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Background. �-catenin has been historically recog-
nized as both an intermediate in the “canonical Wnt
signaling pathway” and as a component of functional
adherens junctions.

Materials and methods. Cellular accumulation of
�-catenin levels can result in transactivation of gene
transcription and cellular proliferation during normal
cellular and disease development. Recent evidence
has identified �-catenin in an additional role as a com-
ponent of cutaneous wound healing.

Results. This finding is in keeping with previous ob-
servations that post-translational modifications of
�-catenin that are associated with its cytoplasmic ac-
cumulation are frequently observed in fibroprolifera-
tive diseases with characteristics of dysregulated
wound healing. These diseases include hypertrophic
scar formation, aggressive fibromatoses, Lederhose
disease, and Dupuytren’s contracture (DC).

Conclusions. While its precise roles in disease initi-
ation and progression remain to be explored, this re-
view highlights our current knowledge of �-catenin
regulation and describes some potential upstream me-
diators of �-catenin accumulation and signaling in fi-
broproliferative disease. © 2007 Elsevier Inc. All rights reserved.

Key Words: Wnt/beta-catenin signaling; fibroprolif-
erative disorders; Dupuytren’s contracture; wound
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INTRODUCTION

�-catenin was once thought to have only two distinct
functional roles within the cell. One was as an inter-
mediary in the “canonical Wnt-pathway”, a critical sig-
naling system in embryonic growth and development,
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and the second was as a structural protein that, in
conjunction with E-cadherin, served in the functioning
of cellular adherens junctions. However, it is now clear
that aberrant �-catenin signaling can occur in a num-
ber of human diseases, such as certain types of cancer
and fibroproliferative disorders, and that a large num-
ber of signaling pathways use �-catenin to direct the
transcription of genes whose products are characteris-
tic of those conditions. The purpose of this paper is to
review the known interactions of �-catenin and place
these in the context of newly discovered findings re-
lated to a number of fibrotic conditions including hy-
pertrophic scar formation, aggressive fibromatoses
(desmoid tumors) and Dupuytren’s contracture (DC).
To understand the central importance of this molecule
in these areas, we will begin with an overview of the
pathways known to regulate �-catenin bioavailability.

THE CANONICAL WNT/�-CATENIN PATHWAY

The canonical Wnt pathway (Fig. 1) is reliant on
�-catenin as a central signaling molecule. This path-
way is one of the most well-studied regulators of em-
bryonic development [1], exerting remarkable control
over cellular proliferation, differentiation, invasion
and adhesion [2, 3]. When the canonical Wnt pathway
is activated by the appropriate Wnt ligand, the Friz-
zled (Fz) receptor and co-receptor LRP5/6 (lipoprotein
receptor-related proteins 5 or 6) [4–6] form a complex
and trigger a cascade of signaling events through the
kinase Dishevelled (Dvl), resulting in the phosphory-
lation, and subsequent inactivation, of glycogen synthase
kinase-3� (GSK-3�). GSK-3� activity is the key compo-
nent of the so-called “destruction complex” that also in-
cludes Axin, the product of the adenomatous polyposis
coli gene (APC), and casein kinase-1 (CK-I) [7–9]. When
GSK-3� phosphorylates complexed �-catenin on serine

and threonine residues, primarily S33, S37, T41, and
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S45, the hyper-phosphorylated �-catenin is recognized
by the F-box containing protein slimb/b-TrCP, a com-
ponent of the E3 ubiquitin (Ub) ligase complex, and
�-catenin is targeted for degradation via the 26S pro-
teasome [10–16]. Alternatively, GSK-3� can be inacti-
vated by phosphorylation of Serine 9 resulting in
�-catenin release from the destruction complex and its
accumulation in the cytoplasm as a stabilized pool. In
a poorly understood process, this cytoplasmic pool of
�-catenin is then thought to translocate to the nucleus
through binding to Tcf4 and BCL9/Pygopus while APC
and Axin act to inhibit this process and retain the
�-catenin in the cytoplasm [17]. Nuclear �-catenin
functions as a transcriptional activator for members of
the T-cell factor/lymphoid enhancer factor (Tcf/Lef)
family of DNA binding proteins [18, 19] that activate a
subset of genes in a cell-context specific manner.

