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WT1 expression is increased in primary fibroblasts derived
from Dupuytren’s disease tissues
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Abstract Dupuytren’s disease (DD) is a fibroproliferative
and contractile fibrosis of the palmar fascia that, like all other
heritable fibroses, is currently incurable. While DD is invari-
ably benign, it exhibits some molecular similarities to malig-
nant tumours, including increased levels of ß-catenin, onco-
fetal fibronectin, periostin and insulin-like growth factor
(IGF)-II. To gain additional insights into the pathogenesis of
DD, we have assessed the expression of WT1, encoding
Wilm’s tumour 1, an established tumour biomarker that is
syntenic with IGF2, the gene encoding IGF-II in humans.
We found that WT1 expression is robustly and consistently

up regulated in primary fibroblasts derived from the fibrotic
palmar fascia of patients withDD (DD cells), whereas syngeneic
fibroblasts derived from the macroscopically unaffected palmar
fascia in these patients and allogeneic fibroblasts derived from
normal palmar fascia exhibited very low or undetectable WT1
transcript levels. WT1 immunoreactivity was evident in a subset
of cells in the fibrotic palmar fascia of patients with DD, but not
in macroscopically unaffected palmar fascia. These findings
identifyWT1 expression as a novel biomarker of fibrotic palmar
fascia and are consistent with the hypothesis that the pathogen-
eses of DD and malignant tumours have molecular similarities.
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Introduction

Palmar fibromatosis is often referred to as Dupuytren’s disease
(DD) in deference to the French surgeonwho was amongst the
first to describe and treat this condition (Dupuytren 1834). It is
a benign and heritable (Capstick et al. 2013) fibrosis that is
initially evident as a nodule of myofibroblasts (Berndt et al.
1994; Bisson et al. 2003; Iwasaki et al. 1984; Magro et al.
1997; Tomasek et al. 1986) within the palmar fascia (palmar
aponeurosis), a thin layer of connective tissue below the der-
mis in the palm. Over time, and through a poorly understood
process, nodular myofibroblasts spread along the palmar fas-
cia, secrete collagens and other extra-cellular matrix (ECM)
proteins, and exert contractile forces on this collagen-enriched
matrix. Contraction of these collagenous Bcords^ (Chiu and
McFarlane 1978; Rayan 1999) result in the permanent finger
contractures that characterize DD (Badalamente et al. 1996;
Berndt et al. 1994; Magro et al. 1997; Tomasek et al. 1986;
Tomasek et al. 1987). Depending on whether finger
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contractures or the presence of palmar nodules are assessed as
evidence of disease, the prevalence of DD is estimated to be
between 1 and 7 % in the United States of America
(Dibenedetti et al. 2012) and to be as high as 32 % in some
regions of Europe (Degreef and De Smet 2012). As all of the
available treatments for this fibrosis are associated with dis-
ease recurrence rates of 30 % or greater (Bulstrode et al. 2005;
Foucher et al. 2003; Kan et al. 2015; Watt et al. 2012), DD is
currently considered incurable.

Despite being characterized as benign, DD tissues and the
primary fibroblasts derived from these tissues (DD cells) dis-
play some of the molecular characteristics of sarcomas and
tumor stroma. These include, but are not limited to, increased
ß-catenin levels (Howard et al. 2004; Howard et al. 2003;
Varallo et al. 2003), increased expression of FN type III
extra-domain B (ED-B) and Boncofetal^ fibronectin levels,
increased POSTN expression and periostin levels (Vi et al.
2009) and increased IGF2 expression and insulin-like growth
factor-II (IGF-II) levels (Raykha et al. 2013). We have
interpreted these findings to suggest that the pathogenesis of
DD and tumor/tumor stroma development may involve the
activation of similar molecular pathways (Bowley et al.
2007), and that fibrosis development may represent either an
alternative outcome to, or a precursor of, tumor development.

Increased IGF2 expression and/or increased ß-catenin
levels are common features of many different cancers
(Alman et al. 1997; Barker and Clevers 2000; Cui 2007; de
Groot et al. 2007; Heaton et al. 2013; Lu et al. 2006;Merle and
Trepo 2009; Morin 1999; Shah et al. 2002; Singh et al. 1998;
Tetsu and McCormick 1999) including Wilm’s tumours
(Fukuzawa et al. 2008; Haruta et al. 2008; Md Zin et al.
2013), a type of paediatric kidney tumour. Wilm’s tumours
are best known for featuring inactivating mutations of WT1,
encoding the alternatively spliced (Charlieu et al. 1995) zinc
finger transcription factor (Caricasole et al. 1996; Magro et al.
2014) and RNA splice factor (Caricasole et al. 1996; Hewitt
and Saunders 1996; Kennedy et al. 1996) Wilm’s tumour 1
(WT1). Despite its original identification as a tumour suppres-
sor gene (TSG) inWilm’s tumors,WT1 expression is frequent-
ly up regulated in other tumours where it is considered to be
both oncogenic and a biomarker of tumour sub-type
(Nakatsuka et al. 2006; Ohno et al. 2009; Sebire et al. 2005;
Shimizu et al. 2000;Wilsher and Cheerala 2007). AsWT1 and
IGF2 are syntenic on chromosome 11p and some of their
transcripts are subject to alterations in genomic imprinting in
tumours (Haruta et al. 2008; Jacobs et al. 2013; Malik et al.
2000; Mitsuya et al. 1997), we were curious to see if WT1
expression, like IGF2 expression (Raykha et al. 2013), was
dysregulated in DD. Here we report that WT1 expression is
robustly and consistently increased in DD cells relative to both
syngeneic fibroblasts derived from the visibly non-fibrotic

