select biomarkers and enable
clinicians to predict the absolute event rates of disease; examples
include estimating the risk of coronary heart disease (CHD)
given values of vascular risk factors,69 assessing the risk of death
or stroke in patients with atrial fibrillation,70 and appraising the
risk of death in patients with established heart failure.71 Models
can be recalibrated if they uniformly underestimate or overesti-
mate risk. For example, the Framingham CHD risk score
overestimated risk in a Chinese cohort. A recalibration of the
risk functions (with the use of mean values of risk factors and
mean CHD incidence rates in the Chinese cohort) substantially
improved CHD risk prediction.72

Evaluation of the Incremental Value of New
Biomarkers and the Multimarker Concept

To evaluate the incremental value of a new biomarker,
investigators must demonstrate the elevated risk of an out-
come associated with higher levels of the new biomarker with
adjustment for other established risk factors. These results are
typically presented as hazards ratios (relative risk estimates
from a Cox model) and a probability value test of significance
of the marker in the multivariable models. It has been argued
that such an interpretation of a new marker’s association with
risk as a reflection of its prognostic value may be inappro-
priate because the “hazard ratio is dependent on the measure-
ment scale of the marker, cutoff(s) used for the novel marker,
and the manner in which established variables are mod-
eled.”73 In other words, a high hazard ratio for a marker in
relation to a disease outcome does not necessarily indicate
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better predictive performance. Indeed, very strong associa-
tions of markers with disease are required for a given
biomarker to have good discrimination properties.74 Even
when a biomarker threshold is associated with very high odds
of disease, it often will identity only a small proportion of
people with disease if false-positive rates are to be kept low.74

For example, the relative risk for CHD mortality comparing
the top with the lowest decile of the distribution of serum
cholesterol was �3 in a large study, indicating a strong
association.75 However, if one were to accept a serum
cholesterol treatment cutpoint that yields only a 5% false-
positive rate (the threshold often used for screening studies),
only 12% of the people who would later die of CHD would
be identified by that threshold.75 In other words, risk factors
for disease may not necessarily make good screening tools.76

This is because, notwithstanding an association of a risk
factor with disease, the distributions of the risk factor levels
in people with and without disease may overlap
substantially.76

When a new biomarker X is evaluated, it is important to
remember that the question of interest is not whether X is
a better predictor of disease than a previously known
biomarker Y.77 Rather, the pertinent question is whether X
improves the predictive accuracy of the best available
model (representing the standard of care for that disease)
that incorporates several known predictors of disease
including Y.77 Thus, the relative added values of new
biomarkers is best evaluated by estimating the increment
to the c statistic compared with that from a model that
incorporates other previously known predictors.73,77,78 For
example, the Framingham CHD risk score may be thought
of as a composite of several biomarkers with a c statistic (a
metric of predictive accuracy) varying between 0.74 and
0.76, values considered consistent with a “fair” test per-
formance.69 Few risk factors of interest in terms of CHD
risk prediction can enhance the c statistic beyond that
provided by the Framingham risk score78; for instance,
whereas C-reactive protein (CRP) was associated with
vascular risk in 2 separate studies,79,80 addition of CRP did
not improve the predictive accuracy of a model incorpo-
rating established risk factors that represent the current
standard of care. Another way to evaluate novel risk
factors is to assess whether knowledge of a putative risk
factor alters the probability of disease (eg, changes the risk
category from low to intermediate risk) estimated with the
use of the global CHD risk score such as to change the
recommended target threshold for a modifiable risk factor
(eg, change the target low-density lipoprotein cholesterol
from 130 to 100 mg/dL).81,82

There is considerable interest in generating multimarker
scores that use a composite of several biomarkers (mea-
sured in parallel) for the purpose of predicting disease risk
and patient outcomes.83–91 The comparison of several
putative biomarkers and the generation of multimarker
scores must take several factors into consideration. First,
comparisons of biomarkers measured on the same set of
individuals must account for their inherent correlation
(people with high values of one marker will likely have
high values of another).92 Second, the incremental utility

of adding a new biomarker to a known panel of biomarkers
is often estimated by ROC analysis. It is important to
realize that the ability of the biomarker to identify cases
not captured by the usual sets of predictors (conditional or
multi-ROC analysis) requires specification of thresholds
for the usual set of markers, and the performance of the
new marker is conditional on the choice of those cut-
points.93 Sometimes, a multivariate formulation of several
markers can be generated with the use of techniques such
as neural networks to increase diagnostic accuracy.94

Risk prediction equations that incorporate multiple mark-
ers are often used for CVD risk prediction.69,94–97 The
challenges associated with the development and application
of such risk scores have been reviewed elsewhere.98 None-
theless, use of a global risk score based on assessment of
multiple risk factors is critical because of their synergistic
influences and the importance of targeting undesirable levels
of several risk factors to maximize patient benefits.99 Risk
scores formulated on the basis of a sample should be
demonstrated to be reproducible in the same population (with
the use of data resampling techniques such as bootstrap-
ping).67 Additionally, to become a routine part of clinical
practice, risk scores should be “transportable”: geographi-
cally to diverse locations; to different ethnicities; to a wide
spectrum of patients; or for predicting events over a different
duration of follow-up compared with what was used to
develop the score.67 Risk scores derived in one sample may
need to be recalibrated when applied to a very different
population.

Although it is generally believed that new biomarkers
should add to the c statistic to be useful, there are exceptions
to this rule.99 Novel biomarkers (eg, homocysteine) that are
not incremental to known risk factors may be measured in
select clinical situations99,100 such as in the following: asymp-
tomatic individuals without obviously elevated conventional
risk factors but with very strong family history of vascular
disease; patients with premature vascular disease but no
obvious risk factors; and patients with aggressive recurrent
vascular disease in the face of well-controlled levels of
conventional risk factors.

In the case of studies in which genetic biomarkers are used,
there is a major concern about false-positive associations with
disease (or phenotypes) resulting from numerous additional
factors. A detailed discussion of the factors contributing to
the lack of replication of several genetic association tests is
beyond the scope of this review but includes true genetic
heterogeneity across samples, publication bias, confounding
by population structure, misclassification of outcomes, allelic
heterogeneity, small sample sizes, and failure to account for
multiple testing (including the possibility that findings are
due to chance).101,102 Measures to address these issues have
been proposed, including but not limited to considering
pretest probabilities of associations and using false discovery
rates (estimated by permutation or bootstrap methodolo-
gy).103–105 Replication of findings in multiple independent
samples remains the gold standard for genetics of complex
diseases.106
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Evaluation of Biomarker Performance:
Laboratory Factors

The above discussion of biomarker performance assumes a
perfect laboratory and limited biological variability. In prac-
tice, preanalytical, analytical, and postanalytical factors are
important contributors to biomarker performance. The greater
the “noise” introduced by these factors, the lesser the “signal-
to-noise ratio” offered by a biomarker.

