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Dupuytren’s disease (DD) is an ill-defined fibroproliferative disorder affecting the palm of the hand, resulting
in progressive and irreversible digital contracture. In view of the abnormal gene dysregulation found in DD,
and its potential effect on metabolites at a functional level, we chose to examine the metabolic profile
involved in DD. Using Fourier transform infrared (FT-IR) spectroscopy to generate metabolic fingerprints
of cultured cells, we compared the profiles of DD cords and nodules (1) against the unaffected transverse
palmar fascia (internal control), (2) against carpal ligamentous fascia (external control), and (3) against
fibroblasts from fat surrounding the nodule and skin overlying the nodule (environmental control). We also

determined the effects of serial passaging of the cells on DD fingerprints. Subsequently, gas chromatography-
mass spectrometry (GC-MS) was employed for metabolic profiling in order to identify metabolites
characteristic of the DD tissue phenotypes. We developed a robust metabolomic analysis procedure of DD
using cultured fibroblasts derived from DD tissues. Our carefully controlled culture conditions, combined
with assessment of metabolic phenotypes by FT-IR and GC-MS, enabled us to demonstrate metabolic
differences between DD and unaffected transverse palmar fascia and between DD and healthy control tissue.
In early passage (0-3) the metabolic differences were clear, but cells from subsequent passages (4-6) started
to lose this distinction between diseased and non-diseased origin. The dysregulated metabolites we identified
were leucine, phenylalanine, lysine, cysteine, aspartic acid, glycerol-3-phosphate and the vitamin precursor to
coenzyme A. Early passage DD cells exhibit a clear metabolic profile, in which central metabolic pathways
appear to be involved. Experimental conditions have been identified in which these DD data are
reproducible. The experimental reproducibility will be useful in DD diagnostics and for DD systems biology.
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Introduction

Dupuytren’s disease (DD) is a benign fibroproliferative
tumour of unknown actiopathogenesis affecting the palm of
the hand.' ® DD can cause progressive, permanent contracture
of the affected digits.”> Surgical removal of DD is often
associated with a high rate of recurrence. In some cases, the
severity of DD recurrence may necessitate amputation of the
involved digit.* DD pathology is characterized by the appear-
ance of two microscopically distinct fibrotic tissue types called
the nodule and the cord.®> Thought to be involved in the
biologically most active phase of the disease, the nodule is
characterised by a dense soft tissue mass containing an intense
population of mostly myofibroblasts.’ The relatively avascular
and acellular cord is rich in collagen and contains fewer
myofibroblasts. Although the fibroblasts are considered to
be responsible for DD,*7 previous hypotheses have hinted at
pathological relevance of adipose tissue (the fat surrounding
the nodule).® Additionally, observations that dermofasciectomy
surgery correlated with lower recurrence rates may associate the
skin overlying the nodule (SON) and the fat surrounding the
nodule with the development of DD.° Where genetic alterations
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impinge on DD is unclear. In tissue biopsies and in vitro
cultivated fibroblasts derived from DD tissue several genes
were found to be over- or under expressed.'®'> Whether, this
abnormal genetic dysregulation is causal, circumstantial or a
mere effect of DD and whether the observed alterations
in mRNA levels had the corresponding effects at a func-
tional level has not been fully investigated to date. This is
important as the pathological formation of Dupuytren’s
disease and the development of contracture is directly related
to the level of function associated with the aforementioned
abnormal gene expresion. It is possible that causative candi-
dates at the functional level include proteins that are respon-
sible, or enzymes of lipid metabolism causing membrane
dysfunction.

Within DD, immortalized human tissue cell lines are not yet
available for the purpose of scientific research. Thus, primary
cultures are employed and the DD cells may lose their unique
disease characteristics when cultured, or develop artifact
differences when compared to normal cells. These differences
may have little to do with the difference between the diseased
and the healthy tissue in the patient, and may rather represent
positive selection for cells able to survive successive in vitro cell
culture passages. In view of the above, we hypothesize: (i) that
the culturing conditions have a profound impact on gene
expression and metabolic activities; yet (ii) for a limited period
of time, cells taken into culture retain DD characteristics.
If proven correct, this should lead the way to a robust
experimental system for studying DD in more depth that will
lead to direct assessment of DD and unique disease
characteristics.

Systems biology (SB) enables interpretation of measure-
ments taken with different analytical tools of different func-
tional levels which relate transcriptional changes to changes at
these levels.!>!* Within the context of assessing metabolism
many strategies are used.!>'® With reference to the current
study, these include platforms such as Fourier transform-
infrared (FT-IR) spectroscopy (to acquire metabolic finger-
prints (global, high-throughput, rapid analysis of whole cells
to provide sample classification used as a screening tool to
discriminate between samples from different biological status)
and non-invasive metabolic footprint screening (analyses of
the (exo) metabolites secreted/excreted by the cell)!” as
potential diagnostic and screening tools, and gas chromatography-
mass spectrometry (GC-MS) for quantification and identifi-
cation of metabolites.'®!® In its analysis of how the nonlinear
networking of molecules produces in vivo function, systems
biology is sensitive to differences between the in vivo physio-
logical state and experimental in vitro states. Metabolites are a
dynamic and sensitive measure of the phenotype of living
systems that results from the interactions between genes and
environment managed by the system itself.'® Accordingly
measurement and analysis of metabolites can be a precise
and potentially valuable resource for (i) evaluation of DD
phenotypic changes when DD cells are grown in cell culture,
(ii) identifying biomarkers for diagnostics® and (iii) for identifying
and linking genetic changes underlying malfunction with
metabolites.?! An increasing number of success stories demon-
strate metabolomics is contributing to the understanding
of a number disease processes.”>>* There have been no

previous reports however, of metabolomic studies of DD,
neither of the metabolic fingerprint (intracellular) nor of the
metabolic footprint (extracellular) type associated with DD.

In this study, we therefore embark on a systems analysis of
DD that starts at the metabolic level. We examined whether
DD cells in culture differed metabolically from non-DD cells
and measured this difference if persistent during serial passaging.
We carried this out by implementing (i) the concept of a systems
signature defined through FT-IR spectroscopy and (ii) metabolic
profiling achieved with GC-MS.

Method

Experiment 1: whole-cell fingerprinting using
FT-IR spectroscopy

Patient recruitment. Metabolic fingerprint and reproducibility
studies were investigated with samples from patients in cohorts
A and B. The metabolic footprint was investigated with culture
media from samples in cohort A. Metabolic profiling was
performed on samples from patients in cohort C. The age and
demographics for all patients can be seen in supplementary
Table S1.