palmar fascia and allogeneic fibroblasts derived from normal
palmar fascia. WT1 immunoreactivity was evident in discrete
subsets of cells within fibrotic palmar fascia, but not in mac-
roscopically unaffected palmar fascia. These findings impli-
cate WT1 as novel biomarker of this fibrosis and support our
hypothesis that the pathogenesis of DD and tumour develop-
ment share overlapping molecular characteristics.

Methods

Derivation of primary fibroblasts

Palmar fascia tissue samples were resected from patients with
Dupuytren’s disease (DD) and from patients undergoing car-
pal tunnel release (CT) during surgeries at the Roth |
McFarlane Hand and Upper Limb clinic. All patients received
a letter of information and signed consent forms for their tis-
sues to be used for research purposes and the samples were
collected with the approval from the University of Western
Ontario Research Ethics Board for Health Sciences Research
involving Human Subjects (HSREB protocol # 104888).
Patient de-identification and confidentiality were achieved
by assigning lab numbers to the samples prior to processing.
Primary DD fibroblasts were derived from visibly fibrotic pal-
mar fascia (DD cells), and from phenotypically unaffected ad-
jacent palmar fascia of the same patient (PF cells), as syngeneic
controls. Normal palmar fascia fibroblasts were derived from
patients with no prior history of Dupuytren’s Disease undergo-
ing carpal tunnel release (CT cells) as allogeneic controls.

Real-time quantitative PCR analyses

Total RNA samples from primary DD, PF and CT cells were
assessed for quality on a NanoDrop spectrophotometer ND-
1000. 2 μg of high quality total RNAwas reverse transcribed
into cDNA first strand using the High-Capacity cDNA
Archive Kit (Applied Biosystems) in accordance with the
manufacturer’s instructions. TaqMan gene expression assays
were used to measure WT1 mRNA levels (Hs01103751_m1)
relative to the RPLP0 endogenous control (Hs99999902_m1)
using the ΔΔCt method after confirmation of parallel PCR
amplification efficiencies on a Real-Time PCR ABI Prism
7500. PCR reactions were carried out under the following
conditions: Initial denaturation at 95 °C for 5 min followed
by 40 cycles of denaturation (95 °C for 15 s), primer annealing
(60 °C for 1 min) and transcript extension (50 °C for 2 min).

Immunohistochemistry Surgically resected fibrotic (N=2)
and macroscopically non-fibrotic (N=2) palmar fascia sam-
ples were resected from patients undergoing fasciectomies
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for DD. The tissues were fixed in 10 % formalin, dehydrated,
paraffin embedding and sectioned. Sections (5 μm) were
dewaxed, rehydrated, and processed for antigen retrieval
using standard citrate-based protocols. Sections were rinsed
in PBS prior to incubation with WT1 polyclonal antibody
(clone 6F-H2 in Bready to use^ dilution buffer, Dako Cat#

IR055). Sections were counterstained with Gills hematoxylin
for 1 min and visualized by light microscopy.

Results

WT1 expression in DD, PF and CT cells WT1 expression
was assessed in syngeneic DD and PF cells from 13 patients
and in allogeneic CTcells from 6 patients. As shown in Fig. 1,
a mean increase inWT1 expression of ≥25 fold was evident in
DD cells relative to both PF cells and CT cells cultured under
identical conditions in αMEM supplemented with 10 % FBS.
WT1 transcripts could not be detected in approximately 50 %
(7/13) of the PF cell cultures and in 17 % (1/6) of the CT cell
cultures within the 40 PCR cycle limit. In the remainder of the
PF and CT cell cultures, WT1 transcripts were detected at an
average of 35 and 37 PCR cycles respectively, indicative of
very low levels of WT1 mRNA transcripts in these cells. In
contrast, WT1 expression was detected in 100 % of the DD
cell cultures assessed at an average of 28 PCR cycles, and
WT1 transcripts were invariably (13/13) detected at a lower
cycle of PCR cycles in the DD cells than in the PF cells
derived from the same patient.