Preanalytical variability refers to biological variability and
stability over time,107,108 whereas analytical variability relates
to the performance of the test in the laboratory. Low analyt-
ical variability is a fundamental requirement of all biomarkers
(Table 3).109–114

Guidelines for maintaining quality control within labora-
tories have been proposed.110 Analytical variability means
good accuracy and precision. Accuracy refers to the degree of
agreement with a reference standard for the analyte and is
quantified in terms of percent bias.114 Standardization of an
assay means use of a reference measurement procedure and
reference materials.114,115 International reference standards
have been established for several biomarkers, including
interleukin-6,116 interleukin-8,117 serum amyloid A protein,118

fibrinogen,119 and high-sensitivity CRP.120 Precision refers to
consistent measurement on replicates114 and is quantified in
terms of the coefficient of variation (continuous markers) or
the kappa statistic (qualitative markers). Analytical standards
have been proposed for several CVD biomarkers, including
lipids,121–124 troponins,40,41 and high-sensitivity CRP.125,126

If analytical imprecision is greater than biological variabil-
ity, samples should be assayed in replicate, and quality
control procedures that improve assay methodology and/or
operating procedures should be instituted. This is critical for
biomarkers used for point-of-care testing because imprecision
may be greater in this setting compared with standard
laboratory measurements. If biological variability is greater
than analytical imprecision, the patient should be sampled on
�1 occasion to obtain a true estimate of a biomarker.
Biological variability can also be reduced by instituting a
standardized protocol for phlebotomy if applicable (such as
the requirement of a fasting state, supine posture, or an early
morning specimen). Quality control protocols to enhance
analytical precision for imaging studies have been pro-
posed.111 In the case of newer technologies such as genotyp-
ing and microarray (discussed in a subsequent section), the
possibility of analytical error is of a different order of
magnitude. Standards for detecting errors in genotyping112

and in microarrays113 have been proposed as well.
Postanalytical factors affecting biomarker performance

include the processes of approval and transmission and the
appropriate display of test results with the use of the labora-
tory’s information management systems. As noted above, the
quality control requirements for biomarkers also may vary
depending on the mode of delivery/use of the test: an
automated platform from a centralized laboratory, a point-of-
care testing device, or a device used for home monitoring of
analytes. Point-of-care testing usually involves small bench-
top analyzers or hand-held devices that facilitate rapid deci-
sion making, earlier treatment, reduced incidence of compli-
cations, quicker optimization of treatment, reduction in

hospital stay, greater patient satisfaction, and economic
benefits.127

Biomarker Discovery: Challenges and Approaches
The development of CVD biomarkers is challenging for
several reasons. As summarized in a recent consensus docu-
ment,13,14 the patient vulnerable to CVD is likely harboring a
triad of abnormalities: vulnerable plaque, vulnerable blood,
and vulnerable myocardium. In terms of developing biomar-
kers, 2 of these 3 components (vulnerable plaque and myo-
cardium) are less directly accessible relative to the third
(vulnerable blood). In the case of atherosclerotic cerebrovas-
cular disease, biomarkers that may be elevated as a conse-
quence of brain injury may not be detectable in large amounts
in the peripheral circulation because of the blood-brain
barrier. It is challenging to identify diagnostic biomarkers in
the peripheral blood within 3 hours of stroke onset, the
critical time window for thrombolytic therapy. Furthermore,
biomarkers selected to reflect a clinical phenotype may be
confounded by the inaccuracies in the characterization of the
phenotype. Conversely, there may truly be a poor correlation
between biomarkers and the clinical phenotype itself. For
example, in the setting of an acute MI, a majority of culprit
ruptured plaques occur in nonstenotic coronary lesions.128 In
addition, the process of atherosclerotic CVD is inherently so
complex that it would be simplistic to assume that a parsi-
monious set of biomarkers could capture most of the interin-
dividual variation in propensity to develop CVD or its
sequelae.

The aforementioned caveats notwithstanding, 3 parallel
developments have revolutionized the field of biomarker
discovery. First, the completion of the Human Genome
Project129 and the HapMap Project130 and the development of
microarrays, proteomics, and nanotechnology together pro-
vide new avenues for developing exceptionally informative
biomarkers of CVD, including high-throughput, highly sen-
sitive, functional assays. Second, the advances in bioinfor-
matics coupled with cross-disciplinary collaborations (eg, of
biologists, clinicians, chemists, computer scientists, physi-
cists) have greatly enhanced our ability to retrieve, charac-
terize, and analyze large amounts of data generated by the
technological advances noted above. Third, there is increased
recognition that diseases arise out of the dynamic dysregula-
tion of several gene regulatory networks, proteins, and
metabolic alterations, reflecting complex perturbations (ge-
netic and environmental) of the “system.”131,132 The expecta-
tion that single biomarkers can capture these intricate de-
rangements and can unambiguously identify disease or that
targeting single molecules or signaling pathways is adequate
for treating complex pathology is simplistic. Rather, a “sys-
tems biology” approach that investigates multiple compo-
nents of malfunctioning regulatory networks (referred to as
multiparameter analysis of tens of hundreds of molecules)
may provide better insights into disease diagnosis, prognosis,
and treatment.131

The development of biomarkers in CVD can be thought of
as consisting of 2 potential approaches: the first strategy is
“knowledge-based” (deductive method), and the second one
is more “unbiased” (inductive strategy). These 2 approaches
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TABLE 3. Sources of Biomarker Variability

Preanalytical Variability Analytical Variability Steps to Reduce Variability

Sample and assay related Interlaboratory variability For clinical chemistry laboratory110

Type of specimen Analytical platforms Use of a reference lab and reference standard

Type of sample Lot-lot variability Replicate measurements

24-h vs single morning void Reagents Add phantoms (dummy Ids) to samples

Sample processing Calibration functions Limit multiple lots

Anticoagulant Freeze samples immediately

Stabilizing agent Intralaboratory variability Avoid repeated freeze and thaw cycles

Temperature Personnel-related Regular calibration of instruments

Endogenous degrading enzymes Interreader and intrareader Assess interassay and intra-assay precision at low and high levels109

Freeze-thaw cycles Temporal drifts Optimal is �1/4 (CVI; within-subject variability)

Sample storage Lot-lot variability Desirable is �1/2 CVI

Assay related Minimal acceptable is �3/4 CVI

Minimal detection limit Assess bias (based on CVI and CVG, where CVG is between-subject variability)109

Optimal is �0.125 (CVI�CVG)
1/2

Image acquisition Desirable is �0.25 (CVI�CVG)
1/2

Interobserver Minimal acceptable is �0.375 (CVI�CVG)
1/2

Intraobserver

Regular laboratory supervision and assessment of drifts

Biological (subject related) Develop reference ranges

Intraindividual Assess impact of covariates on analyte values

Diurnal

Day-to-day For imaging studies111

Seasonal Standardized reading protocol

Menstrual Centralized reading

Fasting state Multiple beats measured

Beat-to-beat (for imaging studies) Blind duplicate readings to evaluate interobserver and intraobserver variability

Interindividual Periodic recertification of observers

Age

Gender For genotyping studies112

Race Check for mendelian consistent and inconsistent errors (spurious excess of recombinants)

Pregnancy Hardy-Weinberg equilibrium checks

Menopausal status Analyses of repeats

Drugs

Diet

Exercise For microarray data113

Minimum Information About a Microarray Experiment (MIAME) standards

Includes use of normalization controls (housekeeping genes, RNA spiking)

Metrics of analytical variability114

Accuracy: The degree of agreement of a test result with an accepted reference standard or true value.