Study 1, 3-5, cohort A. All cases involved in the study were
diagnosed to have advanced stage DD, which was determined
by the presence of nodule and cord causing contracture of the
metacarpophalangeal joint and the proximal interphalangeal
joint in the involved hand. The mean age of the patients
participated in Study 1 was 67 + 10 years. All patients were
male Caucasians who had not undergone any previous surgi-
cal or non-surgical treatments with exception of patient DD13
who was female.

Study 1-4, cohort B. Three DD cases and three controls
subjects (CTD) were included in the study. All recruited DD
cases were diagnosed with advanced stage of DD (Grade 3),
which was determined clinically by an experienced hand
surgeon. All patients presented flexion contracture of the
metacarpophalangeal joint and proximal interphalangeal joint
as well as the presence of nodules. All DD patients in this
study were male Caucasians and one (DD2) had undergone
previous surgical treatment. The mean age was 69 + 2 years.
Two of the control subjects were male and two female. The
average age of the control subjects was 55 + 21 years. The
study was approved by the local and regional ethical committee
for human subjects’ research.

Sample collections for reproducibility studies. DD tissue
phenotypes (nodule, cord, unaffected transverse palmar fascia,
subcutaneous fat superficial to nodule and SON) were care-
fully dissected using magnifying loupes from each patient at
the time of surgery (supplementary Fig. SIA). Tissue biopsies
from carpal ligamentous fascia, were obtained from individuals
undergoing carpal tunnel release (supplementary Fig. S1B).
Each biopsy was bisected for cell culture processing and
histology tissue processing. The biopsies used for establishing
tissue cultures were thoroughly washed for 15 min in 1 X
Dulbecco’s phosphate buffered saline (Lonza, Belgium)
and 1% penicillin/streptomycin (Lonza, Belgium), at room
temperature. For histological analyses to determine tissue
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and cell morphology, the biopsies were stored in formalin at
3 °C, and processed within 48 h.

Specimen processing & tissue/cell culture for whole cell
fingerprinting using FT-IR spectroscopy. To establish tissue
culture, the biopsies were further dissected into small pieces,
roughly 1 mm? in size, with sterile scalpels. The tissue pieces
were incubated in 0.25-5% collagenase A solution (Roche
Diagnostics, GmbH, Germany) at 37 °C for 2.5 to 3 h. The
collagenase activity was inhibited using fibroblast-culturing
media (Dulbecco’s Modified Eagle’s Medium 3 (Lonza, Belgium)
supplemented with 10% heat-inactivated fetal bovine serum
(Lonza, Belgium), 1% penicillin/streptomycin (Lonza, Belgium)
and 1% non-essential amino acids (Lonza, Belgium)). The
digested samples were centrifuged at 1500 rpm (ca. 400 x g)
for 5 min. Each pellet was re-suspended in 5 mL fibroblast
culturing media, seeded to 25 cm? culturing flask (Corning,
UK) and incubated at 37 °C in 5% CO,. The culturing media
was replaced every 48 h and cell passages were carried out at
approximately 80-90% confluency using trypsin-ethylene
diamine tetraacetic acid (200 mg L™' ethylene diamine tetra-
acetic acid, 500 mg L~! trypsin; Lonza, Belgium). The first
sub-culturing (passage) was performed on cultures that were
grown directly from the biopsies. These cultures were called
passage 0 (P0). Following the first centrifugation of cells, % of
the pellet obtained was seeded onto 1 x 75 cm? culturing flask
in Study 2 (now called P1 cells) and the remaining % pellet was
frozen in DMSO containing freezing media. (In Study 1, all
cells from the pellet were passaged onto new flasks for the first
time (4 x 25 cm? in equal amounts) and no sample from the
previous passage (P0O) was retained. Further passaging was
performed on % of the cells grown from the current passage
(called P1) and % was kept in freezing media containing DMSO
into 3 separate Nunc tubes equally and transferred into
Mr Frostie at room temperature. These were then stored at
—80 °C until required for FT-IR analysis. During the incuba-
tion period the fibroblasts purity was assessed by morpho-
logical observation under an inverted phase contrast
microscope. The spent culture medium containing all excreted
metabolites (footprint) were kept in 15 mL falcon tubes and
stored at —80 °C until analysis. The approximate percentage
confluence (85-90%) and number of days that each sample
was passaged was recorded. All passages of the cell cultures
were used in this study. All work was conducted using a single
production batch of serum.

Morphological assessment and haemocytometer counting.
Morphological changes of DD and CTD fibroblasts in all
groups were monitored under an inverted phase contrast
microscope during the tissue culture experiments. At the end
of each passage, cells were washed with phosphate buffered
saline (PBS), and detached from the culture dish by 0.25%
trypsin. Cell number was then counted through direct visua-
lisation using a haemocytometer. Prior to sub-culturing, 20 pL.
of cell suspension was mixed with 20 pL Trypan Blue (Nacalai
Tesque, Inc.), a dye exclusion that leaks into cells with
damaged plasma membranes. In this way, the dead cells were
stained blue, allowing the living and the dead cells to be
distinguished. A 10 pL amount of this solution was then

placed in a haemocytometer and the number of living cells
counted, while being viewed with a light microscope. Average
number of cells per T25 cm?® flask were 600-650000 for
nodules, 400-500000 for cords, 350-400 000 for the internal
control fascia, 400-500 000 for the fibroblasts derived from the
subcutaneous fat tissue and 600—-670 000 for the skin overlying
the nodules. The average number of cells per flask and the
number of days between each passage for each sample was
recorded.

FT-IR spectroscopy sample preparation. 15 pL aliquots of
the sample cells dissolved in 50 pL. DPBS suspensions were
evenly applied onto a silicon (Bruker Spectrospin Ltd., Coventry,
United Kingdom) microplate containing 96 wells. Each sample
was spotted in triplicates in a random arrangement. Prior to
analysis the samples were oven dried at 50 °C for 30 min. The
FT-IR instrument used was an Equinox 55 infrared spectro-
meter (Bruker Spectrospin Ltd.) equipped with a high-
throughput motorized microplate module, HTS-XT under
the control of a computer program with OPUS software
version 4. A deuterated triglycine sulfate (DTGS) detector
was employed for transmission measurements of the samples
to be acquired. Spectra were collected over the wavenumber
range of 4000 cm ™! to 600 cm™!. Spectra were acquired at a
resolution of 4 cm™'. To improve the signal-to-noise ratio, the
spectra were co-added and averaged. Cohort A; 468 spectra
(78 samples spotted in triplicate and spectra acquired twice)
and cohort B; 927 spectra (103 samples spotted in triplicate
and spectra acquired thrice). Each sample was thus repre-
sented by a spectrum containing 1764 points and spectra were
displayed in terms of absorbance calculated from the absor-
bance spectra using the Opus software. The combination of
both biological and analytical replicates was employed in the
FT-IR analysis to measure the biological variance in the data.
The employment of ‘analytical or machine replicates’ was
averaged to reduce the heterogeneity of the technical replicates
in the analysis of the data. Prior to spectral collection an
empty well was used to take a reference background
measurement.