A number of �-catenin-Tcf/Lef target genes have
been identified [11] and many of these play an impor-
tant role in cell cycle control, proliferation and cell fate
determination [20, 21]. (A current online list of Wnt/�-
catenin target genes with Tcf/Lef binding sites can be
found at http://www.stanford.edu/�rnusse/pathways/
targets.html). Both independently and in conjunction
with Tcf/Lef, �-catenin can interact with nuclear recep-
tors resulting in an array of cellular effects including
changes in cellular adhesion, tissue morphogenesis,
and tumor development. Whereas androgen receptor
interactions are perhaps the best characterized, nu-
clear �-catenin has also been shown to affect the activ-

FIG. 1. The Wnt/�-catenin pathway. The two historically recogn
pathway and adherens junctions. Wnt signaling through Frizzled re
turn inactivates GSK3�. GSK3� inactivation allows �-catenin to av
translocate to the nucleus and transactivate the Tcf/Lef transcriptio
ities of receptors for retinoic acid, vitamin D, glucocor-
ticoid, progesterone, thyroid, estrogen, and peroxisome
proliferator-activator and these interactions are re-
viewed in detail in [22].

The Wnt pathway has now become well recognized
as a molecular contributor to the development of many
disease states [23–25]. Dysregulation of the canonical
Wnt signaling system is involved in greater than 90%
of colorectal carcinomas [11] and evidence continues to
accumulate supporting the role of this pathway in a
multitude of other malignant disorders [2, 26, 27].
Since nuclear translocation of �-catenin and Tcf/Lef
interaction can induce transcription of cellular regula-
tors of proliferation and differentiation such as Cyclin
D1 and c-myc [11], the Wnt/�-catenin pathway pro-
vides a direct connection between extra-cellular sig-
nals, gene transcription and cell cycle control. There-
fore, aberrant behavior of this pathway as a result of
activating mutations of �-catenin have the potential to
promote both initiation and the progression of cancer
[11, 25]. Not surprisingly, the critical serine/threonine
residues required for �-catenin phosphorylation and
ubiquitination, normally used as regulators of the canon-
ical Wnt signaling pathway, are ‘hot spots’ in those can-
cers involving �-catenin mutations. Clinically, strong
nuclear or cytoplasmic �-catenin staining in colorectal
cancer correlates with more invasive tumor growth, a
higher susceptibility of disease recurrence after sur-
gery and a lower survival rate [28].

Similarly, the adenomatous polyposis coli (APC)
gene product is a negative regulator of cytoplasmic

d intracellular sources of �-catenin are the canonical Wnt/�-catenin
tor/LRP5/6 results in phosphorylation of Dishevelled (Dvl), which in

the destruction complex and to accumulate within the cytoplasm,
omplex. (Color version of figure is available online.)
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complex, APC is responsible for sequestering cytoplas-
mic �-catenin and targeting it for ubiquitination and
degradation at the proteasome. Functioning in this
regard, APC is an important negative regulator of free
cytoplasmic �-catenin, and inactivating mutations of
the APC gene play an important role in cancer progres-
sion. Monoallelic inactivating mutations in APC occur
in patients with familial adenomatous polyposis (FAP),
a condition that results in many adenomas in the colo-
rectum [29]. As well, 85% of colorectal cancers demon-
strate a mutation in the APC gene and it is implied
that the remaining 15% are likely to contain mutations
in �-catenin [11, 19, 30, 31]. However, many cases of
hepatocellular carcinoma reveal that mutation and nu-
clear staining of �-catenin correlates with less aggres-
sive tumor growth and increased survival rates [32],
while there is no correlation apparent with �-catenin
nuclear staining and tumor type in gastric cancer [33].
In summary, while there are obvious correlations be-
tween dysregulation of the Wnt/�-catenin pathway and
colorectal disease, the relevance of altered �-catenin
accumulation in other malignancies is still not clearly
defined.

