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What is the best treatment to decrease pro-inflammatory
cytokine release in acute skeletal muscle injury induced
by trauma in rats: low-level laser therapy,
diclofenac, or cryotherapy?
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Abstract Currently, treatment of muscle injuries represents a
challenge in clinical practice. In acute phase, the most
employed therapies are cryotherapy and nonsteroidal anti-
inflammatory drugs. In the last years, low-level laser therapy

(LLLT) has becoming a promising therapeutic agent; however,
its effects are not fully known. The aim of this study was to
analyze the effects of sodium diclofenac (topical application),
cryotherapy, and LLLT on pro-inflammatory cytokine levels
after a controlled model of muscle injury. For such, we
performed a single trauma in tibialis anterior muscle of rats.
After 1 h, animals were treated with sodium diclofenac
(11.6 mg/g of solution), cryotherapy (20 min), or LLLT (904
nm; superpulsed; 700 Hz; 60 mW mean output power; 1.67
W/cm2; 1, 3, 6 or 9 J; 17, 50, 100 or 150 s). Assessment of
interleukin-1β and interleukin-6 (IL-1β and IL-6) and tumor
necrosis factor-alpha (TNF-α) levels was performed at 6 h after
trauma employing enzyme-linked immunosorbent assay meth-
od. LLLT with 1 J dose significantly decreased (p<0.05) IL-
1β, IL-6, and TNF-α levels compared to non-treated injured
group as well as diclofenac and cryotherapy groups. On the
other hand, treatment with diclofenac and cryotherapy does
not decrease pro-inflammatory cytokine levels compared to
the non-treated injured group. Therefore, we can conclude that
904 nm LLLT with 1 J dose has better effects than topical
application of diclofenac or cryotherapy in acute inflammato-
ry phase after muscle trauma.
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Introduction

Currently, treatment of muscle injuries represents a chal-
lenge in clinical practice. Strains, contusions, ischemia, and
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neurological damage are some of mechanism that can lead to
skeletal muscle injury [1].

In muscle injuries caused by contusion, tissue is strongly
compressed, and it is usually due a single trauma. Injured
muscle suffers degeneration and regeneration processes,
which lead to biochemical and morphological changes at
injured site [1–3].

Inflammatory response begins immediately after injury,
and it starts with migration of leukocytes to the site of injury.
There is migration of neutrophils after few hours until 24 h
from injury, and macrophages arrive to injury site after 24 h
until 14 days from injury [4]. Neutrophils and macro-
phages contribute to tissue degradation through the release
of reactive oxygen species [5] and production of pro-
inflammatory cytokines such as interleukin 1-beta (IL-1β),
interleukin 6 (IL-6), and tumor necrosis factor-alpha (TNF-α)
[6]. Consequently, inflammatory response in acute phase
after muscle injury is predominantly a pro-inflammatory
response.

In acute phase, the most employed therapies in the treat-
ment of acute skeletal muscle injuries are cryotherapy and
nonsteroidal anti-inflammatory drugs (NSAIDs). In the last
years, low-level laser therapy (LLLT) has becoming a prom-
ising therapeutic agent in treatment of several musculoskel-
etal conditions such as arthritis [7], tendinitis [8, 9], neck
pain [10–12], low back pain [13], and skeletal muscle fatigue
[14–21]. On the other hand, there are few studies (animal
trials) investigating the effects of LLLT in skeletal muscle
injuries [22–24]. Additionally, there is a lack of studies that
compare LLLTeffects with other treatments like cryotherapy
and NSAIDs for instance, and we strongly believe that this
kind of studies could start to introduce LLLT as the first
choice for treatment of musculoskeletal conditions men-
tioned before, which certainly would represent an interesting
turn in clinical practice and could increase the popularity of
LLLT.

With this perspective in mind, we aimed to test and
compare the effects of sodium diclofenac with topical appli-
cation, cryotherapy, and LLLT in pro-inflammatory cytokine
levels during acute inflammation after a controlled model of
skeletal muscle injury induced by trauma in rats.