FT-IR-footprint sample preparation. 20 pL of the secreted
metabolites collected in spent media were spotted directly onto
the silicon microplates, oven dried and subjected to FT-IR
as above.

FT-IR Data pre-processing and multivariate statistical analysis.
All statistical analyses were performed using Matlab R2010a
(MathWorks, Inc., MA). The ASCII data were imported into
Matlab. To minimise problems arising from baseline shifts,
empirical pre-processing techniques to reduce/eliminate light
scattering effects were applied. The following procedures
in Matlab were implemented. To reduce/eliminate light
scattering effects extended multiplicative scatter correction
(EMSC),?® was applied to the spectra. These EMSC corrected
spectra were then detrended by subtracting a linearly increasing
baseline from 4000 to 600 cm~' where necessary. Data were
then grouped into categories listed in various combinations as
shown in supplementary Table S2 for comparisons using multi-
variate analyses (MVA). The pipeline used for MVA on the
hyperspectral FT-IR data is illustrated in supplementary Fig. S3.
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To reduce the dimensionality of the multivariate data whilst
preserving most of the variance, Matlab (and some figures
were also created in PyChem (3.052))*¢ was used to perform
principal component analysis (PCA).>?® For each PCA
performed on the chosen combination of samples, of the
original 1764 spectral points in the respective study, the first
20 principal components (PCs) were recorded for subsequent
analysis by discriminant function analysis (DFA). This was
employed for samples where PCA was insufficient to show
clear pattern recognition from the scores plot. DFA (also
known as canonical variates analysis®®) then discriminated
between groups on the basis of the retained PCs that were
used as inputs to the DFA algorithm with the a priori knowl-
edge of which spectra were replicates. DFA was programmed
to minimise ‘within-group’ variance and maximise ‘between-
group’ variance. This process uses information based on the
biological replicates from each sample, rather than its class
membership (that is to say, the algorithm was not given any
information on the passage number nor sample type (nodule,
cord etc)) it therefore acts as an efficient tool to minimise the
experiment variations and normally does not bias the analysis,
allowing any natural trends or time-dependent trajectories to
be observed. In PyChem,z(’ the Euclidean distance between
a priori group centres in DFA space using the first two
functions (DF1 and DF2), was used to construct a similarity
measure, and these distance measures were then processed
by an agglomerative clustering algorithm to construct a
dendrogram (not shown).

Experiment 2: Metabolic profiling of fibroblasts using GC-MS

Patient recruitment

Study 6, cohort C. DD patients (n = 3) were used in this
study. Patient recruitment procedure was followed as pre-
viously stated and demographic information including age is
given in supplementary Table S1. supplementary Fig. S4
shows the flowchart of steps involved in this experiment, from
sample collection to data analysis.

Source of biopsy tissue specimens. Tissue biopsies were
obtained from 3 male DD patients having dermofasciectomy:
nodules from the palm (n = 3), cords from the palm (n = 3)
and transverse palmar fascia (internal control (n = 3). Biopsies
were harvested at the time of surgery. Tissue was carefully
excised to include the diseased or the normal fascia without the
adjacent adipose/connective tissue. The tissue was then placed
immediately into DPBS and transported to the laboratory
within an hour to establish cell cultures.

Cell culture. A total of 27 samples were processed and
stored. Samples from (passage 1) DD nodules (n = 3), cords
(n = 3) and fascia (n = 3) were seeded into T25 cm? culture
flasks. Upon 90% confluence, samples were passaged into
2 x T75 cm? culture flasks. Approx 1-1.5 million cells were
obtained from each T75 cm? flask. Upon 85-90% confluent,
these were sub-cultured into 3 x 150 cm?® flasks; 3 replicates for
each sample. DD fibroblasts were grown until 85-90% con-
fluent in 21% O, and 5% CO,. Culture medium for all
conditions had the same formulation; i.e., DMEM (500 mL)
supplemented with r-glutamine (1%), NEAA (1%) and FBS

Gold (10%) and penicillin/streptomycin (1%). After 48-72 h,
culture medium was replaced with fresh medium. Trypsinisa-
tion of adherent cells was avoided during passage and large
cell scrapers were used to harvest cells, which were seeded into
new flasks. All work reported was conducted using a single
production batch of media components.

Metabolite quenching & extraction. Cells were grown from
each biological sample until 85-90% confluent. The media was
aspirated and the cells were washed once with 4 °C PBS
(12 mL) and quickly aspirated. 70% methanol in water
(8 mL pre-chilled in dry ice) was added immediately to quench
metabolic activity. A large cell scraper was used to harvest
cells quickly over ice. The cellular biomass was removed by
pipette aspiration and collected in 15 mL centrifuge tubes.
Metabolites were immediately snap frozen in liquid nitrogen.
Metabolites were then extracted through 3 freeze-thaw cycles
(vortexed for 3040 s each time and thawed on dry ice) in
order to permeabilise the cells, resulting in the release of the
metabolites from the cells. The supernatant (containing the
metabolite complement) was collected by centrifugation
(15000 x g for 7 min) and transferred in to pre-weighed
falcon tubes and placed in dry ice. The extracts were stored
at —80 °C for 48 h.