Bias: A quantitative measure of inaccuracy or departure from accuracy. A signed difference between 2 values, T, usually expressed as the difference between 2
values, X�T, or the difference as a percentage of the reference or true value, 100 (X�T)/T.

Precision: Closeness of agreement between independent test results obtained under stipulated conditions; indicates freedom from inconsistency or random error.

Coefficient of variation (CV): A measure of precision calculated as the standard deviation of a set of values divided by the average. It is usually multiplied by 100, to
be expressed as a percentage.

Repeatability relates to essentially unchanged conditions and is often termed within-series precision or within-run precision.

Intermediate precision refers to conditions in which there is variation in 1 or more of the factors time, calibration, operator, and equipment, usually within a
laboratory.

Reproducibility relates to change in conditions, ie, different laboratories, operators, and measuring systems (including different calibrations and reagent batches) and
is often termed interlaboratory precision.

Limit of detection (LoD): Smallest amount or concentration of analyte that can be distinguished from background at a stated confidence level.

Limit of quantitation (LoQ): Lowest amount of analyte in a sample that can be quantitatively determined with (stated) acceptable precision and (stated, acceptable)
accuracy, under stated experimental conditions.

Reference method: A thoroughly investigated measurement procedure, clearly and exactly describing the necessary conditions and procedures, for the measurement of
1 or more property values that has been shown to have trueness of measurement and precision of measurement commensurate with its intended use.115

Reference materials: Substances with properties that are established for the use as standards, calibrators, controls, the verification of a measurement method, or the
assignation of values.115
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are complementary rather than mutually exclusive. The
knowledge-based strategy relies on a direct understanding of
the biological processes that underlie the process of athero-
sclerosis and the evolution of its sequelae. It may consist of
improving existing biomarkers to enhance their performance,
or it may comprise designing assays for attractive new
candidate markers informed by the biology of the disease
process. The unbiased approach involves trolling through tens
of thousands of molecules with the use of current technolog-
ical advances to characterize the biomolecular profile of a
stage of the disease.

Biomarker Discovery: Molecular
Biology Tools

The systems biology tools applied to biomarker discovery
investigate the hierarchical organizational of biological infor-
mation: the gene itself, the mRNA that it produces, the
protein coded by the mRNA, biomodules or networks, cells,
organs, individuals, populations, and ecologies.131 Table 4
provides an overview of some key techniques used for
identifying putative CVD biomarkers.133 Table 5 defines
broadly these “Omics” tools.134–137 Table 6 provides infor-
mation about some of the mathematical and molecular bio-
logical techniques within the “Omics” toolbox.134–140 In the
section below, an overview of strategies used to analyze
different components of this hierarchical sequence is
presented.

Genetic Studies
Genetic biomarkers are variants in the DNA code that alone
or in combination are associated with disease susceptibility,
disease expression, and disease outcome, including therapeu-
tic responses. Single nucleotide polymorphisms (SNPs; DNA
sequence variation when a single nucleotide in the genome

sequence is altered) have been evaluated extensively in
relation to CVD. The 2 classic complementary approaches
used for relating genetic sequence variation to CVD risk are
the linkage approach and the association strategy.141

The linkage approach investigates families with a whole
genome scan consisting of hundreds of anonymous markers
to identify genetic loci that may be related to disease
susceptibility. The linkage strategy identifies a segment of the
genome (typically involving millions of bases of DNA) that
segregates with disease. Fine mapping within these segments
may lead to the identification of a gene related to disease
susceptibility. To date, the linkage approach has been suc-
cessful in detecting genes for single-gene disorders with large
genetic effects. However, linkage studies have provided very
modest yields for investigating complex traits like CVD.142

The association strategy evaluates the relation of genetic
variants, typically in unrelated individuals, to the presence
versus absence of disease or to variation in values of a
quantitative trait.143 The scientific rationale behind associa-
tion studies is that common genetic variants with modest
effects contribute to the variation of complex disease in the
population.141,144–146 Association studies have the ability to
detect more modest genetic effects (relative to linkage). The
recognition that groups of neighboring polymorphisms in the
genome are highly correlated147 (in linkage disequilibrium, ie,
inherited together and not easily separated by recombination)
has led to the concept of tag SNPs, which can be used as
proxies for most of the common genetic variants in a region
of linkage dysequilibrium.148 The identification of tag SNPs
is expected to greatly facilitate association studies because
fewer markers need to be genotyped.149 The availability of
dense SNP maps of the human genome has also fuelled
interest in genomewide association analyses, studies that
survey the whole genome for causal common genetic variants

TABLE 4. Techniques Available for Biomarker Development

Technology* Method* Objective Tissue

Genomics SNP genotyping Identify susceptibility or disease modifying gene Nucleated cells, diseased tissue

Positional cloning/microsatellites Fine mapping/sequencing of disease loci

Expression analyses Identification of differential expression of genes and
signaling pathways

Proteomics 2DGE, MS, LC-MS, GC-MS, MS-MS, MALDI-TOF MS Identification of low-abundance proteins, their
subcellular location, posttranslational modification,
interactions among proteins

Urine, blood, saliva, tissues

Metabolomics NMR spectroscopy, MS, infrared spectroscopy Small molecule identification and characterization As above

Pharmacogenetics SNP genotyping Relate genetic makeup to drug response Nucleated cells

Integratomics All of the above Use of high-throughput technology to produce an
integrated picture at the DNA, RNA, protein, tissue,
and pharmacological levels

All of the above

Bioinformatics BLAST, hierarchical clustering, SOM Link microarray data to biological pathways Data from various techniques

Molecular imaging CT, MRI, PET, SPECT, biophotonic imaging Noninvasively identify and quantify the causative
molecular constituents of diseased tissues in time and
space

Patients

BLAST indicates basic local alignment search tool; GC-MS, gas chromatography–mass spectrometry; LC-MS, liquid chromatography–mass spectrometry;
MALDI-TOF, matrix-assisted laser desorption–ionization time-of-flight mass spectrometry; MS, mass spectrometry; MS-MS, tandem mass spectrometry; NMR, nuclear
magnetic resonance; PET, positron emission tomography; SOM, self-organizing map; SPECT, single-photon emission computed tomography; and 2DGE, 2-dimensional
gel electrophoresis.

