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6.1          The Pathogenesis 
of Dupuytren Disease 

 The pathogenesis of Dupuytren Disease remains 
controversial and poorly understood. This com-
plex condition resembles abnormal wound repair, 
a process that can be used to provide a contextual 
framework for understanding Dupuytren Disease 
development. When normal palmar fascia is 
wounded, complex arrays of wound healing 
responses are initiated in local and circulating 
macrophages, fi broblasts, and other cells that 
contribute to tissue homeostasis. Under ideal 
conditions, the signaling pathways that are tran-
siently activated in these cells promote high- 
fi delity repair that superfi cially resembles palmar 
fascia regeneration. Unfortunately, palmar fascia 
repair also occurs under suboptimal conditions 
such as chronic microtraumas (Mikkelsen  1978 ; 
Liss and Stock  1996 ), excessive infl ammation 
(Baird et al.  1993 ; Qureshi et al.  2001 ; 
Gudmundsson et al.  1998 ), and abnormal meta-
bolic (Savas et al.  2007 ) and/or biomechanical 
(Verhoekx et al.  2012 ) stimuli from the extracel-
lular environment. While these conditions alone 
are often suffi cient to modify cellular responses 
and reduce the quality of subsequent repair pro-
cesses, their impacts may be amplifi ed when 
these cells carry heritable, pro-fi brotic genomic 
traits (Dolmans et al.  2011 ; Debniak et al.  2013 ; 
Bayat et al.  2002 ). These heritable traits are 
hypothesized to modify cellular sensitivities to 
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adverse conditions and induce chronic activation 
of signaling pathways that are transiently acti-
vated during normal palmar fascia repair and the 
activation of additional signaling pathways that 
are normally restricted to development rather 
than repair (Rehman et al.  2008 ). The net result is 
the excessive secretion of collagens (Badalamente 
and Hurst  1999 ) and other extracellular matrix 
molecules by hyper-contractile tissue repair cells 
known as the myofi broblasts (Tomasek et al. 
 1999 ; Vi et al.  2009a ). These cells, which have 
transient but essential roles in normal tissue 
repair, constantly remodel and contract the 
collagen- rich matrix they secrete, thereby 
increasing tissue density and ultimately causing 
palmar fascia contractures (Meek et al.  1999 ). 

 When viewed from this perspective, it is 
apparent that abnormal environmental stimuli 
and heritable genomic (genetic and epigenetic) 
factors act in combination to cause Dupuytren 
Disease. Ideally, therapeutic interventions to 
prevent Dupuytren Disease development would 
target both of these contributing factors simulta-
neously. Unfortunately, the complex genomic 
traits that are hypothesized to modify cellular 
sensitivities to adverse microenvironments and 
predispose individuals to develop Dupuytren 
Disease are yet to be clearly defi ned. Even when 
they are defi ned, we may have to await the devel-
opment of reliable, safe, and approved genome-
editing tools before it is feasible to intervene and 
correct them. However, some of the abnormal 
environmental stimuli that promote Dupuytren 
Disease are amenable to therapeutic interven-
tions and are already being targeted in other dis-
ease systems. For example, pharmacological 
inhibitors of some of the infl ammatory cytokines 
hypothesized to induce Dupuytren Disease 
development, such as TNFα (Verjee et al.  2013 ), 
are currently being used to treat infl ammatory 
arthritis (Meroni et al.  2015 ; Bader and Wagoner 
 2011 ). However, to develop effective therapeutic 
interventions that target these cytokines or other 
molecules that promote Dupuytren Disease pro-
gression and recurrence, we must fi rst take into 
account the unique palmar fascia microenviron-
ment within which these interventions must take 

place. This microenvironment consists of a mix-
ture of resident palmar fascia, immune and other 
cell types embedded in extracellular matrix 
(ECM) that is unique to this tissue. The central 
hypotheses of this section are that the ECM in 
the palmar fascia of patients with Dupuytren 
Disease is not normal, that it infl uences disease 
progression and recurrence, and that it is a viable 
and readily accessible target for therapeutic 
interventions to prevent Dupuytren Disease. 
Before we can determine whether or not the 
available evidence supports these hypotheses, 
we must fi rst understand the cellular origins of 
the Dupuytren Disease ECM, its complexity, and 
how it interacts with contracture-causing cells.  