Derivatisation of metabolites for GC-TOF-MS analysis.
Samples were prepared for MS by determining the accurate
volume of extracts to dry down. Three replicate pellets for
each sample containing cell debris were dried to remove
residual solution and then weighed to determine the mass of
dried biomass after extractions to determine a normalised
volume of metabolite extracts required for analysis for each
sample. A 0.3 mg ml~" solution of succinic dy acid in water was
added to each solution as an internal standard. These volumes
were then lyophilized for 16 h in a vacuum concentrator
(HETO VR MAXI with RVT 4104 refrigerated vapor trap;
Thermo Life Sciences, Basingstoke, U.K). For MS analysis
dried extracts were then derivatized as follows; 50 pL of 20 mg
mL ™! O-methoxylamine hydrochloride in pyridine was added,
vortexed, and incubated at 60 °C for 30 min in a dri-block
heater. A volume of 50 uL. of MSTFA was then added and the
extracts incubated at 60 °C for a further 30 min. On comple-
tion, 20 pL of retention index marker solution was added
(0.3 mg mL~! docosane, nonadecane, decane, dodecane, and
pentadecane in pyridine) prior to centrifugation at 15800 x g
for 15 min. The resulting supernatant (90 pL) was transferred
to GC-MS vials for analysis.

Gas chromatography-time-of-flight mass spectrometry analysis.
The samples were analyzed in a random order by employing
a GC-TOF-MS (Agilent 6890 GC coupled to a LECO
Pegasus III TOF mass spectrometer) using a previously
described method. %!

Metabolite identification. The GC-MS data were deconvo-
luted producing a peak table of the metabolites identified,
a three dimensional matrix of information: retention time
(related to the time since injection), m/z ratio and chromato-
graphic peak area (defined applying a single quantification
m/z). Raw data were processed using LECO ChromaTof v2.12
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and its associated chromatographic de-convolution algorithm,
with the baseline set at 1.0, data point averaging of 3 and
average peak width of 2.5. A reference database was prepared,
incorporating the mass spectrum and retention index of all
metabolite peaks detected in a random selection of samples so
to allow detection of all metabolites present. Each metabolite
peak in the reference database was searched for in each sample
and if matched (retention index deviation < +£10; mass
spectral match > 750) the peak area was reported and
the response ratio relative to the internal standard (peak
area-metabolite/peak area-succinic-d, acid internal standard)
calculated. These data (matrix of N samples x P metabolite
peaks) representing normalised peak lists were exported in
ASCII format for further analysis. Metabolites were defini-
tively identified following MSI?? by matching the mass
spectrum and retention index of detected peaks to those
present in a mass spectral library constructed at the University
of Manchester.>® A match is defined as a match factor greater
than 750 and a retention index +10.

Chemometric analyses of GC-MS raw data and metabolite
levels. Univariate and multivariate analyses were performed
on the response ratio data sets and also followed MSI reporting
standards.®* All statistical analyses were performed using
Matlab R2010a (MathWorks, Inc., MA). Within a GC-
MS-based data matrix composed of response ratios (peak
area-metabolite/peak area — internal standard), it is possible
to obtain zero (or not detected) values for any given meta-
bolite peak caused by either of the following reasons: the
metabolite is not present or is present at a concentration below
the limit of detection; or the metabolite cannot be resolved
from others in the chromatograph by the deconvolution soft-
ware. In these cases, the following procedure was used to
improve data structure for statistical analysis techniques. For
univariate analysis, two approaches were applied: (1) All data
was accounted and the zero values were replaced with ‘NaN’
(not a number); (2) only the median value of the three biological
replicates was accounted. All peaks with more than 20% missing
values were removed from the analysis. Outliers were suppressed
using a trimming procedure by excluding extreme data points
from raw PCA scores plots. For multivariate analysis, if two of
three replicates were zero values and the third replicate was a
non-zero value, the third (non-zero) replicate was replaced with
zero. If two of three replicates produced values and the third
replicate was a zero value, the zero value for the third replicate
was replaced with the mean of the other two replicates. This is to
reduce the influence of non-detected metabolites due to analy-
tical reasons (e.g. co-cluting, low concentration efc.).

Prior to multivariate statistical analyses, data were normalised
to zero mean unit variance, so that results were not dominated
by a small number of high intensity peaks but gave equal
weighting to peaks of low intensity. MVA were then per-
formed using PCA and its modified algorithm which aimed to
cope with the study with multiple influential factors named
Analysis of variance — PCA (ANOVA-PCA) to quantify the
relative variance arising from the three sample types (i.e. nodule,
cord and transverse palmar fascia), patients and analytical
uncertainty and to test the significance of differences in the
chemical composition.

Univariate statistical analysis was also performed using the
non-parametric Wilcoxon sign rank test (Table 1) and Friedman
test to identify metabolites, which showed significant difference
between two types of samples. The critical p-value for rejecting
the null hypothesis in a single test was 0.05. Boxplots were
drawn to show relative concentration distributions for all
samples with respect to a given peak.

Results
Histology

The DD nodule, cord, fat, the skin overlying the nodule, and
the internal (the transverse palmar fascia) and external (the
carpal ligamentous fascia) control from healthy individuals
were identified and distinguished. The histology slides were
confirmed by an independent experienced histopathologist.
The nodules displayed regions of high cellularity and lots of
nuclei were stained/visible, while the cords displayed a tendon
like arrangement. Cross sections from the fat and the skin
overlying the nodule were also examined supplementary
Fig. S2.

Whole-cell FT-IR fingerprinting and footprinting of cell cultures

FT-IR spectral collection. Cell samples that had been washed
thoroughly to remove any extracellular metabolites and dried,
were investigated by FT-IR spectroscopy. The raw and
normalised absorbance FT-IR spectra for DD and control
fibroblasts are shown in Fig. 1A—C. These spectra display the
typical fingerprint of each sample and the footprint in the case
of spent media. These (and indeed all FT-IR spectra) show
broad and complex contours with little qualitative difference
between the spectra. The spectra contain information on
functional group vibrations resulting in the absorbance of
infrared light at specific wavenumbers (1/4).!” Some promi-
nent regions (Fig. 1C) arose from vibrational modes of protein
(O-H stretch centered at 3400 cm™'), fatty acids (CH.
stretches at 2956-2850 cm™'), and proteins (amide I, C=0
at 1652-1648 cm™'; amide II N-H, C-N at 15501548 cm™ ).
A mixed region from 1460-110 cm~' contains information
from fatty acids, polysaccharides, nucleic acids, proteins
and polysaccharide rings and further C-O vibrations at
1085-1052 cm """ Both large molecules such as proteins
and nucleic acids as well as small constituents were detected
because the sample preparation used simply DPBS to suspend
the cells and the samples. FT-IR spectra for various DD
phenotype fibroblasts (from all five anatomical locations),
fibroblast growth media, and freezing media were also investi-
gated. Again, all spectra showed broad and complex contours,
in which there was little qualitative difference between the
spectra.