*See Table 5 (Omics Glossary) for definitions. Modified from Reference 133.
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with the use of a dense set of SNPs.150–152 It is important to
emphasize that use of SNP databases is challenged by
constant updating, the need for SNP verification and/or
primary resequencing (given sequencing errors and rare or
population-specific variants), and variation in the linkage
disequilibrium patterns across different populations that can
influence the selection of tag SNPs.106

Both linkage153–160 and association161–171 studies have pro-
vided valuable insights into genetic markers with a role in
pathogenesis of CVD. New putative susceptibility genes for
CVD have been identified, including cytokine lymphotoxin-�
(LTA, on 6p21.3 for MI), galectin-2 (LGALS2, an LTA-
interacting protein on 22q12-q13 for MI), 5-lipoxygenase

activating protein involved in synthesizing potent proinflam-
matory leukotrienes (ALOX5AP, on 13q12-q13 for MI and
stroke), phosphodiesterase 4D (PDE4D, on 5q12 for ischemic
stroke), and the myocyte enhancer factor 2 (MEF2) signaling
pathway of vascular endothelium.172

Gene Expression
The availability of rapid, high-throughput analytical plat-
forms has facilitated molecular phenotyping of disease states
by analyzing the transcriptome. The global analysis of gene
expression represents a paradigm shift from the traditional
single-molecule approach to the evaluation of gene regulatory
networks.173–175 The National Heart, Lung, and Blood Insti-

TABLE 5. Brief “Omics” Glossary (Adapted From Reference 134)

Genomics: “Large-scale, high-throughput molecular analyses of multiple genes, gene products, or regions of genetic material.”134

Structural genomics: “The study of the physical aspects of the genome through the construction and comparison of gene maps and sequences, as well as
gene discovery, localization, and characterization.”134

Functional genomics: The study of the biological function of the genome by understanding what genes do and how they are regulated; includes expression
profiling, the expression values for a single gene across many experimental conditions, or for many genes under a single condition, and how such expression
relates to organ dysfunction.

Clinical genomics: “The application of genomics technologies in clinical settings, such as clinical trials or primary care of patients.”134

Chemical genomics or chemogenomics: The process of screening chemical compounds against genes or gene products, such as proteins or other targets.
Functional analysis is used to evaluate gene response, investigate drug candidates, and identify and validate therapeutic targets.

Genomics-based techniques currently employed include nucleotide polymorphisms, subtractive hybridization, microsatellite instability, DNA methylation
patterns, SAGE, and microarrays.

Integromics: “Use of high-throughput, multiplexed technologies—including microarrays— in combination to obtain an integrated picture at the DNA, RNA,
protein, tissue, and pharmacological levels.”134

Metabolomics: “The study of the metabolite profiles in biological samples. The general aim of metabolomics is to identify, measure and interpret the complex
time-related concentration, activity and flux of endogenous metabolites in cells, tissues, and other biosamples such as blood, urine, and saliva; here metabolites
include small molecules that are the products of intermediary metabolism, including carbohydrates, peptides, and lipids.”134

Metabolome: “The quantitative complement of all the low molecular weight molecules present in cells in a particular physiological or developmental state.”134

Lipidomics: The systems-level scale analysis of lipids and their interacting molecules.

Glycomics: The systems-level scale analysis of glycans and their interacting molecules.

Metabonomics: “The quantitative measurement of the dynamic multiparametric metabolic response of living systems to pathophysiological stimuli or genetic
modification (metabolic fingerprinting). Typically, involves the application of 1H-NMR spectroscopy to study the multicomponent measurement of biofluids, cells,
and tissues.”135

Pharmacogenetics: The study of the impact of genetic factors on the interindividual variation in responses to drugs and drug toxicity. It describes the effects of
genetic variation on pharmacokinetics and therapeutic index and includes the study of drug metabolism enzymes and drug transporters.136 Also referred to as
gene identification for facilitating the choice of the 	right medicine for the right patient.	134

Pharmacogenomics: The study of genetic variations and their relations to drug effects and responses. It describes genetic variation on pharmacodynamic
variables, such as a drug’s target and constituents of the target pathways.136 It includes the application of tools including, but not limited to, the functional
genomics toolbox of differential gene expression, proteomics, tissue immunopathology, and histopathology.

Phenomics: The study of the expressed clinical state (phenotypes) and its relations to the genomic and proteomic data, and the genotypes.137

Physiomics: The study of the complete physiology of an organism, including all interacting metabolic pathways, structural and biochemical scaffolding, the
proteins and accessories that make them up, and the gene regulatory networks.

Proteomics: The large-scale, high-throughput analysis of proteins that begins with the systematic separation and identification of all proteins within a cell,
tissue, or other biological sample. It involves a comprehensive study of quantitative data on the proteins of an organism under a variety of conditions (including
postsynthetic modifications and interactions with other molecules).

Expression proteomics: The study of abundance of proteins.

Structural proteomics: The study of protein characteristics, including the 3-dimensional structure.

Cellular proteomics: The study of organelle-specific protein distribution and the determination of protein function and interaction within and between cells via
functional proteomics.

Biosignatures: Analysis of patterns of protein expression from tissues or fluids over the course of disease progression.

Transcriptomics: The study of all cellular mRNA transcripts of an organism, often produced under a variety of conditions.

Transcriptome: “The population of mRNA transcripts in the cell, weighted by their expression levels.”134

Ribonomics: The study of the subset of mRNAs that bind with proteins.

Definitions within quotation marks represent text cited directly from references.
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TABLE 6. Glossary of Terms for Select Techniques Used in the OMICs Toolbox (Adapted From Reference 134)

Bioinformatics: Includes 3 components: the development and implementation of tools that enable efficient retrieval, access, and management of different types
of information; the development of new algorithms and statistics with which to assess relations among members of large data sets; the analysis and
interpretation of various types of data (from genomic, proteomic, or metabolomic analyses).

BLAST (Basic Local Alignment Search Tool): “Software program from NCBI for searching public databases for homologous DNA sequences or proteins.”134

Hierarchical clustering: An unsupervised clustering approach used to determine patterns in gene expression data with an output with a treelike structure.

Self-organizing map (SOM): “An algorithm that organizes the clusters of gene expression or multidimensional data in a two- dimensional grid, such that
clusters that are close together in the grid are more similar than those further apart.”134

Blotting: A blot that consists of a nitrocellulose sheet containing spots of an analyte for identification by a suitable molecular probe.