WNT-INDEPENDENT �-CATENIN SIGNALING

Although the canonical Wnt signaling pathway is a
major player in the regulation of stabilized cytoplasmic
pools of �-catenin, several Wnt-independent signaling

FIG. 2. GSK-3� is a central mediator of Wnt/�-catenin and recep
as the type 1 IGF receptor shown here, can signal through a variety of
activity. GSK-3� is also a component of the Wnt/�-catenin pathwa
threonine phosphorylation and subsequent cytoplasmic accumulatio
pathways have also been shown to converge at GSK-3�
to achieve this result (Fig. 2). These include growth
factor signaling pathways such as those used by
insulin-like growth factors (IGFs), platelet-derived
growth factors (PDGFs), and hepatocyte growth factor
(HGF). These molecules induce tyrosine phosphoryla-
tion of downstream targets through activation of their
respective receptor tyrosine kinases and signal
through a variety of intracellular intermediate mole-
cules including phosphatidylinositol 3 (PI3)-kinase
[34, 35]. PI3 kinase activity results, via phosphoinosi-
tide dependent kinases 1 and 2 (PDK1/2), in the phos-
phorylation of the serine 473 and threonine 308 resi-
dues of Akt. Akt, also known as protein kinase B, is a
serine/threonine kinase with an established role in
regulating proliferation and apoptosis in cancer [36, 37],
wound healing and fibrosis [38]. Among several tar-
gets, Akt can phosphorylate GSK-3� at serine 9 result-
ing in �-catenin accumulation and Tcf/Lef transcrip-
tion complex activation [34, 39]. From a clinical
perspective, androgen-independent prostate cancer is
frequently associated with the silencing of PTEN
(phosphatase and tensin homologue deleted on chro-
mosome 10), a potent inhibitor of PI3 kinase-mediated
activation of Akt. PTEN silencing can indirectly result
in inhibition of GSK-3� activity and subsequent nu-
clear transactivation through interactions of nuclear
�-catenin [40].

In another Wnt-independent �-catenin regulatory

tyrosine kinase signaling pathways. Receptor tyrosine kinases, such
ermediate molecules including PI3 kinase and Akt to inhibit GSK-3�
s shown, and thus acts as a central mediator of �-catenin serine/
Color version of figure is available online.)
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matrix (ECM) to the actin cytoskeleton [41] at the cell
membrane. Stimulation by the appropriate ligand then
leads to integrin receptor clustering and recruitment of
actin filaments and signaling proteins [42] to the com-
plex. In this way, ECM molecules can regulate cellular
survival by signaling through integrin receptors and
integrin-linked kinase (ILK) to activate, among others,
the PI3 kinase and Akt pathways [43] inducing
�-catenin/Tcf/Lef-mediated transcription of cell cycle
genes such as cyclin D1 [44, 45].

�-CATENIN AND ADHERENS JUNCTIONS

Other than as a component of the Wnt-dependent
and independent �-catenin pathways, �-catenin has
long been established as a component of adherens
junctions in association with cadherins. Cadherins
are a large family of calcium-dependent cell adhesion
proteins that include epithelial cadherin (E-
cadherin), neural cadherin (N-cadherin), placental
cadherin (P-cadherin), muscle cadherin (M-
cadherin), and vascular endothelial cadherin (VE-
cadherin, or CDH5). While N-cadherin and
P-cadherin have also been shown to associate with
�-catenin and �-catenin, E-cadherin is the best char-
acterized cadherin component of adherens junctions
[46]. �-catenin is an essential component of this molec-
ular complex, linking transmembrane E-cadherin to
the actin cytoskeleton through �-catenin as well as
other catenin molecules such as plakoglobin (or
�-catenin) [47, 48]. Adherens junctions allow for cell-cell
adhesion, and when required, can disassemble to allow
cell migration [3], a process important in embryological
development [21], the wound healing response [49] and
epithelial-mesenchymal transition [50, 51]. Associa-
tion of the transmembrane cadherins with the intra-
cellular cytoskeleton is essential for the regulation of
cell-cell adhesion, stability and contact [52]. Clinically,
a loss of the E-cadherin/�-catenin adhesion complex
correlates with poor prognosis in some malignancies
[53], and therefore could potentially act as a modulator
of disease progression.