Multivariate statistical analyses to determine variability of
samples. A total of 234 samples from cohort A were each
analysed twice. The 309 samples from cohort B were each
analysed three times. PCA was performed in various combina-
tions on the data set, across samples selected on the basis of
passage numbers, patients and anatomical sites.

The number of significant principal components (PCs) were
determined in three ways. Firstly, the scree plot of eigenvalues,
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Fig. 1 A and B The raw Fourier transform infrared (FT-IR) spectra from metabolic fingerprints of cultured cells. Each sample is represented by
an absorbance vs. wavenumber spectrum. B illustrates a 3-D raw FT-IR spectra with 927 samples from Study 2. C illustrates a processed FT-IR
spectra of cultured cells with band assignments. Samples were normalised using the extended multiplicative scatter correction preprocessing
method and baseline correction. These spectra have been offset to see the features more readily. Key to vibrational bands: A = fatty acid,

B = amide, C = mixed, D = polysaccharide.

was examined. Its shape suggested selecting between two and
three PCs; the majority of the variance within the data set was
captured by the first few PCs with little importance on the later
PCs. Secondly, the score plots for PC1 & PC2, PC1 & PC3,
PC2 & PC3, and subsequent PCs were analysed. Third, the
percentage cumulative variance plot was examined. It was
found that for PCs > 3 the plots could not be distinguished
from noise. On the basis of these results it was decided that
3 PCs would be the best choice. This selection means that most
of the variance in absorption of the examined spectra will be
further interpreted in terms of the above three factors. These
will then be related to: (i) passage number vs. sample type;
(ii) individual patients vs. sample type including all passages.
The FT-IR experimental sample sets were divided into studies
(Experiment 1.1-1.5, Supplementary Table S2). Fig. 2, 4, 5
represent the PCA scores plots from PC1 and PC2 from
experiments 1.1, 1.3 and 1.4. (supplementary Table S2), and
Fig. 3 represents the PC-DFA scores plot for the samples
from primary cultures from experiment 1.2 (cohort B). They
show the relationships between the three different pheno-
types and confirm their metabolic differences. Each numeric
code represents a single biological sample. The closer the

samples cluster together the more biochemical similarity they
possess.

DD nodule and DD cord versus transverse palmar fascia
(Experiment 1.1). PCA on normalised data was performed to
test whether the quality of the spectral data was good enough
to determine covariance of fibroblast samples that lead to
clustering. Fig. 2A shows the scores plots for DD and healthy
in samples from cohort A.

There was a clear separation of control samples from
disease samples. In addition DD nodule and cords show an
additional level of heterogeneity. There were two distinct
clusters identified among the DD samples separating them
into cord and nodule (circled in green and red) groups,
both from the transverse palmar fascia (circled in blue) in
passage 1.

In cohort B analysis, cultures from passage 0 were included
(Fig. 2B). Although very little biomass was harvested (for this
‘passage 0’ % of the initial monolayer grown from primary
fibroblast was subjected to FT-IR spectroscopy), a clear
separation between control and DD disease samples can be
observed for these passage 0 profiles. This continues to be so

This journal is © The Royal Society of Chemistry 2012
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Fig. 2 A This figure illustrates projection of the fourier transform infrared (FT-IR) spectra of Dupuytren’s disease (DD) fibroblasts derived from
the nodule, cord and fascia (internal control) onto the plane defined by PC1 and PC2. Patients are labeled by their numbers e.g. for each patient
where the three cell types were analysed (e.g. DD nodule, cord and fascia), three different coloured circles represent each tissue type. Red circle =
cords, green circle = nodules, blue circle = fascia (internal control). B This figure illustrates projection of the FT-IR spectra of DD fibroblasts
derived from the nodule, cord and fascia (internal control) from passage 0 and passage 1 onto the plane defined by t[1] (PC1) and t[2] (PC2). The
samples are labeled by numbers and shapes; 1 blue circle = transverse palmar fascia, 2 red square = nodule, 3 green cross = cord.

for the passage 1 sample, with some clusters of fascia entering
the nodule space in PC1.

DD nodule and DD cord versus internal (transverse palmar
fascia) and external (unaffected normal palmar fascia) control
(Experiment 1.2). Fig. 3 shows the DF1 vs. DF2 score plot
from the DD subsets compared to internal and external
control fascia. Its analysis along the DF1 axis shows that this
component divides the whole set of spectra into four groups; a
cluster of red circles (DD nodules), a majority of blue circles,

(DD fascia-internal control) on the right half of the plot, a
majority of turquoise/cyan circles (CTD fascia-external control)
on the left half of the plot, and green circles (DD cords) closer
to the centre (zero on x-axis): There was clear separation
between the DD fascia, DD nodule, DD cord, and also the
external CTD control. Clusters of samples from DD cells
always clustered apart (while showing separation between
the individual samples) from those of the CTD. This separation
suggests that internal fascia is an appropriate control and can
be distinguished from diseased fibroblasts using chemometrics

3 PCA-DFA scores plot, Patient DD2,17,18 and 3 CTD Fascia - Passage 0
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Fig. 3 Projection of the Fourier transform infrared FT-IR spectra of Dupuytren’s disease (DD) fibroblasts derived from the nodule, cord, fascia
(internal control) and carpal tunnel disease (CTD) palmar fascia (external control) from passage 0 onto the plane defined by DF1 and DF2.
Patients are labeled by their numbers e.g. for each patient where the four cell types were analysed (e.g. DD nodule, cord, fascia and CT external
fascia), there are four different colours to represent them; blue circle = fascia (internal control); red circle = nodules; green circle = cords; and
turquoise circles = CTD fascia (external control).
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procedure put together here. The use of internal fascia as the
control should contribute to homogeneity in future studies.

DD nodule and DD cord versus transverse palmar fascia, fat,
skin overlying nodule (Experiment 1.3). PCA scores of the five
different anatomical locations were examined. Clear separa-
tion of DD nodule, DD cord and the transverse palmar
(non-DD) fascia were observed from fibroblasts derived from
fat and SON cell types in all patients. Fig. 4A and B demon-
strate this for samples from a single patient across PC2. Fascia
clusters can also be separated from nodules but are closer to
the cords. Separation of fat from SON is observed in PC3. The
PCA scores plot did not show clear separation between
clusters from sample sets combined from multiple patients.
This shows that the high biodiversity between patients also
affects the metabolic variables correlating with DD, and again
highlights the importance of internal controls. In some cases, the
nodule and SON derived fibroblasts were in closer proximity
than those from cultures derived from cords, fascia and fat.