6.2     The Cellular Origin 
of the Extracellular Matrix 
in Dupuytren Disease 

 The ECM can be described as a complex mixture 
of proteins and other molecules secreted by cells 
to provide structural support within a three- 
dimensional tissue. While this description is 
accurate, it omits what is arguably the most 
important role of the ECM, to provide the bio-
chemical and biomechanical feedback that cells 
require to “sense” their local environment (Aszódi 
et al.  2006 ; Piccolo et al.  2014 ). Dupuytren 
Disease, like many other fi broses, is characterized 
by excessive ECM secretion and remodeling. The 
cells that secrete, condition, and contract the ECM 
in Dupuytren Disease are hyper-contractile con-
nective tissue myofi broblasts. While circulating 
and resident macrophages, progenitor/stem, and 
other cells may play important roles in initiating 
fi brosis, the substantial overlap between the gene 
expression profi les of Dupuytren Disease-derived 
myofi broblasts and of palmar fascia fi broblasts in 
the adjacent, non-fi brotic palmar fascia strongly 
suggests that the majority of ECM-secreting myo-
fi broblasts in contracture tissues are derived from 
the palmar fascia (Satish et al.  2008 ,  2012 ). 
Comparisons between myofi broblasts derived 
from Dupuytren Disease tissues and fi broblasts 
derived from normal carpal ligament have revealed 
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that Dupuytren Disease myofi broblasts not only 
secrete excessive quantities of ECM, but they also 
achieve “tensional homeostasis” with their ECM 
at much higher contractile forces (Bisson et al. 
 2004 ). These fi ndings suggest that Dupuytren 
Disease myofi broblasts either have an impaired 
ability to recognize normal levels of tensional 
feedback from their ECM or that the biochemical 
and biomechanical signals that these cells receive 
from this ECM actively promote their excessive 
contractility. There is evidence to support the latter 
interpretation and, by extension, the hypothesis 
that the Dupuytren Disease ECM itself promotes 
disease progression.  

6.3     The Complexity 
of the Extracellular Matrix 
in Dupuytren Disease 

 The ECM in Dupuytren Disease is very complex 
and, as yet, poorly defi ned. It contains hydro-
scopic carbohydrate polymers that act in combi-
nation with ECM proteins and act as 
proteoglycans, such as chondroitin sulfate (Bazin 
et al.  1980 ; Slack et al.  1982 ; Flint et al.  1982 ), 
and others that act independently of proteins, 
such as hyaluronan (or hyaluronic acid) (Slack 
et al.  1982 ; Andreutti et al.  1999 ). While ECM 
proteins are typically divided into structural and 
nonstructural categories, there is considerable 
overlap between these categories. For example, 
the most abundant proteins in contracture cords 
are type I and type III collagens (Bailey et al. 
 1977 ; Brickley-Parsons et al.  1981 ; Bunker et al. 
 2000 ). While their central roles in providing 
structural integrity to cords are beyond dispute, 
these proteins also function as signaling mole-
cules (Imamichi and Menke  2007 ) that induce a 
variety of cellular responses (Vi et al.  2009b ) 
through well-established cell surface receptors 
(Naci et al.  2015 ). Other Dupuytren Disease- 
associated ECM proteins with structural and 
signaling roles include other collagens (Magro 
et al.  1997a ), laminin (Tomasek et al.  1986 ; 
Magro et al.  1997b ; Tomasek et al.  1987 ), elas-
tin (Neumuller et al.  1994 ), and insoluble fi bro-