A variety of growth factors and ECM molecules
have been demonstrated to exert effects on cytoplas-
mic �-catenin accumulation by disrupting the
E-cadherin/�-catenin/�-catenin complex. Pleiotro-
phin has an effect on cell adhesion in part by signal-
ing through receptor protein tyrosine phosphatases
�/� to promote the disruption of adherens junctions
[54]. HGF not only promotes adherens junction dis-
ruption but is involved in E-cadherin endocytosis
[55, 56] and �-catenin release [57]. Epidermal
growth factors (EGFs) signaling through the EGF
receptor (EGFR), initiate changes in cell morphology
[58] that are associated with EGFR co-localization
with cadherin molecules at the cell membrane [58,

59]. This co-localization induces tyrosine phosphor-
ylation of �-catenin and destabilization of
E-cadherin/�-catenin complexes in adherens junc-
tions [59, 60], in turn resulting in cytoplasmic accu-
mulation of tyrosine phosphorylated �-catenin. Gly-
cosylation has a role in this process, as the addition
of bisecting N-acetylglucosamine residues to
E-cadherin combined with epidermal growth factor
stimulation alters tyrosine phosphorylation of
�-catenin [61]. Similarly, IGF-I and -II acting through
the type 1 IGF receptor (IGFRI), can also induce disman-
tling of the E-cadherin/�-catenin cellular scaffold (Fig. 3).

Phosphorylation events are clearly paramount in the
structural integrity of the cadherin-catenin complex.
In general, when �-catenin or E-cadherin are serine/
threonine phosphorylated the complex is stabilized [62,
63]. However, when �-catenin is tyrosine phosphorylated
by an intracellular signaling event, the E-cadherin-�-
catenin complex is generally disrupted and cell adhesion
is lost [60, 64, 65]. It has also been demonstrated that
the interaction between �-catenin and �-catenin is reg-
ulated by the tyrosine kinases Fer/Fyn, which are in
turn activated by the tyrosine kinase, Yes [66]. At least
two critical tyrosine residues on �-catenin are targeted
by these kinases: tyrosine 142 by cMet (the HGF re-
ceptor), Fyn and Fer, and tyrosine 654 by Src and the
EGF receptor [67]. Tyrosine phosporylation can result
in release of �-catenin from E-cadherin, decreased cell-
cell adhesion and increased cell migration and inva-
siveness [64, 68].

The role of adherens junction-derived �-catenin in
promoting Tcf/Lef mediated gene transcription is
still an area of some debate [69]. The literature sug-
gests that there are at least two molecular pools of
�-catenin and that �-catenin associated with
E-cadherin at adherens junctions is preferentially
bound to �-catenin and functionally distinct from the
�-catenin that promotes Tcf/Lef transcription [70].
Other studies have found evidence that suggests
tyrosine-phosphorylated �-catenin is capable of
transactivating signal transduction. For instance,
the tyrosine phosphatase SHP-1 has been shown to
decrease �-catenin signaling [71] implying that ty-
rosine phosphorylation of �-catenin enhances its
transactivation of the Tcf/Lef transcription complex.
In some systems, transcriptional activity associated
with tyrosine phosphorylated �-catenin appears de-
pendent on the presence of growth factors including IGF
and HGF [72, 73]. For example, IGF signaling has been
reported to promote disruption of adherens junctions
with associated nuclear translocation of �-catenin and
subsequent expression of �-catenin-Tcf/Lef target genes
in vitro [72, 74]. It is still unclear, however, whether the
adherens junctions-derived �-catenin itself promotes
cell proliferation and, if it does, this process may be

cell-type specific.
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�-CATENIN SIGNALING IN THE REGULATION
OF FIBROSIS