Passage effect on metabolic fingerprints (Experiment 1.4). As
above, PCA was performed to test the quality of the FT-IR
spectra (Fig. 5). As the number of passages increased the
samples became increasingly random in terms of the PCA
results and the DD samples overlapped increasingly with those
derived from other tissue phenotypes. In cohort A samples, the
separation between the clusters of individual phenotypes
(nodule, cord, fascia) became very small for samples of
passage number = 2. Samples from cultures of passage
numbers > 3 did not demonstrate robust separation.
Although some separation was observed, these late-passage
samples were not super-imposable on cultures derived from the
same phenotype in passage 0-2, and thereby lost distinction

between disease and control phenotypes. PCA score plots
from passages 5 and 6 are shown in Fig. SA. The change with
cell passaging can also be observed in a single patient: Fig. 5B
demonstrates this trend for the three sites. For passage number
1 clusters from nodule, cord and fascia are distinct, but as
passage number increases, the clusters of the different classes
move closer together and within classes are no longer clustered
as tightly.

As there is biological variance between patients, this difference
is not as clear in PCA scores plots alone, therefore PC-DFA
was performed. However, on inspection of the PC-DFA scores
plots (data not shown) the results from Cohort A implied that
performing serial passages > 3 did not produce significant
separation between the metabolic profiles obtained from
spectral data of the three different sites (nodule, cord and
fascia).

In cohort B a rather inconsistent sample size was analysed.
This inconsistency was due to several factors ranging from a
smaller number of DD biopsies, cells that did not grow or
survive the tissue processing step, samples arriving on separate
occasions with up to 2-4 weeks gap. Still, in early passage
numbers clear separation of control samples and DD disease
tissue was observed. In addition, DD fibroblasts (nodule and
cords) showed an additional level of heterogeneity: There were
3 distinct clusters between passage 0, 1, 2 samples and again
randomisation started to occur in samples from cultures from
passage 3 (Fig. 5C).

Finally, Fisher’s ratio was calculated for each patient to
determine separation/variability within class. The larger this
ratio is, the better is the separation between classes (i.e. well
separated classes and tight clusters for each class). The relation
between Fisher’s ratio and passage number is plotted in Fig. 6
for patients in cohort A. This ratio decreased linearly with
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Fig. 4 A PCA scores plot of the five different sites from a single patient; Dupuytren’s disease (DD) DD2, distinct clusters are observed, the
spectral profile of skin over nodule (SON) and fat are highly similar to each other with the DD cord and fascia showing a similar relationship, the
nodules cluster within its own space and can be separated from the rest using PC1 vs. PC2. B PCA score plot of PC2 vs. PC3 from patient DD2.
The fat and SON displays greater separation compare to PC1 vs. PC2. The overlap between cord and fascia is still observed.
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passage number. This substantiates the clear separation
between the cultures of different DD phenotypes (DD-nodule,
DD-cord and internal-control transverse palmar fascia) in the
early passages (1 and 2), which evaporated as the passage
number increased further.

Principal component analysis of footprint spectra (Experiment 1.5).
No meaningful trends or separation could be observed using
PCA on footprint data.

Metabolic profiling of cell-cultures from DD and normal palmar
fascia

Multivariate Analysis on GC-MS data acquired from three
patients (Experiment 2). Having established that early passages
have a more reproducible phenotype the next stage was to
assess sample (cord, nodule, control) variability. GC-TOF-MS
analysis was performed on 27 samples, constructed from
3 different tissue phenotypes (nodule (n = 3), cord (n = 3)
and control (transverse palmar fascia (n = 3)) cultured in
triplicates. A total of 129 metabolite features were identified,
of which 69 are known and reported in supplementary
Table S3. The unknown metabolites are excluded. To identify
the source of greatest variation within the combined and
individual groups of data for all samples MVA was employed.
The initial stage of the data analysis strategy was similar in
strategy to FT-IR analysis: unsupervised exploratory data

analysis using PCA was employed to discover any natural
groups within the data and any outliers before pre-processing.

Fig. 7 shows the scores plot following ANOVA-PCA on DD
nodules, DD cords and DD-control transverse palmar fascia.
Separation between nodules & control appeared in PC1 while
separation between cords and control appeared in PC2. The
loadings were plotted and the variables with data points
further away from the origin (zero) that had more significant
contributions toward the separation, were examined. This
procedure was used to compare relative metabolite concentra-
tions in samples and to see whether peaks (metabolite IDs)
from loading plots corresponded with those from univariate
analysis. The significant results from the MVA and Wilcoxon
rank test® are described in Table 1 in terms of the significantly
dysregulated metabolites and the super families of pathways to
which they contribute. For nodule samples compared with
normal fascia, 11 metabolites were identified as significantly
different. Of these, 4 unique and identified metabolites showed
a decrease in DD nodules; cysteine, phenylalanine, leucine and
aspartic acid. A further 7 metabolite features (peaks) changed
significantly but remained unidentified. For DD cords com-
pared with normal fascia, 9 metabolite peaks were identified as
significantly different. Of these 1 unique and identified meta-
bolites showed an increase in DD cords (glycerol-3-phosphate)
while 2 metabolites (leucine and pantothenic acid) showed
a decrease in DD cords. Some of these trends are shown
in the box-whisker plots in Fig. 8A-F and their original

Table 1 Metabolite peaks observed to be statistically different when comparing the intracellular extracts detected for Dupuytren’s disease (DD)
and control. 1 denotes an increase in metabolite concentration and | denotes a decrease in metabolite concentration. MET ID number represents
an unknown detected metabolite. Bold font and underline indicates significant metabolites. N = DD nodules, C = DD cord and F = internal