Northern blotting: “A specific RNA species, among a mixture of RNAs, is first size-separated by gel electrophoresis, and then transferred to a membrane
where hybridization occurs with either radioactively or nonisotopically labeled DNA probes.”138

Southern blotting: “DNA is first digested into pieces using restriction endonucleases (enzymes that cleave DNA at specific sites that are marked by a 4- to
8-member specific nucleotide sequence), and then the restriction fragments are subjected to agarose gel electrophoresis. The double-stranded DNA fragments
on the gel are then turned into single strands by denaturation and transferred to a DNA-binding membrane (such as nitrocellulose or nylon), to make a
permanent copy of single-stranded DNA. A DNA sequence of interest is then visualized by a radiolabeled reporter probe after a hybridization step followed by
autoradiography.”138

Western blotting: “Identification of specific proteins that have been separated by size with use of polyacrylamide gel electrophoresis. The size-fractionated
proteins are transferred to a nitrocellulose membrane, and proteins of interest are identified and quantified by visualization with reporter-linked antibodies.”138

Expressed sequence tags (EST): A unique short DNA sequence (100-300 base pairs) derived from a cDNA library that can be mapped to a unique locus in the
genome and serves to identify that gene locus.

Laser capture microdissection (LCM): A technique in which a laser beam is used to isolate specific regions of interest from microscope sections of tissue.

Mass spectrometry (MS): “A technique for measuring and analyzing molecules involves introducing enough energy into a target molecule to cause its
disintegration. The resulting fragments are then analyzed, based on their mass/ charge ratios, to produce a molecular fingerprint.”134

Mass spectrometers: “Instruments used for MS that generally couple three devices: an ionization device, a mass analyzer, and a detector.”134

Mass spectrum: A graph (often a histogram) of ion intensity as a function of mass-to-charge ratio.

Matrix-assisted laser desorption–ionization mass spectrometry (MALDI MS): “An MS technique that is used for the analysis of large biomolecules.
Analyte molecules are embedded in an excess matrix of small organic molecules that show a high resonant absorption at the laser wavelength used. The
matrix absorbs the laser energy, thus inducing a soft disintegration of the sample-matrix mixture into a free (gas phase) matrix and analyte molecules and
molecular ions. In general, only molecular ions of the analyte molecules are produced and almost no fragmentation occurs. This makes the method well
suited for molecular weight determinations and mixture analysis.”134

Matrix-assisted laser desorption–ionization–time of flight mass spectrometry (MALDI-TOF): “With MALDI-TOF (matrix-assisted laser desorption-ionization
time-of-flight) mass spectrometry, a laser beam passes through the substances to be analyzed, and the laser causes these elements to vaporize and their
molecules to fly upward into a tube. Time of flight through the tube correlates directly to mass, with lighter molecules having a shorter time of flight than
heavier ones.”134

Microarray technology: Hybridization-based tool used to analyze how large numbers of genes interact with each other and how a cell’s regulatory network
controls a vast battery of genes simultaneously; used for genotyping, mapping, sequencing, and sequence detection. Microarrays are constructed by applying
biomolecules with a robot in an orderly fashion on a rectangular grid of spots on a slide or chip (that serves as matrix), labeled with fluorescent probe and
scanned with microscope or imaging equipment. The rows represent genes, and the columns represent different samples. First, an array of gene-specific probes
is embedded on a matrix. Nucleic acids (RNA or DNA) are then isolated from test samples and converted into labeled targets. The labeled targets are then
incubated with the solid state probes, allowing targets to hybridize with probes. The hybridization of probes and targets is measured (after the incubation,
nonhybridized samples are washed away) with dye fluorescence or radioactivity.

Molecular profiling (MP): “A global view of mRNA, protein patterns, and DNA alterations in various cell types and disease processes.”134

Nanomedicine: “The monitoring, repair, construction and control of human biological systems at the molecular level, using engineered nanodevices and
nanostructures.”139

Nanotechnology: “The production and application of structures, devices and systems by controlling shape and size at nanometer scale.”140

Polymerase chain reaction (PCR): A laboratory technique to rapidly amplify predetermined regions of double-stranded DNA.

Quantitative PCR: Real-time quantitative PCR is a highly sensitive method that utilizes small sample sizes and short experimental time frames. Quantitative
PCR is especially useful for evaluating 	RNA fingerprints	 obtained from microarray or siRNA experiments.

Reverse transcriptase–polymerase chain reaction (RT-PCR): A variation of the PCR technique in which cDNA is made from RNA via reverse
transcription. The resultant cDNA is then amplified with standard PCR protocols.

RNA interference (RNAi): “A gene silencing phenomenon wherein specific dsRNAs trigger the degradation of homologous mRNA.”134 RNAi is the tool of choice
to characterize gene function and validate drug targets before advancement.

Single-nucleotide polymorphism (SNP): “A SNP is a position in the genome where some individuals have one DNA base (e.g., A), and others have a different
base (e.g., C). SNPs and point mutations are structurally identical, differing only in their frequency. Variations that occur in 1% or less of a population are
considered point mutations, and those occurring in more than 1% are SNPs. This distinction is practical and reflects the fact that low- frequency mutations
cannot be used effectively in genetic studies as genetic markers, while more common ones can.”134

NCBI indicates National Center for Biotechnology Information. Definitions within quotation marks represent text cited directly from references.
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tute has launched a multicenter Program in Genomic Appli-
cations (http://www.nhlbi.nih.gov/resources/pga/) to advance
functional genomic research related to heart, lung, blood, and
sleep health and diseases.

Changes in mRNA expression of select genes in tissues can
be evaluated by several techniques (such as Northern blotting,
RNA differential display, RNase protection assay, and vari-
ous polymerase chain reaction–based methods including
real-time polymerase chain reaction). Quantitative assess-
ments of mRNA expression on a genomewide basis can be
accomplished with techniques such as the serial analysis of
gene expression176 and DNA “microarrays”173; genes are
grouped into expression clusters, and upregulated and down-
regulated clusters in disease states can be recognized. Expres-
sion analysis facilitates recognition of dysregulated gene
clusters and the identification of candidate genes for associ-
ation tests177 and may suggest therapeutic targets. The protein
products of highly upregulated genes may be candidate
biomarkers if they are secreted extracellularly.

