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KEY POINTS

� Although the use of ionizing radiation in malignant conditions has been well established,
its application in benign conditions has not been fully accepted and has been inadequately
recognized by health care providers outside of radiation therapy.

� Radiation therapy has been shown to be effective as one of the treatment modalities for
several benign conditions.

� Most patients experience no or few symptomatic side effects while achieving good long-
term control and improved quality of life.

� Clinicians must still carefully balance all the potential risks against the benefits before pro-
ceeding with radiation therapy, especially in younger patients and children.
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INTRODUCTION

Once the imaging capabilities of x-rays were discovered in 1895 by Wilhelm Röntgen,
their observed biological effect to create inflammation led other scientists to propose
its use in treating medical disease. The first known successful use of x-rays for benign
disease was by Leopold Freund in 1896, who demonstrated the effective use of x-rays
on a 5-year-old girl suffering from a large hairy nevus on her back.1 Initial clinical suc-
cesses in the experimental use of x-rays led to many benign conditions treated with
radiation. With improved understanding of radiobiology and late sequelae, there has
gradually been more judicial use of radiation as well decreased number of patients
treated with radiation for benign conditions.
Although the use of ionizing radiation in malignant conditions has been well estab-

lished, its application in benign conditions has not been fully accepted and has been
inadequately recognized by health care providers outside of radiation therapy. Most
frequently, radiation therapy in these benign conditions is used along with other treat-
ment modalities, such as surgery, in instances where the condition causes significant
disability or could even lead to death. Radiation therapy can be helpful for inflamma-
tory/proliferative disorders. For example, patients undergoing major orthopedic
surgeries may benefit from adjuvant low-dose radiation therapy to help prevent het-
erotopic bone formation, and radiation therapy can help prevent progression and
need for surgery in Dupuytren disease. Low to intermediate doses of radiation have
been shown to provide effective improvement in conditions, such as Graves oph-
thalmopathy and keloid recurrence. Eye pterygium can be treated with brachytherapy
using a strontium applicator. Arteriovenous malformations (AVMs) can be obliterated
successfully with precise stereotactic radiosurgery (SRS). This article discusses the
current use of radiation therapy on some of the more common benign conditions
but excludes certain benign tumors, such as meningiomas and pituitary adenomas,
that are frequently discussed in major textbooks or are very rare.

RADIOBIOLOGICAL BASIS

The therapeutic effect of radiation therapy is a result of energy interacting with
matter and causing ionization or excitation. Ionization, which is the ejection of a
charged particle from an atom, is important clinically due its resultant direct and in-
direct effects on DNA. Direct effects cause damage when the charged particles in-
teracts with DNA, whereas indirect effects lead to the production of intermediary
products that then cause damage to the DNA. For example, charged particles react
with water to create highly reactive free radicals. The free radicals form a hydroxyl
radical that then interacts with DNA to cause lethal cellular damage, like a DNA
double-strand break. Because mammalian cells are 80% water, indirect effects
of radiation drive the majority of the resultant DNA damage.2 Oxygen facilitates
the production of free radicals. As well-oxygenated tumor cells are killed and hyp-
oxic tumor cells gain a better vascular supply, reoxygenation of previously hypoxic
cells makes subsequent doses of radiation more efficacious. Fractionation of radi-
ation allows for the exploitation of reoxygenation. It also takes of advantage of the
reassortment of cells from more radioresistant phases of the cell cycle to more
radiosensitive phases, specifically Gap 2 (G2 [subphase of interphase in the cell cy-
cle])/mitosis. As the sensitive cells are eliminated, the surviving cells progress
through the cell cycle to radiosensitive phases. Therefore, when the next dose of
radiation is administered, the cells render themselves more sensitive to radiation.3

A cell’s ability to delay the progression to the G2 phase may correspond to its resis-
tance to irradiation. Regardless, some cells appear intrinsically more radiosensitive
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to radiation therapy than others. Whether radiation directly or indirectly causes
damage to the cell, sublethal damage can be repaired by cells if given enough
time. Cancer cells, however, often have aberrant DNA repair mechanisms, so
they are less able to repair DNA damage and subsequently die when they attempt
to undergo mitosis prior to repairing damage. For cancers cells that survive, there is
an accelerated regrowth of cells seen after irradiation that is called repopulation.
The timing and length of radiation therapy must take into account the 5 radiobio-
logic principles that define the interaction of radiation with mammalian tissue during
conventionally fractionated radiation: reoxygenation, reassortment, repair, repopu-
lation, and radiosensitivity.4 The goal is to achieve optimal disease control while
allowing for sufficient sparing of normal tissue.