controls; transverse palmar fascia

Nvs. F
No HMDB accession ID Metabolite name p-value Cvs. F Crvs. N Pathway
1 HMDBO00687 L-Leucine 0.031 | 0.008 | 0.489 Amino acid metabolism
2 Sugar 0.625 0.016 | 0.463 Carbohydrate metabolism
3 HMDBO00126 Glycerol 3-Phosphate 0.25 0.016 1 0.039 1 Carbohydrate Metabolism
4 HMDB00210 Pantothenic acid 0.688 0.055 | 0.489 Mechanism of cofactors and vitamins
5 HMDBO00158 L-Tyrosine 0.313 0.148 0.035 1 Amino acid metabolism
6 Sugar 0.031 | 0.25 0.241 Carbohydrate metabolism
7 HMDBO00159 L-Phenylalanine 0.031 | 0.383 0.03 1 Amino acid metabolism
8 HMDBO00182 L-Lysine 0.219 0.383 0.035 1 Amino acid metabolism
9 HMDB00574 L-Cysteine 0.031 | 0.461 0.252 Amino acid metabolism
10 HMDB00182 L-Lysine 0.688 0.547 0.035 Amino acid metabolism
11 HMDBO00191 L-Aspartic acid 0.031 | 0.844 0.064 Amino acid metabolism
12 HMDB00574 L-Cysteine 0.031 | 0.945 0.064 Amino acid metabolism
13 Sugar 0.063 0.645 0.004 | Carbohydrate metabolism
14 HMDBO00182 L-Lysine 0.063 1 0.002 1 Amino acid metabolism
15 Unknown ID MET 100 0.031 0.461 0.127 —
16 Unknown ID MET 29 0.031 0.313 0.762 —
17 Unknown ID MET 58 0.031 0.25 0.389 —
18 Unknown ID MET 21 0.031 0.461 0.715 —
19 Unknown ID MET 77 0.063 0.016 0.147 —
20 Unknown ID MET 96 0.031 0.688 0.389 —
21 Unknown ID MET 126 0.625 0.375 0.019 —
22 Unknown ID MET 102 0.25 0.375 0.004 —
23 Unknown ID MET 121 0.063 0.031 1 —
24 Unknown ID MET 61 0.563 0.055 0.978 —
25 Unknown ID MET 60 0.313 0.039 0.421 —
26 Unknown ID MET 17 0.156 0.383 0.026 —
27 Unknown ID MET 74 0.031 0.945 0.761 —
28 Unknown ID MET 128 0.563 0.023 0.073 —
29 Unknown ID MET 94 1 0.125 0.001 —
30 Unknown ID MET 16 0.156 0.844 0.008 —
31 Unknown ID MET 7 1 1 0.022 —
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Fig. 5 A Projection of the Fourier transform infrared (FT-IR) spectra of Dupuytren’s disease (DD) fibroblasts derived from the nodule, cord and
fascia (control) with respect to passage number 5 and 6 onto the plane defined by PC1 and PC2. Patients are labeled by their numbers e.g. for each
patients where the three cell types were analysed (e.g. DD nodule, cord and fascia), there are three different coloured circles. Red circle = cords,
green circle = nodules, blue circle = fascia (internal control). B Projection of the FT-IR spectra of DD fibroblasts derived from the nodule, cord
and fascia (control) with respect to their passage number onto the plane defined by PC1 and PC2 from a single patient. Samples from variable
passage numbers are coloured. DD nodule, cord and fascia are labeled in lower case letters n, c, f respectively. C Projection of the FT-IR spectra of
DD fibroblasts derived from the nodule, cord and fascia (internal control) with respect to passage number 3 onto the plane defined by t[1] (PC1) and
t[2] (PC2). The samples are labeled by numbers and shapes; 1 blue circle = transverse palmar fascia, 2 red square = nodule, 3 green cross = cord.
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mass spectrometry spectra are provided in supplementary
Fig. S5. A further 6 unidentified metabolite features were also

significant.

MVA was also used to compare the DD cords against the
DD nodules. From the Wilcoxon rank test,* 4 unique and

identified metabolites showed a significant increase in cords
compared to nodules; glycerol-3-phosphate, tyrosine, phenyl-
alanine and lysine. A sugar was markedly down regulated in
nodules. In addition 6 unidentified metabolites were also
shown to have significant differences.

This journal is © The Royal Society of Chemistry 2012
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Fig. 7 ANOVA-PCA scores plot based on autoscaled gas chromato-
graphy-mass spectrometry (GC-MS) data showing the relationship
between ANOVA-PCA scores plot based on autoscaled GC-MS data
showing the relationship between nodules, cords and control. The
numbers represent the patients. Each coloured dot/point represents a
sample type. Number refers to patients in cohort C (14, 15 & 16)
labeled 4, 7 and 8 respectively). Letters refer to replicates.

Pathway analysis. Analysis of all known metabolites in the
dataset using MetPA3® and KEGG database’” revealed that
members of the amino acid metabolism pathways were signifi-
cantly overrepresented in the list of metabolites that changed
in DD. Table 1 illustrates the directional change, with red
arrows (up-regulated) and green arrows (downregulated). The
results indicate that dysregulation in intermediates involved in
carbohydrate and amino acid metabolism may attribute to
DD formation. The dysregulation seems to correspond to
rerouting rather than a general repression.

Discussion
A metabolomics phenotype for DD

The main aim of this study was to examine whether fibroblast
cultures derived from different DD primary tissues from one
hand and from two controls one from the same hand and the
other from a healthy hand (patient unaffected with DD)
exhibit differences at the metabolic level. The study showed
unequivocally that they do. FT-IR spectroscopy not only
discriminated DD phenotypes from the two controls, but also
between the two fibrotic elements i.e. nodules from cords.
Despite high biodiversity in patients, this trend could be observed
in most patients when examined alone, if not altogether in the
PCA scores plots when combined. Employing GC-MS this
study identified metabolites that were significantly dysregu-
lated in diseased tissue compared with the control fascia. The
levels of four amino acids were significantly lower in DD
nodules, i.e., leucine, phenylalanine, cysteine, and aspartic
acid. Leucine and an unidentified sugar molecule were also
significantly down-regulated in DD cords as in DD nodules.
Glycerol-3-phosphate (up-regulated) and pantothenic acid
(down-regulated; the vitamin component of coenzyme A) were

found to be up and down, respectively. They are involved in
carbohydrate, energy and lipid metabolism. These findings can
now support a more targeted profiling approach using
LC-MS/MS. Two areas of metabolism are clearly highlighted
for further systems-biology investigation. These include
(a) amino acid (leucine, cysteine) metabolism and (b) carbo-
hydrate/energy metabolism (CoA); moreover, the implications
for fatty acid metabolism (CoA) should also be investigated.
Variations in the intracellular metabolome reflect variations in
biochemical reactions in cells and may aid hypothesis genera-
tion regarding the metabolic activities within DD cells as
compared to control cells. From these variations, the path-
ways affected might then be inferred and disease pathogenesis
or consequences better understood. In addition these findings
for the metabolic level of cell function should be correlated
with findings for other experimental findings notably the
transcriptomic and the genomic data.