nectin, including the alternatively spliced form 
of fi bronectin known as extra domain A (EDA) 
or “oncofetal” fi bronectin (Kosmehl et al.  1995 ; 
Berndt et al.  1995 ; Howard et al.  2004 ). 
Nonstructural “matricellular” proteins that inter-
act with structural ECM proteins and regulate 
growth factor signaling, such as periostin (Vi 
et al.  2009a ; Shih et al.  2009 ), tenascin C (Shih 
et al.  2009 ), CCN2 (connective tissue growth 
factor) (Satish et al.  2011 ), and others, are also 
abundant in the Dupuytren Disease ECM. ECM 
metalloproteinase (MMP) levels, tissue inhibi-
tors of metalloproteinases (TIMPs), and activi-
ties differ between diseased and visibly 
unaffected palmar fascia, and these differences 
are likely to contribute to the imbalance in ECM 
production and degradation in contracture tis-
sues (Verhoekx et al.  2012 ; Forrester et al.  2013 ; 
Tarlton et al.  1998 ; Johnston et al.  2007 ; Bunker 
et al.  2000 ). Finally, many growth and differen-
tiation factors are associated with the Dupuytren 
Disease ECM. Some, such as transforming 
growth factor β (TGFβ) (Kloen et al.  1995 ; 
Badalamente et al.  1996 ; Berndt et al.  1995 ), 
bind the ECM in a latent form and can be acti-
vated by proteases in the ECM and also by the 
biomechanical infl uences imposed by abnormal 
ECM stiffness/density (Hinz  2009 ; Wipff et al. 
 2007 ). Others, such as basic fi broblast growth 
factor (bFGF), platelet- derived growth factor 
(PDGF), and insulin-like growth factor-II 
(IGF-II) (Gonzalez et al.  1992 ; Raykha et al. 
 2013 ; Badalamente and Hurst  1999 ; Berndt et al. 
 1995 ), either bind the ECM directly as active 
molecules or are bound indirectly through other 
proteins with the capacity to bind structural com-
ponents of the ECM. Genes encoding ECM pro-
teins consistently make up the majority of the 
dysregulated genes identifi ed in gene expression 
studies of Dupuytren Disease myofi broblasts and 
tissues (Rehman et al.  2008 ; Forrester et al.  2013 ; 
Qian et al.  2004 ; Satish et al.  2012 ), refl ecting 
the extent of ECM remodeling that takes place 
during Dupuytren Disease development. We do 
not understand the functions or therapeutic 
potential of the vast majority of these 
molecules.
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6.4        Cellular Connections 
with the Extracellular Matrix 

 Connective tissue fi broblasts in general, and myofi -
broblasts in particular, obtain feedback from the 
biochemical and biomechanical components of 
their ECM (Hinz  2006 ; Tomasek et al.  2002 ) 
through specialized attachment points known as 
focal adhesions. While several different types of 
attachments have been characterized in in vitro set-
tings, including focal complexes, fi brillar adhe-
sions, and 3D matrix adhesions (Berrier and 
Yamada  2007 ; Harunaga and Yamada  2011 ), the 
primary cellular attachments that are formed 
in vivo are focal adhesions (Lock et al.  2008 ; 
Christopher and Guan  2000 ; Hinz et al.  2003 ) 
(Fig.  6.1 ). Focal adhesions are dynamically regu-
lated multi-protein complexes of integrins and 
other proteins that span the cell membrane and 
connect cells to proteins in the Dupuytren Disease 
ECM, which include collagens (Magro et al. 
 1997a ), laminin (Wilbrand et al.  2003 ), fi bronectin 
(Magro et al.  1995 ), and matricellular molecules 
(Vi et al.  2009a ). Both biochemical and biome-
chanical stimuli can activate focal adhesions to 
facilitate cellular responses. Many of these 
responses involve the polymerization of globular 
(G) actin monomers into the fi lamentous actins (F 
actin). Actin fi laments bind vinculin and other focal 
adhesion proteins (Hinz and Gabbiani  2003a ) to 
complete the structural link between the ECM and 
the cytoskeleton and facilitate ECM-induced 
changes in cellular motility, contractility, and sub-
strate adhesion (Kawaguchi et al.  2003 ; Yamashiro 
et al.  1998 ; Hinz and Gabbiani  2003a ).