High-throughput sequencing of randomly selected clones
from human heart cDNA libraries has been used to generate
a compendium of expressed sequence tags.178 A cDNA
microarray called the CardioChip (containing 10 368 redun-
dant and randomly selected sequenced expressed sequence
tags) has been developed on the basis of human heart and
arterial tissue cDNA libraries.179 Gene expression analyses
have been performed on myocardial tissue to identify specific
patterns in cardiac hypertrophy,180–182 MI,183,184 different
forms of heart failure,185,186 and cardiac transplants.187 Such
gene expression analysis may enable molecular profiling of
patients with dilated cardiomyopathy, including the correla-
tion of therapeutic responses with transcriptional changes.188

On a parallel note, the differential patterns of gene expression
in ischemic and nonischemic heart failure subsets may have
therapeutic relevance.189,190 Likewise, gene expression pro-
files of hypertrophic and dilated cardiomyopathy have been
demonstrated to be different, thereby providing clues to
molecular mechanisms underlying the conditions as well as
identifying distinct biomarkers for each condition.191–193

DNA microarrays have also been applied to analyze molec-
ular signatures of atherosclerotic lesions,194–196 vascular en-
dothelial cells subjected to shear stress,197,198 and vascular
smooth muscle cells.199 These investigations have provided
valuable clues to genes implicated in atherosclerosis,194,195,200

plaque rupture,201 and vascular remodeling. Genomic tech-
niques have also been extended to peripheral circulating
blood cells (progenitor cells202 and blood cells203) to evaluate
the effect of statins and to identify transcripts that are altered
in coronary disease; these observations raise the exciting
possibility of using more readily accessible tissues (blood
cells) for genomic screening. The utility of expression pro-
files may be extended to predicting perioperative outcomes in
patients undergoing cardiac surgery.204

Whereas global gene expression profiling offers a unique
opportunity for molecular profiling of CVD with implications
for diagnosis, prognostication, and treatment (including iden-
tifying disease subtypes) and for identifying new therapeutic
targets, technical and conceptual challenges may limit its use.
The technical limitations include the limited number of

transcripts on available chips, the possibility of false-
positives (emphasizing the need for confirmation of results
with an independent approach such as real-time polymerase
chain reaction), and the challenge of isolating cell types from
heterogeneous cell populations in tissues.174,205 The availabil-
ity of techniques such as laser capture microdissection has
facilitated the isolation of cell populations, however.206 The
conceptual challenges lie in the fact that there may be a poor
correlation between mRNA expression and the proteome
(because all transcripts may not be translated) and with
protein function (due to inability to detect alternate splicing,
posttranslational modification, subcellular localization, and
interactions among proteins that can influence function).207

Additional gain- or loss-of-function studies are necessary for
mechanistic interpretations.174,205

Proteomics
Proteomic approaches to the identification of disease biomar-
kers rely principally on the comparative analysis of protein
expression in normal and disease tissues to identify aberrantly
expressed proteins that may represent new biomarkers, anal-
ysis of secreted proteins (in cell lines and primary cultures),
and direct serum protein profiling. Proteomics methodologies
include assessment of protein expression (by Western blot-
ting and enzyme-linked immunosorbent assay and by other
antibody-based methods) and the isolation, identification, and
quantification of proteins in biosamples with high-resolution
2-dimensional gel electrophoresis, high-performance liquid
chromatography, surface chromatography by adsorbion of
proteins to activated surfaces (matrix-assisted laser desorp-
tion–ionization technology), or via peptide ionization proce-
dures and mass spectroscopy. Mass spectrometry can yield a
comprehensive profile of peptides and proteins in biosamples
without the need for initial protein separations, thereby
facilitating biomarker identification with reduced sample
requirements and a high throughput.

The parallel development of a human protein reference
database (Human Proteome Organization; www.HUPO.org)
has enabled the annotation identification of proteins detected
in biosamples. The Human Proteome Organization initiative
includes the mapping of proteomes in biological compart-
ments such as the plasma, urine, brain, liver, and heart.208,209

Protein profiling with the use of multidimensional automated
platforms is interfaced with database search tools to facilitate
the rapid identification of constituent proteins. An important
caveat in the use of proteomics is that biomarkers identified
by such technology may not be consistent with those gener-
ated from mRNA expression profiling.

Proteomic databases of cardiac proteins have been con-
structed,210–212 and alterations of several cardiac proteins
have been described in both experimental and human cardio-
myopathies.213 For instance, the upregulation of ubiquitin
carboxyl-terminal hydrolase in experimental214 and human215

cardiomyopathic tissues is consistent with the notion that
inappropriate ubiquination and proteolysis of select cardiac
proteins may play a role in promoting ventricular systolic
dysfunction in human heart failure.213 Several programs of
the NIH support proteomics technology development, and an
NIH Roadmap initiative emphasizes the importance of study-
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ing dynamic systems.216 Advances in computational biology
have facilitated computer-based sophisticated cellular and
whole organ modeling of the various protein-protein interac-
tions to reconstruct the physiological processes in the
heart.217

Molecular Imaging
Noninvasive molecular imaging can enable clinicians to
quantitatively identify the causative molecular constituents of
disease in time and space. Molecular imaging will likely
facilitate targeted therapy of CVD on the basis of the
molecular elements delineated in diseased tissue.218 For
example, newer targeted contrast agents are being developed
for plaque characterization: “by identifying fibrin within
plaque microfissures,219 adhesion or thrombogenic molecules
expressed on endothelium of vulnerable plaques,220 matrix
metalloproteinases in the cores of progressive lesions,221 or
the early angiogenic expansion of the vasa vasorum that
supports plaque development.”222,223 Plaques that look mor-
phologically similar (in terms of lipid core and fibrous cap)
may be distinguished with techniques such as thermogra-
phy,224 multicontrast MRI,219,225 and intravascular optical
coherence tomography.226

Biomarker Development: The Processes From
Discovery to Delivery

Figure 2 displays the various stages from the discovery of a
biomarker in a laboratory with the use of the “Omics”
technologies to development of an assay and finally to its

delivery, ie, application in clinical practice.227 Briefly, the
process begins with the identification of target biomarkers
with the use of standardized technology platforms, followed
by validation of the assays,228,229 statistical evaluation of
biomarker distributions in reference samples and in those
with disease, and assessment of the correlation between
biomarker levels (or expression patterns of biomarkers) and
clinical measurements that define disease status.227

The processes involved in biomarker discovery are best
exemplified by the National Cancer Institute’s Early Detec-
tion Research Network (http://www3.cancer.gov/prevention/
cbrg/edrn/), which supports the integration of discovery,
evaluation, and validation of biomarkers.230 The Early Detec-
tion Research Network has 4 main components: the Biomar-
kers Developmental Laboratories, which lead the identifica-
tion of new biomarkers or refinement of old biomarkers
including assay development; the Biomarkers Validation
Laboratories, which facilitate the standardization of assays;
the Clinical Epidemiological Centers, which extend the in-
vestigation of biomarkers to clinical samples; and the Data
Management and Coordination Center, which provides the
infrastructure for statistical analyses and bioinformatics.230