DD corresponds to permanent, progressive and irreversible
contracture of tissue in the palm and digits. This could be due
directly to an altered metabolism activating contractile elements,
or to an altered anatomy of the tissue in terms of contractile
proteins. Our observation of a metabolic phenotype is not yet
sufficient evidence of the former possibility. Firstly, it is not clear
how the metabolites identified would affect contractility directly.
Secondly, the DD metabolic phenotype in cell culture was
sufficiently long-lived to have to be co-determined by more stable
phenotypes (the metabolite mentioned have turnover times below
1 min). Proteomic studies, in conjunction with metabolomics and
systems biology, should be a most valuable next step.

The cell cultures are forgetful of the DD phenotype

Before interpreting any data related to physiological and
pathological transitions in DD, it is important to determine
“What is normal?”” This also pertains to systematic variations
in activity that accompany changes in cells and tissues as we
move them from their natural environment to the context that
enables us to analyse them: in this case “normal” is not a
single phenotype, but a succession of adapting states.
Although recent research in DD progression has taken a step
closer to gaining insight into biologically related gene sets
from the transverse palmar fascia,'®!1%3%40 none to date have
explored the possibly dominant effects of sub-cultivation on
any unique molecular or biochemical signature of DD. Few
studies even state the passage number of the cells analysed.
Normal cells undergo only a finite number of divisions
(a process known as replicative senescence), whereas tumour
cells are able to proliferate indefinitely.*'*** Passaging cell
cultures requires the division of the cells, an activity the
differentiated cells in and around DD tissue would not be
much engaged in. Although different numbers of passages
have been reported in some studies investigating Dupuytren
disease, any change in the proliferative potential of the fibro-
blasts has not been assessed. DD fibroblasts may possess a
higher potential for matrix and collagen production required
to persist through passages than control fascia cells do because
only the DD nodules and DD cords result from an uncontrolled
proliferative state. Differences in collagen, fibronectin proteins,
matrix expression proteins and even proteoglycans could be
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upper whiskers represent the 5th and 95th percentiles, respectively; and crosses represent the outliers.**p < 0.05 Wilcoxon sign rank test.

affected by cell passage because at earlier passages all normal
cells would mostly be proliferating while at later passages they
would tend to senesce.*

Because of these and other considerations we hypothesized
that when one brings DD and control cells in culture, they will
change phenotype with the number of times they are passaged
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into a new cell culture dish. We also expected that the
difference between the phenotype of the DD cells and the
control cells would fade away. Although the phenotype might
reside mostly in the protein expression pattern, we expected
that the metabolomics phenotype would reflect this. The
results of this study support both hypotheses: The cell culture
monolayer environment alters the functional characteristics of
the cells with cell-passage number and the difference between
DD and normal disappeared after 3 passages. It is unclear
whether this is due to adaptation of the cells to their new, same
environment or to selection for a subpopulation of cells which
were already more prone to survive the in vitro conditions.
3D cultures may improve over cell monolayer culturing and
should be considered in future studies.

Because DD comes with increased proliferative potential,
one might conjecture that the disappearance of the difference
between the metabolic phenotypes of DD and normal cells with
passaging, was due to the normal phenotype moving to the DD
phenotype and the latter remaining more or less constant.

The methodology

Within the biosciences, the applications of FT-IR have been
numerous and diverse.!”***> FT-IR spectroscopy can detect
and identify endogenous (metabolic fingerprint) and secreted
(metabolic footprint) metabolites.!” Also in the present study
FT-IR spectroscopy proved a powerful tool for the rapid
screening and discrimination of fingerprints, between the
anatomical cell types within individual DD patients. However,
PCA of FT-IR footprint spectra did not yield any statistically
meaningful results. This may be because the culture medium in
which secreted metabolites were collected was nutrient rich
and contained undefined reagents including FBS.

Much of the success of FT-IR spectroscopy derives from
precise data analysis. Due to uneven sample size (and cellular
content), projection analyses methods were used and PCA and
PC-DFA indicated good clustering and separation between
different sample types (from disease and healthy and also
between samples from different individuals). Supervised
analysis methodologies such as DFA and ANOVA-PCA were
employed in addition to unsupervised methods (PCA) to make
inferences from the mass spectral data.

A standard operation procedure in the search for DD
mechanism?

We examined how DD and healthy cells changed following
excision and cultivation over a period of time. The results from
the metabolic fingerprinting based on PCA of DD nodule,
cord and fascia imply that an early passage number cell (0-3)
would faithfully represent the test subject as its phenotype
would be closest to the in vivo state. We also identified principal
components both in FT-IR and in GC-MS methodologies, as well
as a number specific compounds as potential markers of the DD
phenotype. Metabolic fingerprinting has the major advantages of
speed, sensitivity, the ability to analyse many hundreds of samples
simultaneously and the potential to generate a rich and highly
informative data set. In addition FT-IR demonstrated
that internal fascia can serve as an appropriate control and
can be distinguished from diseased fibroblasts using our

chemometric techniques. The use of internal transverse palmar
fascia as the control will contribute to homogeneity and
consistency in future studies.

Taken together this may begin to define a standard operating
procedure for future studies after the mechanisms behind
DD: DD cells put into cell culture, harvested after a first
passage (in order to increase cell number) and checked for DD
signature in terms of our FT-IR or GC-MS procedures.
Transverse palmar fascia should be taken as the control.

Conclusions

Systematic hypothesis-driven studies have been performed to
investigate the DD state dynamics in vitro with respect to
passage numbers (i.e. over a time period). A number of
metabolites dysregulated in DD have been identified. These
metabolites are involved in amino acid metabolism, carbo-
hydrate metabolism and include a vitamin required for the
synthesis of an important coenzyme. Only cell cultures of early
(0-3) passage numbers provide metabolic fingerprints repre-
sentative of DD. This study has helped towards the elucidation
of how genetic and environmental changes together disturb
tissue function in DD and the results may encourage further
research in optimally defined conditions with an emphasis on
reproducibility and experimental robustness. Metabolites
identified from these early studies may serve as the basis of
larger, prospective, externally validated studies in clinical
cohorts for their future use as potential diagnostic biomarkers.
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DPBS Dulbecco’s phosphate buffered saline
EMSC Extended multiplicative scatter correction

FBS Fetal bovine serum

FDR False discovery rate

FT-IR Fourier transform-infrared

GC-MS Gas chromatography-mass spectrometry

KEGG Kyoto Encyclopedia of Genes and Genomes

MetPA Metabolomics pathway analysis

MVA Multivariate analyses
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