6.5        Cellular Tensegrity Within 
the Extracellular Matrix 

 Myofi broblasts can be distinguished from other 
fi broblasts by their expression of a distinct form of 
fi lamentous actin known as α smooth muscle actin 
(αSMA) (Darby et al.  1990 ). When coupled to 
myosin in “stress” fi bers, αSMA allows myofi bro-
blasts to impose much greater contractile forces on 
the ECM through focal adhesions than connective 
tissue fi broblasts are normally capable of achiev-
ing (Hinz  2006 ). Myofi broblasts can also form 
intercellular (cell to cell) connections with other 
myofi broblasts through adherens junctions, fur-
ther enhancing their capacity to coordinate ECM 
contraction in areas of high cell density (Follonier 
et al.  2008 ; Hinz and Gabbiani  2003b ). 

 One way of visualizing cellular interactions 
with their surrounding matrix is to perceive cells 
as prestressed lattice structures that are stabilized 
by the combination of tension and compression. 
This concept, known as the tensegrity principle 
(Ingber et al.  2014 ), envisages actin/myosin stress 
fi bers, intermediate fi laments, and microtubules 
(α and β tubulin polymers) as tensional and com-
pression elements that have analogous roles to the 
cables and columns that maintain the shape of a 
fl exible structure. While a detailed description of 
cellular tensegrity is beyond the scope of this sec-
tion (for details, see (Ingber et al.  2014 )), it is 
nonetheless helpful for envisaging how external 
forces that pull on structural molecules in the 
ECM can cause integrins in focal adhesions linked 
to αSMA in stress fi bers to distort the shape of a 
cell and stimulate cellular responses. This concept 

 Examples of molecules previously identifi ed in the Dupuytren Disease extracellular matrix 

 Structural and nonstructural ECM 
molecules 

 Matricellular (nonstructural) 
ECM molecules  Growth and differentiation factors 

 Collagens (I, III, + many others) 
 Decorin 
 Vitronectin 
 Hyaluronan (hyaluronic acid) 
 Proteases (MMP/ADAM/ADAMTS) 
 Protease inhibitors (TIMPs) 
 Laminin 
 Elastin 
 Fibronectin (including EDA) 

 Periostin 
 Tenascin C 
 CCN2 (CTGF) 
 CCN4 (WISP1) 

 Transforming growth factor ß (TGFß) 
 Tumor necrosis factor α (TNFα) 
 Basic fi broblast growth factor (bFGF) 
 Platelet-derived growth factor (PDGF) 
 Insulin-like growth factor-II (IGF-II) 
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also works in reverse, allowing cells to contract 
the surrounding ECM by shortening the actin/
myosin stress fi bers in their cytoskeleton that are 
linked to integrins in focal adhesions and to struc-
tural molecules, such as collagens, in the ECM.  

6.6     Extracellular Matrix 
Interactions and In Vitro 
Analyses of Dupuytren 
Disease Cells 

 Any molecule that promotes the coordinated and 
excessive contracture of the palmar fascia by 
myofi broblasts has potential as a therapeutic tar-
get. While many of these molecules may reside 

within palmar fascia fi broblasts or myofi broblasts, 
others elicit their signals through matricellular 
and other molecules to induce their effects through 
focal adhesions to modify cellular proliferation, 
myofi broblast formation, ECM secretion, or other 
disease-associated changes. For this reason, 
in vitro studies are performed on palmar fascia 
fi broblasts or fi brogenic myofi broblasts that do 
not include a physiologically relevant ECM risk, 
omitting the contributions of these interactions 
and, at worst, providing misleading information 
about cellular responses to treatments. 