RADIATION TOXICITY AND TISSUE TOLERANCE

Radiation therapy can produce acute and late side effects, which depend on the vol-
ume of tissue receiving dose above a tissue-specific threshold. The risk of side effects
in the treatment of benign diseases is generally uncommon because the dose of radi-
ation used often is lower than that used in the treatment of malignancies. Furthermore,
withmodern radiation therapy techniques, radiation treatment plans are optimizedwith
dose-volume constraints tominimize the risk of side effects in nontarget tissues. These
constraints are based on the radiation tolerance of each organ system, which depend
on the organization of the organ (such as in series or parallel) and intrinsic cellular prop-
erties of the tissue (Table 1 lists example tissue constraints). The variable radiation
tolerance of different tissues demonstrates that the risk of toxicity from radiation
therapy depends on the site being treated and the nearby structures. For example,
skin toxicities, such as acute dermatitis and late fibrosis, are of concern when treating
an extremity target, whereas bowel toxicities, such as acute nausea and vomiting and
late risk of bowel necrosis, are of concern when treating an abdominal target. Normal
tissue tolerance and the risk of toxicities stratified by dose and volume of tissue treated
are published with the results of radiation therapy clinical trials.5–7

ARTERIOVENOUS MALFORMATIONS

AVMs are complex congenital lesions of the cerebral vasculature in which blood flows
directly from feeding arteries to draining veins without passing through a capillary
Table 1
Example dose constraints

Tissue Toxicities Common Constraints (Reference Trial)

Brain stem Necrosis Volume receiving 60 Gy <0.03 mL (RTOG 0825)

Heart Pericarditis V30 Gy <50% of organ (RTOG 1308)

Lung Pneumonitis V20 Gy <25% (RTOG 1010)

Optic chiasm Blindness V56 Gy <0.03 mL (RTOG 0825)

Parotid Xerostomia Mean dose to organ <26 Gy (RTOG 1016)

Rectum Proctitis/necrosis V75 Gy <15% (RTOG 0815)

Stomach Ulceration/perforation Maximum dose to organ <54 Gy (RTOG 0848)

Note, these constraints are for radiation delivered in 1.8 Gy to 2 Gy per fraction. Normal tissues are
more sensitive to higher doses of radiation per fraction (20 Gy in 1 fraction does not equal 20 Gy in
5 fractions of 4 Gy each).

Abbreviation: RTOG, Radiation Therapy Oncology Group; V, volume receiving.
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system. The annual risk of AVM hemorrhage is approximately 3%.8 During the first
year after hemorrhage, the risk of another hemorrhage increases to 6% to 15%.8

AVMs may be observed or treated with surgical resection, embolization, or SRS.
For AVMs that are less suitable to surgical intervention, such as those with deep
venous drainage or in high-risk areas of the brain, or for patients who are not surgical
candidates, SRS is an effective treatment strategy to ablate the AVM and reduce the
risk of hemorrhage.9 SRS may be delivered using cobalt beams (as with Gamma
Knife), protons, or linear accelerators.
Radiosurgery works by injuring vascular walls within the AVM, thereby causing scle-

rosis of the lesion.10 Response to SRS typically takes 2 years to 4 years.8 The goal of
treatment is complete obliteration of the lesion. Obliteration is associated with an 85%
risk reduction of hemorrhage.8 After SRS, but before obliteration, there is a 54%
reduction in bleeding risk.11 SRS is generally recommended for lesions less than
3.5 cm in diameter,5 but staged radiosurgery, in which different parts of the lesion
are treated in separate sessions, can be used for larger lesions.12 The ideal manage-
ment strategy for AVMs is an ongoing topic of debate, especially after recent random-
ized data suggested that medical management may be preferable for unruptured
AVMs.13 Fig. 1 shows a typical AVM case treated with linear accelerator–based
SRS. Table 2 presents published outcomes using radiation therapy to treat AVMs.