Materials and methods

Animal model of standardized muscle trauma

The experiments were carried out with male Wistar rats
weighing 200 g, with food and water ad libitum. The
Central Animal House of Nove de Julho University provided
the animals. All rats were randomly divided into groups of
six animals. The policies and procedures of the animal labo-
ratory are in accordance to Brazilian laws and with those

detailed by the US Department of Health and Human
Services. The experimental protocol was submitted and ap-
proved by the Animal Research and Care Committee of the
Nove de Julho University.

Rats were anesthetized with ketamine/xylazine (100 and
20 mg/kg, respectively). Each animal’s right hind limb was
positionedwith the knee extended and ankle in 90° dorsiflexion.
Then, a single trauma was performed employing a mini guillo-
tine comprised a block weight of 200 g with a blunt edge 2 mm
wide that was dropped from 20 cm guided by supports [24].
Animals were sacrificedwith an overdose of halothane at 6 h for
biochemical analysis. After the removal of skin and connective
tissue, tibialis anterior muscle was removed and processed for
further analysis.

Experimental groups

Each group was composed of six animals randomly divided
into eight experimental groups as follows:

& Control group—animals that did not undergo any type of
procedure

& Injury group—animals submitted to muscle injury
& Diclofenac group—animals that underwent muscle inju-

ry and treated with topical application of diclofenac
(11.6 mg/g of solution)

& Cryotherapy group—animals that underwent muscle in-
jury and treated with cryotherapy for 20 min

& LLLT 1 J group—animals that underwent muscle injury
and treated with LLLT with dose of 1 J/point

& LLLT 3 J group—animals that underwent muscle injury
and treated with LLLT with dose of 3 J/point

& LLLT 6 J group—animals that underwent muscle injury
and treated with LLLT with dose of 6 J/point

& LLLT 9 J group—animals that underwent muscle injury
and treated with LLLT with a dose of 9 J/point

Treatments

All treatments were performed 1 h after muscle trauma.

Cryotherapy In this group, we tried to mimic RICE protocol.
For such, animals were treated for 20 min with small rubber
bags containing crushed ice. The rubber bags were fixed at
the region of right tibialis muscle belly with rubber bands,
and the right hind limb of rats was kept elevated.

Diclofenac Rats of diclofenac group were treated with sodi-
um diclofenac with topical application 1 h after injury. For
such, 5 ml of diclofenac (Cataflam® Emulgel) in gel solution
(11.6 mg/g of solution) was applied uniformly at right tibialis
muscle belly. This amount and dose of diclofenac were ap-
plied to sufficiently cover the injured muscle belly and also
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trying to mimic clinical conditions. Additionally, manufac-
turer’s instruction about the use of medication was followed.

Low-level laser therapy A single LLLT treatment was
performed 1 h after controlled muscle trauma with an infra-
red laser unit (Irradia®, Stockholm, Sweden). The laser unit
operated in pulsed mode with a peak power of 20 W, pulse
width of 200 ns (10-9 s), frequency of 700 Hz, mean output
power of 60 mW, spot size of 0.0364 cm2, and power density
of 1.67 W/cm2. The optical power was calibrated using a
Newport multifunction optical meter model 1835C. The sta-
bility of laser during the laser irradiation was measured
collecting light with a partial reflect (4 %). The optical power
output of the laser unit was measured before, halfway through,
and after the experiment. All measurements to state parame-
ters were performed at laser aperture, and manufacturer gave
laser beam information. Laser irradiation was performed in
skin contact at the middle of anterior tibialis muscle belly with
doses (energy) of 1, 3, 6, and 9 J/point and corresponding
irradiation times of 17, 50, 100 and 150 s, respectively. Energy
densities were 27.47, 82.42, 164.84 and 247.25 J/cm2 respec-
tively. The laser energy doses were chosen according to pre-
vious studies from our research group [23, 24].

Analyses

For all analyses, we used a sample of six animals. A blinded
observer performed all analyses. Initial analysis was performed
at Nove de Julho University, Brazil. To ensure consistency in
analyses and reproducibility of results, one other laboratory at
the University of São Paulo (Brazil) duplicated the analyses.