 In practice, culturing cells in a physiologically 
relevant ECM is technically challenging, especially 
when most of the constituents of that ECM are yet 
to be characterized, as is the case in Dupuytren 

  Fig. 6.1    Three-dimensional confocal microscopy of 
Dupuytren Disease myofi broblasts cultured in type 1 col-
lagen lattices. Stress fi bers are stained with green Alexa 
488 phalloidin, focal adhesions (vinculin immunoreactiv-
ity) are shown in red, and cell nuclei (DAPI staining) are 
shown in  blue . The three-dimensional collagen matrix was 
visualized by laser refl ectance microscopy, a technique 
that utilizes the refl ection of laser light by the surfaces of 
collagen fi bers ( white ). Changes in fl uorescence intensity 
within and around these cells indicate cellular processes 

that are in or out of frame in this two- dimensional render-
ing of a three-dimensional image. These images illustrate 
the connections between matrix- associated collagen fi bers, 
focal adhesions, and contractile stress fi bers in myofi bro-
blasts. Cells can be envisaged as prestressed lattice struc-
tures that are stabilized by the combination of tension and 
compression in accordance with the tensegrity principle 
(Ingber et al.  2014 ). Changes in stress fi ber length within 
cells are translated through focal adhesions to impose 
changes in collagen fi ber density       
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Disease. One approach to partially overcoming this 
hurdle is to collect the secretions of primary palmar 
fascia myofi broblasts and use them to “condition” 
collagen, hydrogel, or other relatively porous sub-
strates in which cells can be cultured in three 
dimensions. While this approach can only provide 
an approximation of an ECM that is continually 
modifi ed in vivo, nonetheless it has advantages 
over standard tissue culture plastic (TCP) cultures 
that include little or no ECM components. In addi-
tion to providing an increased capacity to bind and 
act as a reservoir for secreted proteins and other 
molecules, these substrates can also be designed to 
have a stress- to- strain ratio, or Young’s modulus, 
that approximates the “stiffness” of normal or 
fi brotic palmar fascia. The Young’s modulus of 
normal palmar fascia is lower than most tendons 
(Millesi et al.  1995 ) and approximates that of the 
dermis (10–1,000 Pa) (Hinz  2010 ; Yeung et al. 
 2005 ). Fibroblasts begin incorporating αSMA into 
their stress fi bers, indicating their transition from 
fi broblasts to myofi broblasts, when ECM stiffness 
approaches 16,000–20,000 Pa (Hinz  2010 ). Tissues 
need to achieve a stiffness range of 25,000–
50,000 Pa to maintain myofi broblasts in their 
hyper-contractile state (Hinz  2009 ). Interestingly, 
fi broblasts and myofi broblasts can respond to 
localized changes in the stiffness in their surround-
ings by migrating toward areas of increased stiff-
ness through a process called durotaxis (Lo et al. 
 2000 ; Lange and Fabry  2013 ). Whether durotaxis 
contributes to the increased numbers of myofi bro-
blasts in nodules or contracture cords is currently 
unknown. 

 TCP has a stiffness of at least 1,000,000,000 Pa 
(>1 gPa) (Achterberg et al.  2014 ), which is sev-
eral orders of magnitude greater than the stiffness 
of any fi brotic tissue that fi broblasts or myofi bro-
blasts could ever encounter in vivo. Under these 
conditions, fi broblasts spontaneously and 
robustly transition into αSMA-positive myofi -
broblasts without the need for any additional 
treatment interventions (Hinz et al.  2001 ). While 
there are applications where comparisons 
between uniform cultures of myofi broblasts are 
useful, it should nonetheless be appreciated that 
the behaviors or responses of cells under these 
conditions might have little or no similarity to 

their behaviors or responses on the substrates 
they normally interact with in vivo.  