DESMOID TUMOR

Desmoid tumor (also known as aggressive fibromatosis) is a locally aggressive benign
growth arising from connective tissue in the muscular aponeurotic structures. The
name, desmoid, is derived from the Greek word, desmos, meaning relating to bonds,
connections, or ligaments, and was originally used in the nineteenth century to
describe a growth with tendon-like consistency. The estimated incidence of occur-
rence is 2 million to 4 per million people, with slightly more incidence in women.20

Although desmoid tumors are benign without the potential for metastatic spread,
they have a high rate of local recurrence with surgical excision, especially in the pres-
ence of positive margin status.21 Desmoid tumors can occur in most body sites, but
they are differentiated into extra-abdominal (70%), abdominal wall (20%), and intra-
abdominal (10%), with APCmutations associated with intra-abdominal and abdominal
wall locations.22 Fig. 2 demonstrates a recurrent desmoid tumor along the right elbow
as well as a clinical setup for the treatment. Although most desmoid tumors arise
Fig. 1. AVM in the Left temporal lobe and a volumetric modulated arc therapy treatment
plan using a linear accelerator (Linac). (A) Three noncoplanar arcs were used to treat the
lesion. (B) Isodose lines, from out to in, 60%, 90%, and 100%. The prescription dose was
17.5 Gy in 1 fraction.



Table 2
Summary of selected treatment results for arteriovenous malformations

Author, Year
Total No.
Patients Technique Dose Results (%)

Hanakita
et al,14

2016

292 GKS 20 Gy 73 obliteration at 6 y
53 bleeding risk reduction after RS
85 bleeding risk reduction after

obliteration

Ding et al,15

2015
66 elderly,
�60 y

GKS 21.7 Gy
(mean)

77 obliteration at 10 y
1.1 hemorrhage risk after RS

Yen et al,16

2014
31 GKS 15–26 Gy 61 obliteration (at median 51 mo)

6.5 hemorrhage

Starke et al,9

2013
1012 GKS 21.2 Gy

(mean)
69 obliteration at mean 8 y
8.7 hemorrhage

Sirin et al,12

2008
28 with
large
AVMs

GKS (staged
volume)

16 Gy
(median)

AVM volume range 10.2–57.7 cm3

39 total or near-total obliteration
(only half followed >36 mo)

14 hemorrhage

Maruyama
et al,11

2005

500 GKS 20 Gy 91 obliteration at 6 y
6.6 complication rate
5.8 hemorrhage after RS

Vernimmen
et al, 200517

64 Protons 10–22 GyE 67 obliteration rate (vol <14 cm3)
43 obliteration rate (vol �14 cm3)

Nicolato
et al,13 2005

63 children,
<16 y

GKS 16–26 Gy 77 obliteration rate at 4 y
2 with complications
No hemorrhage reported

Zabel et al,18

2005
110 Linac SRS 18 Gy 67 obliteration at 4 y

0 complications
8 hemorrhage after RS

Bollet et al,19

2004
118 Linac SRS 10–25 Gy 77 obliteration rate

6.7 complications
6 hemorrhage

Abbreviations: GKS, Gamma Knife radiosurgery; RS, radiosurgery.