Evaluation of inflammatory mediators (IL-1β, IL-6, and
TNF-α) The levels of IL-1β, IL-6, and TNF-α in the muscle
samples were determined by enzyme-linked immunosorbent
assays, using a commercial kit and following the manufac-
turer’s instructions (R&D System). For this purpose, 96-well
plates were coated with 100 μL of monoclonal antibody for
each cytokine (anti-IL-1β and IL-6) and diluted in sodium
carbonate buffer (0.1 M, pH 9.6), whereas anti TNF-α was
diluted in sodium phosphate buffer (0.2 M, pH 6.5). The
plates were incubated (4 °C) for 18 h. For blocking, the
plates were washed with PBS containing 0.05 % Tween 20
(PBST) four times and then filled with 300 L/well of
blocking solution (3 % gelatin in PBST; Sigma) at 37 °C
for 3 h and subjected to a new cycle of washes. Next, 100 μL
of properly diluted samples or standards of recombinant
cytokines were added to the plate and left for 18 h at 4 °C.
After washing, 100 μL of the respective biotinylated anti-
bodies for the specific detection of each cytokine was added
and left for 1 h at room temperature. After washing the
plates, 100 μL of streptavidin-peroxidase was added and left

for 1 h at room temperature (22 °C), followed by further
washing. The reaction was revealed by adding 100 μL/well
solution of 3,3′,5,5-tetramethylbenzidine and stopped by
adding 50 μL/well of sulfuric acid (2 M). Readings were
performed in a Spectrum Max Plus 384 spectrophotometer
(Sunnyvale, CA) at a wavelength of 450 nm, with correction
at 570 nm. Sample concentrations were calculated from
standard curves obtained from recombinant cytokines. The
limit of detection was 1.95 pg mL−1 for IL-1β and TNF-α
and 3.13–300 pg mL−1 for IL-6.

Statistical analysis

A blinded observer performed the statistical analysis. Data
are expressed as mean and standard error (±) of the mean
(SEM). All data were statistically evaluated by analysis of
variance, followed by the Tukey–Kramer post hoc. Values
with p<0.05 were considered statistically significant.

Results

Our experimental model significantly increased (p<0.05)
IL-1β levels in injured non-treated group. LLLT with 1 J
was the only treatment that significantly decreased IL-1β
levels compared to injury group (p<0.05). Additionally,
treatment with 1 J LLLT was significantly better (p<0.05)
than diclofenac and cryotherapy. Figure 1 summarizes results
regarding IL-1β.

Similarly, the experimental model of skeletal muscle trau-
ma employed in this study also significantly increased
(p<0.05) IL-6 levels in the injured non-treated group. Again,
treatment with 1 J LLLT was the only one to significantly

Fig. 1 IL-1β levels. The samples were collected at 6 h after muscle
trauma. The values are the mean and error bars are SD; n=6 animals
per group (§p<0.05 vs control group; *p<0.05 vs injury group;
**p<0.05 vs diclofenac group; #p<0.05 vs cryotherapy group;
ϕp<0.05 vs 3 J group; αp<0.05 vs 6 J group)

Lasers Med Sci



decrease IL-6 levels compared to injury group (p<0.05). LLLT
with 1 J showed significantly better results than diclofenac
and cryotherapy. Results regarding IL-6 are summarized in
Fig. 2.

The same pattern was observed regarding TNF-α levels.
Experimental model of muscle trauma significantly in-
creased (p<0.05) TNF-α levels in injured non-treated group.
One more time treatment with 1 J LLLTwas the only therapy
to significantly decrease TNF-α levels compared to injury
group (p<0.05). LLLT with 1 J again showed significant-
ly better results than diclofenac and cryotherapy. Figure 3
summarizes results regarding TNF-α levels.

Discussion

In this study, we employed an experimental model of con-
trolled muscle trauma trying to mimic contusion that is one
of the most common mechanisms of skeletal muscle injury.
Firstly, it is important to highlight that our experimental
model was able to promote the typical increase of pro-
inflammatory cytokine release that occurs in acute phase
according as observed in non-treated injury group.