6.7     Interactions Between 
the Wnt/ß-Catenin Signaling 
Pathway and the 
Extracellular Matrix 

 This point can be illustrated by observing the 
interactions between Dupuytren Disease fi bro-
blasts and myofi broblasts, cell culture substrates, 
and the Wnt/ß-catenin signaling pathway. Wnt 
signaling regulates ß-catenin levels during 
embryonic development and in a variety of dis-
eases characterized by excessive cellular prolif-
eration (Thompson and Monga  2007 ; Bowley 
et al.  2007 ; Manolagas and Almeida  2007 ). In the 
absence of Wnt signaling, ß-catenin is constitu-
tively phosphorylated by casein kinase 1 and gly-
cogen synthase kinase 3ß (GSK3ß), incorporated 
into a “destruction complex” that includes adeno-
matous polyposis coli (APC) and axin and 
degraded through the 26S proteasome (Bowley 
et al.  2007 ; Lam and Gottardi  2011 ). Wnt signal-
ing induces the phosphorylation and inactivation 
of GSK3ß, thereby allowing ß-catenin to escape 
the destruction complex, accumulate in the cyto-
plasm, and translocate to the nucleus. Once in the 
nucleus, ß-catenin can bind transcription factors 
and act as a trans-activating factor to regulate 
gene expression (Bowley et al.  2007 ) (illustrated 
in Fig.  6.2 ).

   The discovery of increased levels of ß-catenin 
in Dupuytren Disease tissues and in primary 
fi broblasts derived from these tissues (Varallo 
et al.  2003 ; Howard et al.  2003 ) led to the hypoth-
esis that the Wnt/ß-catenin signaling pathway 
contributed to the pathogenesis of Dupuytren 
Disease. This hypothesis received indirect sup-
port when genome-wide association studies of 
patients with Dupuytren Disease identifi ed single 
nucleotide polymorphisms (SNPs) in loci con-
taining genes that encode Wnts or Wnt signaling- 
associated proteins (Dolmans et al.  2011 ). These 
fi ndings led to a more detailed version of the 
original hypothesis that heritable abnormalities 
in Wnt gene expression result in dysregulated 
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Wnt signaling, ß-catenin accumulation, and the 
development of Dupuytren Disease. While it is 
unclear if Wnt expression is dysregulated in 
Dupuytren Disease-derived fi broblasts or myofi -
broblasts (O’Gorman et al.  2006 ), these SNP- 
associated changes may impact transcriptional 
responsiveness to biochemical or biomechanical 
stimuli, gene transcript stability, or enhanced 
interactions with other pathways that may “cross- 
talk” with the Wnt/ß-catenin pathway, such as 
TNFα signaling (Verjee et al.  2013 ). 

 In addition to the potential effects of SNPs in or 
near Wnt or Wnt-related genes, the Dupuytren 
Disease ECM can independently regulate 

ß-catenin levels in myofi broblasts. While ß-catenin 
levels are clearly increased in contracture tissues 
relative to the levels in syngeneic (genetically 
identical) fi broblasts in adjacent, macroscopically 
unaffected palmar fascia (Howard et al.  2003 ; 
Varallo et al.  2003 ), these levels are rapidly nor-
malized and become indistinguishable from those 
in cells derived from macroscopically unaffected 
palmar fascia when cultured from explant tissues 
onto TCP (Varallo et al.  2003 ). Transferring these 
cells from TCP into three-dimensional collagen-
based cultures under isometric tension in fi bro-
blast-populated collagen lattice assays restores the 
increased levels of ß-catenin; however, a rapid 

  Fig. 6.2    Wnt signaling regulates β-catenin levels. In the 
absence of wnt signaling ( left ), casein kinase 1 ( CK1 ) and 
glycogen synthase kinase-3β ( GSK-3β ) phosphorylate 
β-catenin on serine/threonine residues, causing it to be 
sequestered to a “destruction complex” that includes ade-
nomatous polyposis coli ( APC ) and axin, and its degrada-
tion through the 26S proteasome. Wnt signaling from the 
extracellular environment through the “canonical” friz-
zled receptor/low density lipoprotein receptor-related pro-