The development of CVD biomarkers will transition
through similar stages akin to that noted in Figure 2. As noted
in a recent review of inflammatory biomarkers,35 before using
a new biomarker, clinicians must seek answers to several key
questions related to its measurement, its validation, and the
assessment of its potential clinical use (Table 7). Answers to
these questions are part of the evidentiary process that is

Figure 2. Five phases of biomarker development: from discovery to delivery (adapted from Pepe et al,227 with permission from Oxford
University Press). Content validity refers to the degree to which the biomarker represents the biological phenomenon studied (eg,
serum CRP represents systemic inflammation); construct validity refers to establishing that the biomarker is measuring the aspect of
disease (some conceptual construct or theory) that we want to measure (eg, we want to measure plaque inflammation; therefore, we
should establish whether serum CRP relates to atherogenesis and plaque inflammation); and criterion validity refers to the how well the
biomarker identifies disease state when compared with a gold standard (measured in terms of sensitivity and specificity; eg, how well
does CRP predict CVD?). RCT indicates randomized controlled trial.
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critical for assessing whether the information gained from a
new biomarker is worth its cost to the healthcare system.
Such answers require the performance of large population-
based studies of multiethnic samples to evaluate the relations
of biomarkers to subclinical and clinical CVD phenotypes of
interest and, when applicable, the conduction of clinical trials
to relate biomarker profiles (encompassing a comprehensive
combination of genomic, expression-based, proteomic, and
metabolomic data) to disease risk and to therapeutic
responses.

Currently Available CVD Biomarkers:
An Overview

A detailed review of CVD biomarkers (circulating, structural,
functional, and genomic) was published in a recent supple-
ment of Circulation.193,231–233 A comprehensive assessment
of inflammatory biomarkers and their use in clinical cardiol-
ogy has also been published recently.35,82,126,234–237 The pres-
ent review will not attempt to replicate these reviews. Table
8 provides an overview of CVD biomarkers, including a
display of the evidence linking them to CVD and method-
ological issues.238–406 The list of biomarkers in the table is not
intended to be exhaustive; rather, a brief summary of some
key biomarkers is provided.

To illustrate the opportunities and challenges related to the
use of CVD biomarkers, let us consider as an example
biomarkers of acute coronary syndromes. An understanding
of the pathobiology of atherosclerosis and the molecular
events implicated in the progression from subclinical disease
to overt disease has enabled the development of CVD
biomarkers.22,407 Acute coronary syndromes are accompanied
by progressive mechanical obstruction, dynamic obstruction,
and plaque inflammation, instability, and rupture, followed
by superimposed thrombosis. Myocardial ischemia and ne-
crosis are the sequelae, followed over time by ventricular
remodeling. Thus, activation of select markers and enzymes

during the different phases of the process can be detected in
the peripheral circulation (Figure 3).13,14,408 The time period
preceding the onset of an acute coronary syndrome is char-
acterized by atherosclerotic arterial lesions prone to rupture:
such lesions are rich in macrophages (which release lytic
enzymes like metalloproteinases) and are associated with a
reduction in smooth muscle, presence of a low-grade stenosis,
and a thin fibrous cap. Plaque rupture is associated with
release of soluble CD40 ligand, placental growth factor,
pregnancy-associated plasma protein A, and adhesion mole-
cules.408 Superimposed thrombosis may be manifest as ele-
vations of circulating D-dimer, plasminogen activator inhib-
itor-1, and von Willebrand factor.408 The onset of
symptomatic ischemia is antedated by release of ischemia-
modified albumin by a few hours and the development of
myocardial necrosis by time-dependent release of myocyte
components such as troponins, myoglobin, and creatine
kinase-MB. Troponin elevation in a patient with non-ST-
segment elevation MI is a marker not only of myocyte
necrosis but also of intracoronary thrombus formation and the
distal microembolization of platelet microaggregates.409

Thus, troponin release in acute coronary syndromes also
serves as an indicator of increased likelihood of response to
antiplatelet and antithrombin therapy.409 The hemodynamic
consequences of ischemia and/or infarction are reflected by
elevation of plasma natriuretic peptide levels. The choice of
the biomarker(s) in patients with suspected acute coronary
syndrome depends on the answers to several questions410:
Where is the test being performed (emergency department,
physician’s office, coronary care unit)? What is the time
interval from the onset of ischemic symptoms? Which
biomarker and what immunoassay should be used? What
discrimination limits should be used for the chosen biomar-
ker(s)? Is the test being performed for diagnosis or for
prognostication? The prognostic significance of biomarkers
after infarction may vary with specific end points.409 Thus,

TABLE 7. Some Key Questions to Ask Before Using a New Biomarker in Practice

Has the assay been standardized?

Is the assay reproducible, accurate, and available?

Is the distribution of biomarker values in the general population and in select demographic subsets well known?

What are abnormal levels (reference limits and discrimination limits)?

Do biomarker levels correlate with known CVD risk factors?

Does a new biomarker reveal novel mechanisms of CVD initiation or progression?

Does the biomarker predict the outcome of interest?

Has residual confounding been excluded as an explanation for the observed association of a marker with
CVD risk?

Is the new biomarker better than or does it have incremental utility over currently established biomarkers
considered together?

Will the use of a multimarker strategy using a new biomarker in combination with known biomarkers improve
overall testing for CVD?

Do the biomarkers add to the established risk prediction algorithms?

Can a therapeutic course of action or the likelihood of response to an agent be determined with the use of a
new biomarker?

Will clinical practice change as a result of use of a new biomarker for screening, diagnosis, prognostication,
or treatment?

Is use of the biomarker shown to be cost-effective?
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TABLE 8. Biomarkers for Identifying the Vulnerable Patient

Biomarker
Methodology
Standardized

Methodology
Available/Convenient

Linked to Disease
Prospectively

Additive to
FHS Risk Score

Tracks With
Disease Treatment

Arterial vulnerability
Serological biomarkers of arterial vulnerability

Abnormal lipid profile ���121-124 ��� ���47 Part of score ���47

Apo B �238 � ���239-244 �239/�240,242,245 �246-248

Lp(a) �/� � ��� (reviewed in249) � ?
LDL particle No. �/�250 � �251,252 �251 ?
CETP �/�253 �/� �254 ? ?
Lp-PLA2 �255 � �256-262 ? ?263,264

Inflammation
HsCRP ���125 ��� ��� (reviewed in265) � �/?(reviewed in 82)
sICAM-1 �/�126 �/� �� (reviewed in266) ? ?
IL-6 �116 � ��267-273 ? ?
IL-18 � � ��274,275 ? ?
SAA �118 � �276,277/�278 ? ?
MPO � � �84,279,280 ? �

sCD40 ?281 � �282-285 ? ?286,287

Oxidized LDL � � �288 ?288 ?
GPX1 activity � � �289,290 ?290 ?
Nitrotyrosine � � �291 �/? �291

Homocysteine ��� ��� ��� (reviewed in170,292) ? ?
Cystatin-C � � �293-296 ? ?
Natriuretic peptides �297 �� ���50,86,91,298-305 ? �306-308

ADMA �309-311 � ��312-319 ? ?315

MMP-9 � � �320 ? ?
TIMP-1 � � �321 ? ?