Fig. 2. Extra-abdominal desmoid tumor of the right elbow. (A) The clinical setup of the right
elbow for the AP/PA treatment of the right elbow. (B) T1 Sagittal postcontrast MRI demon-
strating the desmoid tumor along the right elbow. AP, anterior-posterior; MRI, magnetic
resonance imaging; PA, posterior-anterior.
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sporadically, approximately 7.5% to 16% arise from familial adenomatous polypo-
sis.23 Diagnosis of desmoid tumor is achieved through biopsy, with histologic identi-
fication of elongated clonal spindle-shaped cells in fibrous stroma.
Desmoid tumors can regress spontaneously, and, as such, close observation may

be used for asymptomatic tumors, especially locations associated with significant
morbidity after resection.24,25 Per current National Comprehensive Cancer Network
(NCCN) guidelines, surgery is a first-line treatment of desmoid tumors that are
symptomatic or impairing or threatening in function as well as for tumors that have
progressed after proceeding with observation. When proceeding with surgery, obtain-
ing negative margins should be attempted and would require re-resection for positive
margins due to the increased rates of local recurrence associated with positive mar-
gins.26,27 There is also evidence, however, that status of surgical margins is not pre-
dictive of recurrence.28,29 When negative margins are obtained, no further therapy is
needed.
Radiation therapy is an effective definitive treatment of patients with unresectable

desmoid tumors, and radiation alone, to doses of 50 Gy to 56 Gy using conventional
fractionation of 1.8 Gy to 2.0 Gy per fraction, is associated with local control rates of
75% to 83%.30–32 Keus and colleagues31 performed a multicenter phase II study for
moderate-dose radiotherapy for inoperable desmoid tumors, delivering 56 Gy using
28 fractions of 2 Gy per fraction and demonstrated 3-year local control rate of 81.5%
as well as demonstrating a slow response, with some cases demonstrating continued
response after 3 years. Radiation therapy also is used in the postoperative for resec-
tions with microscopic (R1) and macroscopic (R2) margins. The utility of radiation in
R1 resections has beenmore debated, with NCCN giving a category 2B recommenda-
tion for adjuvant radiation in that setting. The retrospective study from MD Anderson
Cancer Center demonstrated a benefit for resection combined with radiation versus
surgery alone for postoperative cases,27 whereas an Italian experience33 and a cohort
from Memorial Sloan Kettering Cancer Center28 did not demonstrate a significant as-
sociation between positive margins and local recurrence. There was a recent meta-
analysis, however, looking at 16 studies and a combined 1295 patients demonstrated
improved recurrence rates with adjuvant radiation for patients with primary tumors and
recurrent tumors who had incomplete surgical resection.34 There also was evidence of
a higher risk of local recurrence for patients who had microscopic positive resection
margins after receiving surgery alone, with a relative risk of 1.78.
A limited number of studies from Princess Margaret Hospital may indicate a role for

neoadjuvant radiation for desmoid tumors. In the largest study, 58 patients were
treated with preoperative radiation using 50 Gy in 25 fractions, and with median
follow-up of 69months, there were 11 local recurrences (19%), withmajor wound com-
plications in 2 patients (3.4%).35 Systemic therapy also remains a component of the
treatment cascade, with effects of antiestrogen agents contributing growth inhibitory
effects and often may be used in combination with nonsteroidal anti-inflammatory
drugs (NSAIDs).36,37 Per NCCN guidelines, systemic therapy can be used as frontline
treatment or can be used in instances of gross residual disease or recurrence. In addi-
tion to noncytotoxic options of antiestrogen agents and NSAIDs, targeted therapy with
imatinib (Bcr-Abl tyrosine kinase inhibition) and cytotoxic chemotherapy remain op-
tions for treatment. Table 3 summarizes some of the selected treatment results.
DUPUYTREN CONTRACTURE

Dupuytren contracture is a noncancerous condition where the fingers can become
permanently bent in a flexed position, typically occurring in individuals over 50 years



Table 3
Summary of selected treatment results of desmoid tumor

Authors,
Year No. Lesions Dose Recurrence Comments

Janssen
et al,34

2017

1295 35–66 Gy
although
some doses
were not
reported

Positive margins
Primary tumor
Surgery alone: LC 60%
Surgery 1 RT: LC 77%
Recurrent tumor
Surgery alone: LC 22%
Surgery 1 RT: LC 59%

Meta-analysis that
demonstrates reduced
risk of recurrence with
adjuvant radiation for
positive margins.