�-catenin clearly demonstrates strong oncogenic
properties in colorectal disease and the evidence de-
scribed above implicates �-catenin in the progression
of malignancy, albeit in a tumor-type specific manner.
More recently, however, research in �-catenin signaling
has shed new light on the molecular pathogenesis of a
number of fibroproliferative disease states to suggest
that �-catenin-Tcf/Lef-mediated signaling dysfunction
may also play a role in wound healing disorders, aggres-
sive fibromatosis and DC.

�-CATENIN AND WOUND HEALING

The wound healing response has long been recognized
as a complex process requiring the dynamic interaction of
cellular and blood-borne elements. Many cellular, extra-
cellular, vascular, and cytokine-related components in-
teract with one another during the three major phases
of wound healing; the inflammatory response, prolifer-
ative phase and remodeling phase. Reconstruction of
the skin during the proliferative phase depends on
granulation tissue to produce the provisional extra-
cellular matrix required for re-epithelialization [49]. A
number of growth factors, such as transforming growth
factors � and � (TGF� and TGF�), epidermal growth
factor (EGF) and IGFs are released by macrophages at
the site of injury and stimulate fibroblast migration
and proliferation [75]. During dynamic healing of the

FIG. 3. Does adherens junctions-derived �-catenin contribute to
EGFR by EGF or type 1 IGF receptor by IGFs, can result in adhe
phosphorylated �-catenin. It is unclear, however, whether �-catenin
transcription. (Color version of figure is available online.)
injured area, fibroblasts assume a myofibroblast phe-
notype, depositing bundles of actin microfilaments and
collagen that act to compact or contract the wound. The
final stage of wound healing is marked by the transi-
tion of wound granulation tissue, rich in fibroblasts,
into a largely acellular scar. In this process, matrix
metalloproteinases secreted by a number of cell types,
including fibroblasts, gradually degrade the collagen
laid down during healing [75].

At a molecular level, �-catenin has been identified as
playing a cell-type specific role in normal wound heal-
ing. �-catenin levels are elevated in mesenchymal cells
during the proliferative phase [49] and are believed to
regulate dermal fibroblast proliferation rate, motility
and invasiveness [76]. EGF and TGF�1 stimulated
murine dermal fibroblast cultures have been shown to
express increased �-catenin protein levels and Tcf/Lef
mediated transcriptional activity as a result of GSK-3�
inactivity [77]. Additionally, recent data has shed fur-
ther light on the interactions between TGF-� and
�-catenin in cutaneous wound healing. TGF-� is one of
the first cytokines expressed after wounding [78] and
exerts its biological effects through TGF�I and TGF�II
receptors, which form a heteromeric complex to facili-
tate signaling [79]. The activated type 1 TGF-� recep-
tor phosphorylates Smads 2 and 3, which in turn in-
teract with Smad4, resulting in nuclear translocation
and activation of target gene transcription. Interest-
ingly, full-thickness incisional wounding of Smad3 null
mice results in an enhanced rate of re-epithelialization
associated with a reduction in the number of fibro-