WT1 immunoreactivity in surgically resected DD
tissues Paraffin-embedded fibrotic and macroscopically unaf-
fected palmar fascia tissues were sectioned and assessed for

Fig. 1 Real-time PCR analyses of WT1 expression. WT1 expression was
assessed relative to RPLP0 (housekeeping gene) expression in primary
fibroblasts (DD) derived from the fibrotic palmar fascia of patients (N=13)
with DD, syngeneic fibroblasts derived from visibly non-fibrotic palmar fascia
(PF) in these patients (N=13), and in allogeneic control (CT) fibroblasts de-
rived frompatients (N=6)with no history ofDD.All sampleswere assessed in
triplicate. Means ± SEM are shown, * indicates significant differences inWT1
expression between DD and PF (p<0.001) and DD and CT (p<0.011) by t-
test and between DD and both PF and CT (p<0.01) by ANOVA

Fig. 2 WT1 immunoreactivity in
fibrotic and normal palmar fascia:
Paraffin embedded fibrotic (a, b
and d) and macroscopically
unaffected palmar fascia (d)
tissues were sectioned and
assessed for WT1
immunoreactivity as described in
the methods. Tissues were
counterstained with Gills
haematoxylin to distinguish cell
nuclei from palmar fascia tissue
matrix

WT1 expression in Dupuytren’s disease



WT1 immunoreactivity as described in the methods. As
shown in Fig. 2a, b and c, discrete clusters of WT1-positive
cells were observed throughout the sections of fibrotic palmar
fascia. In contrast, noWT1 immunoreactivity was observed in
any of the macroscopically unaffected palmar fascia tissue
sections assessed (Fig. 2d).

Discussion

To our knowledge, this is the first report of increased WT1
expression and WT1 immunoreactivity in DD. The WT1-
immunoreactive cells identified in DD tissues made up ap-
proximately 10 % of the total number of cells in these tissues
and were typically clustered together, implying that they may
represent a distinct sub-population of cells that are specific to
fibrotic, but not normal, palmar fascia. The relative scarcity of
WT1 positive cells in DD tissues contrasted to the consistent,
high-level expression of WT1 in primary cells derived from
these tissues. It is currently unclear if WT1-positive cells are
preferentially isolated during explant cultures or whether
some aspect of in vitro culture enhances WT1 expression.
WT1 gene transcripts are subject to extensive alternative
splicing in other disease systems (Bickmore et al. 1992;
Hewitt and Saunders 1996; Morrison et al. 2008) and
the translated products of these variants may include or
exclude a region encoding a Lys-Thr-Ser (KTS) tripeptide,
resulting in WT1 + KTS and WT1-KTS protein isoforms
(Charlieu et al. 1995; Lee and Haber 2001; Lee et al. 1999;
Morrison et al. 2006). The WT1-KTS isoform has been re-
ported to localize to the nucleus, bind DNA and function as a
zinc-finger transcription factor to activate or repress gene tran-
scription, whereas the WT1 + KTS isoform is proposed to
interact with factors that regulate RNA splicing in the cyto-
plasm (Morrison et al. 2006). The nuclear or cytoplasmic lo-
calization of WT1 varies between tumor types and is used for
tumor characterization (Hecht et al. 2002; Magro et al. 2014;
Nakatsuka et al. 2006; Sebire et al. 2005), however it is un-
clear if the cellular location of WT1 immunoreactivity strictly
correlates with the relative abundance of + KTS and -KTS
isoforms. While WT1 immunoreactivity appeared to be most-
ly localized to the cytoplasm of cells in fibrotic palmar fascia
tissues, further analyses will be required to confirm this obser-
vation and any correlation with WT1 isoform expression.

IGF2 and WT1 are syntenic on the short arm of chromo-
some 11, at 11p15.5 and 11p13 respectively, and each express
a subset of transcripts that are subject to genomic imprinting,
or parent-of origin-specific gene expression, in various tis-
sues. Loss of IGF2 and WT1 imprinting in tumors typically
results in up regulated expression levels (Brown et al. 2008;
Jacobs et al. 2013), and our recent unpublished findings sug-
gest that IGF2 imprinting may be lost in a subset of patients
with DD. As both IGF2 and WT1 expression levels are up

regulated in DD cells, we will include WT1 in these ongoing
studies to determine if abnormal epigenetic regulation of ex-
pression contributes to the increased IGF2 andWT1 transcript
levels in this fibrosis.

Depletion of WT1 levels in idiopathic pulmonary fibrosis
has been reported to inhibit myofibroblast formation (Karki
et al. 2015) and increased WT1 expression in DD
myofibroblasts may imply a similar role for WT1 in their
development. If WT1 depletion in DD is found to inhibit
myofibroblast development, it may be feasible to cross-
purpose the WT1 peptide-based immuno-therapies currently
under clinical investigation as treatments for a variety of can-
cers (Dohi et al. 2011; Dubrovsky et al. 2014; Elmaagacli et al.
2005; Nishida et al. 2014; Oka et al. 2002; Oka et al. 2006;
Shirakata et al. 2012) as anti-fibrotic interventions. While the
efficacy of this novel approach is yet to be clearly demonstrat-
ed, the potential to attenuate fibrosis-associated myofibroblast
development by immunizing patients with WT1 peptides is
intriguing and may be worthy of further investigation.
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