Keus
et al,31

2013

44 (17 were
recurrent)

56 Gy in 28
fractions

3-y LC 81.5% Single modality radiation
demonstrated good
control in primary and
recurrent setting.

Zlotecki
et al,32

2002

65 50–56 Gy 5-y LRC 83% There was a decreased
probability of control
with multiple prior
recurrences.

Ballo
et al,30

1998

75 60 Gy (range
46–66 Gy)

After GTR: 5-y LC 82%
Gross disease: 5-y LC

69%

There were increased rates
of complications >56 Gy.
Doses >50 Gy were
associated with higher
control rates.

O’Dea
et al,35

2003

58 Neoadjuvant
50 Gy in 25
fractions

At median 69 mo,
LC was 81%

Demonstrates efficacy of
preoperative radiation
for desmoid tumors

Abbreviations: GTR, gross total resection; LC, local control; LRC, locoregional control; RT, radiation
therapy.
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of age. The underlying cause is unknown, but there is thought to be an abnormal for-
mation of connective tissue in this condition. Patients present with nodules and cord-
like structures in the palm of their hands, stretching from their palms to fingers. The
contraction of these tendons can cause permanent flexion of the fingers, most
Fig. 3. This patient with Dupuytren contracture is receiving radiation treatment to the
affected hand.
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commonly affecting the fourth and fifth digits. Symptoms can include pain, burning, or
itching in the affected area.38–42

Dupuytren contracture can be treated with surgery, injections, or radiation. The
choice of treatment largely depends on the degree the affected finger(s) is bent toward
the palm. A staging system is used to characterize the degree of flexion, and this is
called the Dupuytren staging system. For patients with a contracture between
0� and 10�, radiation is the primary treatment modality (Fig. 3). In addition, if there
are only nodules and cords present in the palm without contracture, radiation can
be used. Patients that have contractures greater than 10� are usually offered surgery,
collagenase injections, or needle aponeurotomy. Radiation is not offered to patients
with severe Dupuytren contracture, because these patients have a greater chance
of worsening disease if treated with radiation alone.38–42

A total dose of 30 Gy in 10 fractions is the typical treatment; 5 treatments are given
consecutively every day and then a 6-week to 8-week period follows to allow the tar-
geted area to respond and the surrounding tissue time to heal. After that 6-week to
8-week period, the last 5 treatments are completed. Patients also may receive a total
dose of 21 Gy in 7 fractions.39,42–44 This regimen has comparable long-term control
over the disease to the standard total dose of 30 Gy divided in 10 fractions but has
more acute side effects, such as redness and skin irritation. Patients and health
care providers may decide on the 21-Gy regimen if the longer course is not possible
in accommodating a patient’s schedule. Treatment fields consist of proximal/distal
margin of 1 cm to 2 cm and lateral margin of 1 cm. Orthovoltage treatment consists
of 120-kv to 150-kv photons with bolus and electron treatment consists of 6 MeV to
9 MeV with bolus, with preference of electrons to photons given superior target
coverage.45

The most common short-term side effect is erythema and long-term side effect is
hand atrophy. No secondary malignancies have been identified, although follow-up
for most studies has been limited to 5 years.2,46 Although there have been some
studies in analyzing radiotherapy in Dupuytren contractures, these have been
mostly retrospective in nature and do not always differentiate the stage of contrac-
ture. Further randomized controlled studies are required to confirm the efficacy of
radiation in treating early-stage Dupuytren contracture and to understand the
possible long-term effects. Table 4 presents some of the selected treatment
results.
Table 4
Summary of selected treatment results of Dupuytren contracture

Study No. Patients Dose Results

Keilholz et al,40

1996
96 30 Gy in 10 fractions 77% with no progression and 23%

with progression

Adamietz et al,38

2001
99 30 Gy in 10 fractions Stage N 84% and stage N/I 67% of

cases with no progression. Stage I
65% and stage II 83% showed
progression.

Seegenschmiedt
et al,41 2001

129 Group A: 30 Gy in 10
fractions

Group B: 21 Gy in 7
fractions

Group A: 93% showed no
progression.