e transcription? Activation of tyrosine kinase receptors, such as the
s junction disruption and increased levels of cytoplasmic tyrosine
ived from adherens junctions contributes to transactivation of gene
gen
ren
der
blasts, leading to an overall decrease in wound size
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[80–82]. Cheon et al. have recently demonstrated that
this phenotype is dependent on �-catenin expression,
because stabilized �-catenin expression reverses the
Smad3 null effect on wound size. TGF �-mediated fi-
broblast proliferation and hyperplastic wound forma-
tion was also shown to be dependent on �-catenin
expression, demonstrating the central role of this
molecule in the healing process [83] and highlighting
the negative effects of �-catenin dysregulation. HGF
signaling, which can induce tyrosine phosphorylated
�-catenin release from adherens junctions, has also
been shown to promote wound healing [84, 85], al-
though a role of �-catenin signaling in this context has
not been reported. In contrast to the fibroblast re-
sponse, �-catenin inhibits migration of human epithe-
lial cells in culture [86] and, as normal epithelial cell
differentiation and proliferation in wounded �-catenin
null mice demonstrates, it is not an essential compo-
nent of the epithelium for wound healing [87].

When the wound healing response is dysregulated, a
variety of epithelial and mesenchymal disorders can
occur. Fibroproliferative disorders, characterized by
excessive proliferation of mesenchymal cells, range in
severity from hypertrophic scars to neoplasms such as
aggressive fibromatosis (desmoid tumors). These con-
ditions display cellular and biochemical features that
are remarkably similar to those involved in wound
healing [49]. This similarity has given rise to the
widely accepted hypothesis that fibroproliferative dis-
orders may be the result of an unchecked or exagger-
ated wound healing response.

HYPERPLASTIC SCARRING AND �-CATENIN

Hyperplastic scars are composed of fibrous bundles in
both the deeper and upper dermis. Although the molec-
ular cause of hyperplastic scarring is still unknown, cy-
tological and gene expression studies comparing this dis-
order to wound healing suggest that it is an exaggerated,
prolonged healing response. Wounding of �-catenin over-
expressing mice results in hyperplastic scar formation
[76] giving rise to the speculation that �-catenin plays a
significant role in the pathomechanism driving hyper-
plastic scarring. In wound healing, the elevated �-catenin
levels normally found in granulation tissue (fibroblasts)
only during the proliferative phase are detectible in hy-
perplastic scar tissue for more than 2 years after initial
injury [49]. Although �-catenin protein levels in hyper-
plastic scars do not correlate with mRNA levels, they do
correlate with levels of inactive (phospho-serine 9) GSK-
3�. This suggests that the increased �-catenin levels
present during normal wound healing and in hyperplas-
tic scars are a result of a post-transcriptional mechanism
involving signaling systems that inhibit GSK-3� activity.
Additionally, cell cultures derived from normal wound
and hyperplastic scar patient excisions show �-catenin-

Tcf/Lef transcriptional activation [49]. Increased levels of
�-catenin and activation of �-catenin-Tcf/Lef mediated
gene transcription in both the proliferative phase of
wound healing and hyperplastic wounds suggests
�-catenin may play an important role in hyperplastic scar
formation, as well as other fibrotic disorders.

�-CATENIN AND AGGRESSIVE FIBROMATOSIS

Aggressive fibromatoses or desmoid tumors are
clonal lesions characterized by locally invasive and
proliferative fibroblast-like spindle cells [88]. Evidence
suggests that desmoid tumors are neoplastic in nature,
deriving from a single progenitor cell with a growth
advantage [89]. Desmoid tumors can occur as a spo-
radic lesion or as part of familial adenomatous polyp-
osis (FAP) caused by a germline mutation of the APC
gene [90]. Recent studies focused on the molecular cause
of desmoid tumors suggest that this disorder may be a
result of abnormal �-catenin signaling. Desmoid tumors
show �-catenin stabilizing mutations in both the APC
and �-catenin genes [91, 92] and demonstrate cytoplas-
mic and nuclear accumulation of �-catenin as shown by
immunohistochemical (IH) analysis [91]. Additionally,
�-catenin stabilization in desmoid tumors activates
Tcf/Lef transcriptional gene expression [93] and simi-
lar results are found in IH analysis of solitary fibrous
tumors, another type of spindle cell neoplasm [94].