Structural markers of arterial vulnerability
Carotid IMT ��322 �/? ��323-326 �/?324-326 �327-329

Coronary artery calcium ��� � �330-334 �/?332 ?
Functional markers of arterial vulnerability

Blood pressure ���335 �� ��� (reviewed in 46) part of score ���46

Endothelial dysfunction �336,337 � �338-353 ? �354

Arterial stiffness ��355-358 �� �359-366 ? �367

Ankle-brachial index ���368,369 ��� �� (reviewed in370) �/?371 ?
Urine albumin excretion ��372 �� ��373-380 �/? ��

Blood vulnerability
Serological markers of blood vulnerability

Hypercoagulable
Fibrinogen ��119 �� ��� (reviewed in381) ? ?
D-dimer � � �� (reviewed in382) ? ?

Decreased fibrinolysis
TPA/PAI-1 �/�383 � �� (reviewed in384) ? ?

Increased coagulation factors
von Willebrand Factor �� �� � (reviewed in385) ? ?

Myocardial vulnerability
Structural markers of myocardial vulnerability

LVH, LV dysfunction ��386-388 �� ��181,389-396 ? ��397-400

Functional markers of myocardial vulnerability
Exercise stress test/stress echo �� �� �� ��82,401-403 ��

PET �� � � ? ?
Serological markers of myocardial vulnerability

Troponins ��41,404 �� �� (reviewed in405,406) ? ?

Schema of criteria for risk factors adapted from References 193, 231–233.
FHS indicates Framingham Heart Study; �, no; ?, unknown or questionable/equivocal data; �, some evidence; ��, good evidence; ���, strong evidence;

ADMA, asymmetrical dimethyl arginine; Apo B, apolipoprotein B; CETP, cholesterol ester transfer protein; GPX1, glutathione peroxidase; IL, interleukin; IMT,
intimal-medial thickness; Lp(a), lipoprotein a; LpPLA2, lipoprotein-associated phospholipase A2; LV, left ventricle; LVH, LV hypertrophy; MMP, matrix metalloproteinase;
MPO, myeloperoxidase; SAA, serum amyloid A; sCD40L, soluble CD40 ligand; sICAM, soluble intercellular adhesion molecule; PAI-1, plasminogen activator inhibitor
1; PET, positron emission tomography; TIMP, tissue inhibitor of matrix metalloproteinases; and TPA, tissue plasminogen activator.

2350 Circulation May 16, 2006

 by guest on May 23, 2016http://circ.ahajournals.org/Downloaded from 

http://circ.ahajournals.org/


elevated natriuretic peptides are key predictors of mortality
risk but weaker correlates of the risk of recurrent ischemia.
Therefore, multimarker schemes may need to weigh individ-
ual biomarkers differentially on the basis of the end point
being predicted.409

Cardiovascular Biomarkers: Future Directions
It is generally believed that the biomarker industry will
continue to rapidly expand and flourish in the near future. The
burgeoning research in biomarker development mandates a
systematic organization of data with the use of standardized
taxonomies that facilitate the online sharing of biomarker
metadata among researchers. Large epidemiological and clin-
ical studies will be required to assess the cost-effectiveness of
biomarkers. Screening biomarkers will likely compete for
limited healthcare budgets, and only those with excellent
performance characteristics will find utility in primary care
settings. It is conceivable that some biomarkers may find use
as over-the-counter tests as the public continues its informed
interest in its own health. Biomarkers that are cost-effective
in preventing late sequelae of CVD will likely survive such
competition. Diagnostic markers will find use in point-of-care
testing in emergency departments and by the bedside.
Biomarkers that perform well and cost-effectively in the
testing of rapid “rule out” or “rule in” strategies and those that
help to triage patients into low- and high-risk treatment
strategies will be integrated into clinical decision-making
protocols. Biomarkers (including pharmacogenetic ones) that
facilitate choice of the most appropriate drug, that enable

titration of drug dose to avoid side effects, and that maximize
therapeutic effects are likely to be attractive to clinicians.

Biomarker development must be associated with concur-
rent advances in physician training to use the array of
biomarkers available so that clinicians can order tests appro-
priately and interpret them correctly. Parallel advances must
be made in medical information systems, in the quality
control procedures within clinical laboratories, and in the
interpretive reporting of biomarker tests. The advent of
genomic biomarkers has generated a number of ethical411 and
regulatory issues412 that must be addressed concomitantly.
Ultimately, the evolution of CVD biomarkers will represent
the coordinated and concerted effort of basic scientists,
clinicians, technology experts, epidemiologists, statisticians,
federal and industrial sponsors, and regulatory agencies
within a cooperative framework.

Conclusions
Biomarkers, defined as alterations in the constituents of
tissues or body fluids, provide a powerful approach to
understanding the spectrum of CVD with applications in at
least 5 areas: screening, diagnosis, prognostication, prediction
of disease recurrence, and therapeutic monitoring. Advances
in functional genomics, proteomics, metabolomics, and bioin-
formatics have revolutionized unbiased inquiries into numer-
ous putative markers that may be informative with regard to
the various stages of atherogenesis including overt CVD and
its sequelae. A prerequisite for the clinical use of biomarkers
is elucidation of the specific indications, standardization of

Figure 3. Biomarkers of acute coronary syndromes (adapted with permission from Naghavi et al13,14 [copyright 2003, American Heart
Association] and Apple et al408). The arrows indicate the sequence of events during an acute coronary syndrome. Biomarkers that may
be elevated at each phase of the disease are displayed. sCD40L indicates soluble CD40 ligand; Fbg, fibrinogen; FFA, free fatty acid;
ICAM, intercellular adhesion molecule; IL, interleukin; IMA, ischemia modified albumin; MMP, matrix metalloproteinases; MPO, myelo-
peroxidase; Myg, myoglobin; NT-proBNP, N-terminal proBNP; Ox-LDL, oxidized low-density lipoprotein; PAI-1, plasminogen activator
inhibitor; PAPP-A, pregnancy-associated plasma protein-A; PlGF, placental growth factor; TF, tissue factor; TNF, tumor necrosis factor;
TNI, troponin I; TNT, troponin T; VCAM, vascular cell adhesion molecule; and VWF, von Willebrand factor.
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analytical methods, characterization of analytical features,
assessment of performance characteristics, incremental yield
of different markers for given clinical indications, and dem-
onstration of cost-effectiveness. Technological advances will
likely facilitate the use of multimarker profiling to individu-
alize treatment of CVD in the future.
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