We observed that only treatment with LLLT at 1 and 9 J
doses was able to significantly decrease IL-1β levels com-
pared to the injury group (p<0.05). Additionally, LLLTwith
1 J dose was significantly better (p<0.05) than cryotherapy
and diclofenac, as well as 3 and 6 J LLLT doses tested.

On the other hand, regarding IL-6 and TNF-α levels, only
LLLT at 1 J dose significantly decreased the levels of these
cytokines compared to injury group (p<0.05). Similarly to
the results of IL-1β levels, LLLT with 1 J dose was signif-
icantly better (p<0.05) than cryotherapy, diclofenac, and 3
and 6 J LLLT.

In a recent study performed by our research group, we
employed the same experimental model of muscle trauma;
however, we used 830 nm wavelength and we analyzed other
aspects such as muscle morphology and gene expression of
inflammatory markers [24]. Differently of the results observed
in the present study, all LLLT doses tested (1, 3, and 9 J)
significantly improved both morphological and biochemical
aspects of acute inflammation compared to injury and diclofenac
groups. However, 9 J dose showed slightly better results than
other doses. Despite similarity of experimental model and doses
tested, as well as difference of aspects evaluated between stud-
ies, this illustrates how difficult it is to establish an optimal dose
and better parameters for LLLT, and also that different wave-
lengths have different patterns regarding optimal dose.

In other study [25], we analyzed the effects of LLLT (3 J),
topical and intramuscular diclofenac used as single or
combined therapy on functional aspect (walking index),
and also inflammatory markers (cyclooxygenase-1 (COX-1),
cyclooxygenase-2 (COX-2), and prostaglandin E2 (PGE2),
respectively) after an experimental model of controlled muscle
strain. Despite that all treatments (single or combined) have
improved COX-1 and COX-2 gene expression compared to
the injury group (p<0.05), only groups where LLLTwas used
(as single or combined treatment) showed a significant im-
provement regarding PGE2 levels and walking index analysis.

Still regarding inflammatory markers, we recently ob-
served that a single treatment of LLLT (904 nm, 15 mW, dose
of 1 J) before tetanic contraction of tibialis anterior in rats
significantly increases skeletal muscle performance and de-
creases skeletal muscle damage and COX-2 gene expression.
These findings mean that LLLT seems to protect muscles
against damage and inflammation induced by exercise [18].
It is important to highlight that 1 J energy dose that showed
these protective effects in muscle tissue is the same to what
was used in the present study.

Fig. 2 IL-6 levels. The samples were collected at 6 h after muscle
trauma. The values are the mean and error bars are SD; n=6 animals
per group (§p<0.05 vs control group; *p<0.05 vs injury group;
**p<0.05 vs diclofenac group; #p<0.05 vs cryotherapy group;
ϕp<0.05 vs 3 J group; αp<0.05 vs 6 J group)

Fig. 3 TNF-α levels. The samples were collected at 6 h after muscle
trauma. The values are the mean and error bars are SD; n=6 animals
per group (§p<0.05 vs control group; *p<0.05 vs injury group;
**p<0.05 vs diclofenac group; #p<0.05 vs cryotherapy group;
ϕp<0.05 vs 3 J group; αp<0.05 vs 6 J group)
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Surprisingly, in the present study, two of treatments wide-
ly used in acute phase after muscle trauma do not show
significant effects compared to the non-treated injured group
in none of outcomes tested, which demonstrates that LLLT is
an interesting alternative to classic treatments like NSAIDs
and cryotherapy, and this increases scientific evidence re-
garding the use of LLLT in the treatment of musculoskeletal
disorders.

Conclusion

We conclude that 904 nm LLLT with dose of 1 J decreases
pro-inflammatory cytokine release in acute inflammatory
phase after muscle contusion. Furthermore, LLLT is better
than topical application of diclofenac and local application of
cryotherapy. Further studies are needed to translate these
findings to clinical settings.
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