Transgenic mouse models expressing a stabilized
form of �-catenin in mesenchymal cells develop symp-
toms of aggressive fibromatosis as well as hyperplastic
cutaneous wounds [76]. Fibroblasts derived from these
mice display increased proliferation, motility and inva-
siveness when grafted into nude mice and primary cell
cultures demonstrate Tcf-dependent transcriptional
activation [76], consistent with the hypothesis that
nuclear �-catenin transactivation of target genes is a
primary component of this fibrosis.

Oligonucleotide array analysis of global gene expres-
sion in desmoid tumors has identified insulin-growth
factor binding protein-6 (IGFBP6), an established in-
hibitor of IGF-II signaling [95], as one of these target
genes of �-catenin transactivation of the Tcf/Lef tran-
scription complex. Unusually, IGFBP6 mRNA expres-
sion is down-regulated by �-catenin-Tcf/Lef mediated
transcription [96], implying that expression of the
IGFBP6 gene might be inhibitory to the development of
this disease. In association, the gene encoding A Disin-
tegrin And Metalloprotease 12, ADAM12, has been
shown to be up regulated in aggressive fibromatoses [97].
ADAM12 is a protease of IGFBPs including IGFBP-3 and
-5. A combination of up-regulated ADAM12 and down-
regulated IGFBP-6 levels is predicted to result in in-
creased IGF signaling, a situation previously shown to
promote adherens junction disruption, nuclear localiza-
tion of �-catenin [72, 74] and fibroblast proliferation
[98]. Overall, these data suggest that dysregulation of

the �-catenin signaling mechanisms and �-catenin-Tcf/
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Lef mediated transcription are key factors in the
pathogenesis of aggressive fibromatoses and imply
that targeting �-catenin may have therapeutic utility
for treatment of this disease.

�-CATENIN AND BENIGN SUPERFICIAL FIBROMATOSIS

Histologically and biochemically, benign fibroprolifera-
tive disorders including DC, Peyronie’s disease (fibroma-
tosis of the penis), Lederhose disease (plantar fibromato-
sis), and frozen shoulder syndrome (FSS) share many
similarities with wound granulation tissue, leading to
the view that these conditions represent a dysregu-
lated, fibrotic wound healing responses in different
physiological contexts.

DC is a superficial fibromatosis that affects the pal-
mar fascia and displays an invasive phenotype. The
earliest stage of the disease is characterized by the
appearance of a hyperproliferative nodule composed of
both fibroblasts and activated myofibroblasts which
deposit type 3 collagen in thick bundles throughout the
affected area [99, 100]. Eventually, this process gives
rise to a scar-like contractile collagen rich cord, result-
ing in permanent digit contracture [101]. Histological
analysis has shown that DC and wound granulation
tissue share many biochemical characteristics includ-
ing the appearance of collagen type 3 and TGF� [102,
103]. TGF�1 stimulation of DC derived fibroblast cul-
tures in vitro results in an increased myofibroblast
phenotype as determined by the presence of a smooth
muscle actin [102]. Additionally, TGF� stimulates col-
lagen production in cultured fibroblasts from DC and
patient matched control tissue [104]. Type 3 collagen is
usually absent in normal adult palmar fascia but is
commonly found in DC tissue extracted from patients
[103]. This biochemical change in palmar fascia com-
position is similar to the changes that occur during the
proliferative phase of wound healing suggesting that
DC may be a type of dysregulated wound healing pro-
cess.