Group B: 91% showed no
progression.

Betz et al,42 2010 135 30 Gy in 10 fractions 69% showed no progression.

Zirbs et al,44 2015 206 32 Gy in 4 fractions 80% showed no progression.
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GRAVES OPHTHALMOPATHY

Graves ophthalmopathy is an inflammatory condition of the orbital tissues and the
extraocular muscles. It is thought to be autoimmune in nature and frequently occurs
in women aged 40 years old to 44 years old and 60 years old to 64 years old.47 It is
most commonly associated with hyperthyroidism, because 20% to 25% of patients
with Graves hyperthyroidism have Graves ophthalmopathy,48 but it also can occur
in euthyroid or hypothyroid patients.
Histologic features include interstitial edema, widespread lymphocytic infiltration,

and varying degrees of muscle damage. Inflammatory reaction leads to venous
engorgement, inadequate drainage of interstitial fluid, periorbital edema, proptosis,
and ultimately compression of the optic nerve.49 This compression may cause irre-
versible neuronal death and diminished nerve function that can manifest as decreased
visual acuity and pupillary dysfunction as well as constriction of the visual fields. The
most common clinical presentation of Graves ophthalmopathy usually involves the
constellation of proptosis, periorbital edema, upper eyelid retraction, and excessive
tearing.50

Management of this disease process can be medical, surgical (orbital decompres-
sion, eye muscle, or lid surgery), or radiologic or involve a combined modality
approach.51 High-dose systemic glucocorticoids are the first line of treatment. Favor-
able results have been reported in 60% of patients.52 Orbital decompression may help
in some cases that are resistant to steroid treatment, particularly in the presence of
marked proptosis and optic neuropathy.53 Although 1 study showed no benefit of ra-
diation therapy,54 many other investigators have found radiation therapy, usually in
combination with steroids, as an alternative and efficacious anti-inflammatory therapy,
with response rates of 50% to 88%.55–58 A meta-analysis showed that a combination
of radiation therapy with corticosteroids was better than either therapy alone.59 If com-
bination therapy is utilized, intravenous corticosteroids seem better tolerated and
more effective than oral corticosteroids.58 Other therapies, such as immunosuppres-
sive drugs, intravenous immunoglobulins, and plasmapheresis, have resulted in less
than significant outcomes.60 When severe ophthalmopathy is present, permanent
control of thyroid hyperfunction by radioiodine or thyroidectomy is sometimes
recommended.61

Radiation therapy should be reserved for those who are symptomatic, who have
not responded to a course of high-dose systemic steroids, or for whom steroids
are contraindicated (those who have optic neuropathy or corneal ulceration).62

Because of the risk of worsening retinopathy, diabetes mellitus can be a relative
contraindication for radiation.63 Table 5 summarizes some of the results of radia-
tion therapy treatments.
The most common dose of radiation is 20 Gy, which is administered using opposed

lateral fields with posterior angulation. Fig. 4 illustrates a common opposed lateral
field design with a half-beam block posterior to the lens and the corresponding
isodose color wash. Radiation treatment requires several weeks to take effect and
may transiently cause increased inflammation. Thus, patients are sometimes main-
tained on steroids during the first few weeks of treatment.
Potential side effects include cataract formation, radiation retinopathy, and radiation

optic neuropathy, which often manifests between 6 months and 3 years after
ophthalmic radiation but may occur as late as 7 years after treatment.66,67 The risk
of cataract formation does not appear to be higher than the risk in the general popu-
lation when radiation is delivered with modern linear accelerators.68 In addition, the
use of intensity-modulated radiation therapy may further reduce the risk of cataract



Table 5
Summary of selected treatment results of Graves ophthalmopathy

Author, Year
Number of
Patients Treatment Results Comments

Kulig et al,64

2004
101 20 Gy/2 wk 1

steroids
Donaldson

ophthalmopathy
index decreased
significantly. Right
eye: from 6.35 to
1.2; left eye: from
6.1 to 1.15.

Combined therapy
is effective.