tein 5/6 ( LRP5/6 ) pathway ( right ) results in 
phosphorylation of disheveled ( Dvl ), which directly or 
indirectly (through GSK-3β binding protein,  GBP ) phos-
phorylates and inactivates GSK-3β. GSK-3β inactivation 
allows β-catenin to avoid the destruction complex, accu-
mulate within the cytoplasm, translocate to the nucleus, 
and trans-activate the transcription of genes associated 
with Dupuytren Disease development       
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depletion of ß-catenin levels is evident once that 
tension is released (Varallo et al.  2003 ). In con-
trast, the dynamic regulation of ß-catenin levels in 
Dupuytren Disease myofi broblasts and ß-catenin 
levels in syngeneic myofi broblasts derived from 
macroscopically unaffected palmar fascia remain 
relatively stable under these conditions (Varallo 
et al.  2003 ). When cultured in low-density type-1 
collagen substrates with little or no isometric ten-
sion, ß-catenin levels in myofi broblasts derived 
from contracture tissues are depleted over 72 h 
until they are virtually undetectable by immunob-
lotting (Vi, Njarlangattil, et al. 2009). While these 
culture conditions also induce some depletion of 
ß-catenin levels in syngeneic myofi broblasts 
derived from macroscopically unaffected palmar 
fascia, the effects are modest and variable between 
cultures (Vi et al.  2009b ). TGFβ-1, the ECM-
associated cytokine that is well known to promote 
the development of myofi broblasts (Badalamente 
et al.  1996 ), restores ß-catenin levels in Dupuytren 
Disease myofi broblasts cultured in low-density 

type-1 collagen substrates (Vi et al.  2009b ). While 
it is currently unclear whether matrix stiffness, 
collagen signaling, or both are required to elicit 
these effects on ß-catenin levels in Dupuytren 
Disease myofi broblasts, it is clear that these cells 
are abnormally sensitive to these factors relative to 
syngeneic myofi broblasts derived from macro-
scopically unaffected palmar fascia. 

 These fi ndings predict that the outcomes of 
Wnt/ß-catenin signaling analyses in Dupuytren 
Disease will be dependent on the culture sub-
strates used during the analyses. Such effects are 
predicted to extend beyond the expression of 
genes that are trans-activated by ß-catenin and 
translated into fi brosis-associated proteins and 
may also include the cytokines and ECM- 
associated signaling molecules that act in parallel 
to enhance or attenuate Wnt/ß-catenin signaling. 
Thus, before we perform in vitro analyses of ther-
apeutic interventions that modify Wnt/ß- catenin 
signaling in Dupuytren Disease, it is essential 
that we make informed choices regarding the 

  Fig. 6.3    The extracellular matrix regulates β-catenin lev-
els. Many different cytokines, including transforming 
growth factor-β ( TGFβ ) and tumor necrosis factor α 
( TNFα ), can signal through pathways that intersect with 
the Wnt/β-catenin signaling pathway and increase intra-
cellular β-catenin levels. While the mechanisms are cur-
rently unclear, extracellular matrix ( ECM ) factors, such as 
collagen density, can increase or decrease intracellular 

β-catenin levels in Dupuytren Disease myofi broblasts, 
and thereby potentially modify β-catenin signaling in par-
allel with cytokine-activated pathways. As such, the 
potential confounding infl uences of the Dupuytren 
Disease ECM should be taken into account when assess-
ing the effects of therapeutic interventions designed to 
modify cytokine or other signaling pathways that regulate 
β-catenin signaling in Dupuytren Disease       
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 culture substrates in which such analyses take 
place (Fig.  6.3 ).