Although the molecular cause of DC still remains
to be elucidated, similarities in the clinical progres-
sion of DC with the wound healing response and addi-
tional accumulating molecular evidence suggests that
�-catenin may be a component of the initiation and
progression of DC. IH and Western blot analysis of DC
patient tissue reveals increased cytoplasmic and nu-
clear staining of tyrosine phosphorylated �-catenin
compared to control tissue [105]. Unlike aggressive fi-
bromatoses, however, there is no evidence of �-catenin
mutations in disease or control samples [105]. Further-
more, in vitro analysis of DC primary cells cultured in a
fibroblast populated collagen lattice (FPCL), a three
dimensional collagen environment designed to mimic
in vivo disease conditions, demonstrates increased lev-
els of �-catenin compared to levels in control lattices

[106]. Interestingly, cellular levels of �-catenin are rap-
idly and differentially regulated by tension in FPCL
culture compared to two-dimensional tissue culture,
implying that both extra-cellular matrix (ECM) inter-
actions and mechano-tension are essential components
of this disease [106]. These results suggest that
�-catenin may be a key player in the development of
this and related superficial fibromatoses and that al-
terations in �-catenin accumulation in DC are poten-
tially regulated by the ECM.

Cytoplasmic and nuclear accumulation of �-catenin
accumulation has been reported in Lederhose disease
and, in common with other superficial fibromatoses, no
mutations in either exon 3 of �-catenin or in APC were
detected. Whether the presence or absence of these
mutations directly affects the clinical characteristics of
this and other superficial fibromatoses, which are typ-
ically less invasive and proliferative than deep fibro-
matoses, such as desmoid tumors that frequently con-
tain such mutations, remains unclear at present [107].

Adhesive capsulitis of the joint capsule, or FSS, is
characterized by painful and restricted shoulder mo-
tion and affects an estimated 2% of adults. Based on
immunohistochemical studies and clinical correlation,
it has been suggest that FSS may share a similar
patho-mechanism with that of DC [108, 109]. Histolog-
ically, both conditions are characterized by the pres-
ence of collagen-rich (types 1 and 3) nodules and bands
that are populated by contractile fibroblasts and myo-
fibroblasts. Furthermore, clinical studies suggest that
these two connective tissue disorders are strongly as-
sociated with one another. A recent study of patients
with FSS showed a marked increase in the incidence of
DD compared to the general population [110]. Prelim-
inary observations from our laboratory indicate that
�-catenin expression is up-regulated in FSS compared
to arthroscopy samples derived from subacromial de-
compression for rotator cuff syndrome (unpublished
data). As with DC and Lederhose disease, the role of
cytoplasmic �-catenin in this fibrotic disorder is pres-
ently unknown.

Peyronie’s disease is a localized fibrotic lesion within
the tunica albuginea of the penis [111, 112] that is very
poorly understood at a molecular level. While there are
no reports of �-catenin accumulation in this fibrosis,
recent microarray analysis of gene expression in Pey-
ronie’s disease plaques compared normal tunica albu-
ginea identified the mRNA for pleiotrophin as mark-
edly up-regulated in the disease plaques [113]. As
described previously, pleiotrophin regulates cell adhe-
sion by signaling through receptor protein tyrosine
phosphatases �/� [54], which can promote the disrup-
tion of adherens junctions and release of cytoplasmic
�-catenin. Whether this process is involved in the
pathophysiology of this disease is at present not clear.

In conclusion, dysregulation of �-catenin processing

and cellular accumulation are likely to be important
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components of the pathogenesis of a number of fibrotic
disorders. Mutational analysis of the �-catenin and
APC genes in aggressive fibromatosis indicate that, as
in cancers associated with familial adenomatous pol-
yposis, somatic and germline mutations are very likely
contributing to disease progression. However, muta-
tions in �-catenin and related biomolecular partners
are not evident in hypertrophic scarring and benign
fibrotic conditions such as DC, Lederhose disease and
FSS, disorders which display characteristics of an ex-
aggerated wound healing response. Evidence suggests
that �-catenin is dysregulated in these disorders
through protein signaling pathways yet to be fully elu-
cidated. Accumulating evidence supporting the impor-
tance of �-catenin in a variety of signaling pathways
suggests that this molecule plays a much larger role in
cellular processes than is currently appreciated.
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