Persistent diplopia
in 16/101 patients

Prummel
et al,55 2004

88 (RT vs
sham RT)

20 Gy/2 wk 52% vs 27%
responded

Less need for
follow-up in RT
group

Alpert et al,63

2003
47 (30 with
optic
neuropathy)

20 Gy/10 fx 75% improved.
(retropulsion
improved in 83%)

Early intervention
(<6 mo) better

Pitz et al,57

2002
104 (29 RT,
75 RT 1

steroids)

10–20 Gy 75% pain improved
25% motility

improved

No additional
benefit seen with
steroids

No adverse side
effects up to 16 y

Mourits et al,56

2000
60 (RT vs
sham RT)

20 Gy/10 fx Qualitative
improvement
(diplopia):
60% vs 31%
Proptosis, lid

swelling
not better

25% RT patients
spared from
additional
strabismus surgery

Beckendorf
et al,65 1999

199 20 Gy/2 wk 26% excellent
response

50% partial
response

19% stable
5% progression

Patients treated
within 7 mo
after having
ophthalmopathy
had better
responses.

Marcocci
et al,58 2001

82 (RT 1 IV GC
(41) vs RT 1

oral GC (41)

20 Gy/10 fx 87.8% response
with RT 1 IV GC
vs 63.4% in RT 1

oral GC

IV GC resulted in
fewer side effects
than oral GC
(56.1% vs 85.4%)

Abbreviations: fx, fraction(s); GC, glucocorticoids; IV, glucocorticoids; RT, radiation therapy.
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formation, with a cataract formation rate of 1.72% presented in a single-institution
retrospective study.69 These side effects generally do not occur if treatment is appro-
priately fractionated and carefully planned.
GYNECOMASTIA

Gynecomastia is a benign proliferation of glandular male breast tissue usually caused
by an imbalance between estrogen and testosterone. The most common pathologic
cause of gynecomastia is the use of antiandrogen therapy (AT) for treatment of pros-
tate cancer. Gynecomastia can occur in 60% to 70% of patients receiving AT for pros-
tate cancer.70 Hormone-induced gynecomastia is usually bilateral and often



Fig. 4. (A) A typical half-beam block approach posterior to the lens to help with lens
sparing. (B) The corresponding isodose color wash for treatment of Graves ophthalmopathy
using opposed lateral fields.
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accompanied by painful swelling. These side effects can lead to patients discontinuing
AT in up to 16.4% of cases.71 This issue is increasingly relevant, given an increasing
life expectancy in patients.
There are several treatment options for hormone-induced gynecomastia,

including low-dose radiotherapy. This is an effective method for both the prevention
and treatment of gynecomastia.72,73 Radiation is more effective if given prophylac-
tically before the administration of antiandrogens, but it also has been used with
some success for patients with existing gynecomastia. The largest randomized trial
comparing radiation therapy for prevention of gynecomastia versus existing gy-
necomastia was conducted in 2003. For the prevention arm, gynecomastia rates
decreased from 71% to 28%. For treating existing gynecomastia, 33% of patients
had visible improvement and 39% experienced improvement in pain.74 Fig. 5
shows a patient with symptomatic gynecomastia after 6 months of hormonal ther-
apy for prostate cancer. His symptoms were relieved with low-dose radiotherapy.
Table 6 summarizes several studies, including the aforementioned largest random-
ized trial, for evaluating radiotherapy for gynecomastia. Although this section fo-
cuses on radiotherapy in treating gynecomastia, it is important to recognize other
treatment alternatives for gynecomastia. Tamoxifen has demonstrated its efficacy
in treating hormone-induced gynecomastia via a small randomized trial.76
Fig. 5. Gynecomastia after hormonal therapy for prostate cancer.