6.8        Targeting the Extracellular 
Matrix to Attenuate 
Dupuytren Disease 
Development 

 If we accept that the ECM surrounding 
Dupuytren Disease myofi broblasts modifi es 
their responses and actively promotes disease 
progression, then the ECM itself can be consid-
ered as a therapeutic target. The concept of tar-
geting the ECM in Dupuytren Disease is not 
new. J. T. Hueston, one of the “founding fathers” 
of Dupuytren Disease research, originally sug-
gested that “enzymic fasciotomy” (Hueston 
 1971 ) could achieve similar outcomes to surgical 
fasciotomy in select patients. His approach was 
to use a cocktail of proteolytic enzymes and anti-
infl ammatory agents to degrade the ECM-
associated collagens in contracture cords while 
simultaneously dampening the effects of pro-
fi brotic infl ammatory cytokines. While 
Hueston’s approach did not gain broad accep-
tance at the time, targeting the ECM-associated 
collagens in contracture cords has now become a 
therapeutic reality. Xiafl ex/Xiapex ®  (Hurst and 
Badalamente  1999 ; Badalamente et al.  2002 ; 
Hurst et al.  2009 ) is a mixture of  Clostridium 
histolyticum  type I and type II collagenases that 
specifi cally target the amino- and carboxy-ter-
mini and internal peptide residues of the type I 
and type III collagens in the Dupuytren Disease 
ECM. While this approach has many advantages 
over more invasive treatment options, it is worth 
noting that degradation of type I and type III col-
lagens in the ECM, while effective for restoring 
hand function in the short term, is insuffi cient to 
prevent Dupuytren Disease recurrence (Watt 
et al.  2012 ; Baltzer and Binhammer  2013 ; Chen 
et al.  2011 ). The consequences of disrupting the 
biochemical and biomechanical signals that 
myofi broblasts receive from their collagen-
enriched ECM under tension remain poorly 
understood at the molecular level and worthy of 
detailed investigation. Controlled proteolysis of 

collagens and other ECM proteins can generate 
bioactive molecules known as matricryptins 
(Ricard-Blum and Ballut  2011 ) that stimulate a 
wide variety of cellular responses including pro-
liferation, migration, and angiogenesis (Ricard-
Blum and Salza  2014 ). It is currently unclear 
whether matricryptins or other biologically 
active factors derived from ECM degradation 
contribute to Dupuytren Disease recurrence after 
Xiafl ex/Xiapex ®  treatments. 

 While Xiafl ex/Xiapex ®  has demonstrated the 
effi cacy of targeting collagens in the Dupuytren 
Disease ECM, there is considerable potential to 
expand on this approach and target additional 
molecules in parallel to more effectively attenuate 
Dupuytren Disease recurrence. We could revisit the 
original approach by J. T. Hueston and combine 
Xiafl ex/Xiapex ®  injections with TNFα inhibitors 
to dampen pro-fi brotic infl ammatory responses. 
Alternatively, we could combine Xiafl ex/Xiapex ®  
injections with other novel interventions reported 
to prevent the reformation of a pro-fi brotic ECM 
by myofi broblasts, such as inhibitors of the 
nuclear factor κB (NFκB) pathway (Mia and 
Bank  2015 ) or lysyl oxidase (Barry-Hamilton 
et al.  2010 ). Hypothetically, we could also take 
advantage of the immune response to  Clostridium 
hystolyticum  type I and type II collagenases that 
more than 90 % of patients develop after they 
receive Xiafl ex/Xiapex ®  injections (Peimer et al. 
 2015 ). It may be possible to use Xiafl ex/Xiapex ®  
as a treatment and an adjuvant to promote a 
robust immune response to peptide antigens. 
These antigens could be modeled on cell surface 
or secreted molecules that are specifi cally 
expressed or upregulated in Dupuytren Disease 
myofi broblasts, such as Wilms’ tumor 1 
(Crawford et al.  2015 ). These hypothetical pos-
sibilities are only the “tip of the iceberg” of 
potential therapeutic interventions to target mol-
ecules that are in, or act in combination with, the 
Dupuytren Disease ECM. To expand our reper-
toire of interventions and achieve our goal of pre-
venting Dupuytren Disease progression and 
recurrence, we need to gain a much more detailed 
understanding of the complexity of the Dupuytren 
Disease ECM and to explore its potential as a 
therapeutic target.     
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