Table 6
Summary of selected treatment results of gynecomastia

Study No. Patients Dose Results

Ozen et al,75

2010
125 (prophylactic

RT vs no RT)
12 Gy/1 fx 15.8% had gynecomastia in

prophylactic RTarm, and 50.8% had
gynecomastia in the
nonprophylactic arm (P<.001).
Breast pain rate 36.4% and 49.2% in
prophylactic and non-RT arms,
respectively

Perdona
et al,76 2005

151 (AT only vs AT
1 tamoxifen vs
AT 1 RT)

12 Gy/1 fx 69% developed gynecomastia in AT
only arm, 1% in tamoxifen arm, and
34% in RT arm

Van Poppel
et al,77 2005

65 with existing
gynecomastia

12 Gy/2 fx Gynecomasatia improved or resolved
33%; breast pain improved or
resolved 39%

Tyrrell et al,78

2004
106 (prophylactic

RT vs no RT)
10 Gy/1 fx Gynecomastia rate: 52% vs 85%

(P>.001)

Widmark et al,74

2003
253 (prophylactic

RT vs no RT)
12–15 Gy/1fx Gynecomastia rate: 28% vs 71%

(P>.001)

Abbreviations: fx, fraction(s); RT, radiation therapy.
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Tamoxifen has shown more effective in treating gynecomastia compared with
radiotherapy, but tamoxifen must be taken concurrently with AT, whereas radiation
may take up to only a few sessions.79,80 Additionally, aromatase inhibitors or
mastectomy with liposuction also can be used.81,82

Dosing typically is anywhere from 12 Gy in 2 fractions to 20 Gy in 5 fractions for
existing gynecomastia.77,83 For prophylaxis, 10 Gy to 15 Gy in 1 to 3 fractions has
been published in the literature.5–9 Radiation portal fields should cover the entire
breast bud. Generally, electrons are used due to shallow depth–dose characteris-
tics. Electron energy should be chosen depending on the thickness of the chest
wall, typically 6 MeV to 12 MeV. Side effects tend to be minimal when treating gy-
necomastia. The most common side effect is mild skin erythema. Secondary malig-
nancies, in particular breast cancer, from radiation therapy for gynecomastia is
low.84
HETEROTOPIC OSSIFICATION

Heterotopic ossification (HO), ossification of soft tissues around the hip, is a
potential complication after total hip arthroplasty, hip trauma, acetabular fracture,
or central nervous injury. Primitive mesenchymal cells surrounding soft tissues
can be transformed into osteoblastic tissue, which then forms mature bones.
The most common location of HP is around the femoral neck or adjacent to the
greater trochanter. Other less common locations include jaw, elbow, spine, and
other joints after trauma. HO occurs in approximately 43% of the patients who
underwent hip arthroplasty, with the incidence greater than 80% in those who
have a history of HO, either ipsilateral or contralateral.85 Among patients with a
history of hypertrophic osteoarthritis, ankylosing spondylitis, diffuse idiopathic
skeletal hyperostosis, and Paget disease, the incidence of HO can be more
than 60%.86
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The most common presenting symptom is hip stiffness, not hip pain. A majority of
the patients with radiographically low-grade or early HO are asymptomatic. Those with
severe HO may develop signs of inflammation, such as fever, joint erythema, swelling,
warmth, and tenderness. Further work-up is needed to rule out infection. Plain films
usually are sufficient for diagnosis. Ossification can be visualized on plain films within
4 weeks postoperatively. Bone scan typically shows increased uptake in the soft tis-
sue next to the hip but it is not specific. The most widely adopted HO classification
system is the Brooker system. It grades HO based on an anteroposterior radiograph
of the pelvis and hip.87 Bones that appear to be bridging, however, may be located
either anterior or posterior to the hip, which may not cause significant loss of range
of motion.
Table 7
Summary of selected radiation treatment results of heterotopic ossification prophylaxis

Study Design N Results Conclusion

Lo et al,93 1988 Retrospective
postoperative
7 Gy in 1 fx

24 No grade 3–4 HO Single fraction of
7 Gy appears
effective.

Pellegrini
et al,94 1992

PRT of postoperative
8 Gy (1 fx) vs
postoperative
10 Gy (5 fx)

62 Grade 1–4 HO:
Single fraction
21%

Fractionated 21%

Single fraction
appears equally
effective as
fractionated RT.

Gregoritch
et al,86 1994

PRT of 7–8 Gy (1 fx)
preoperative vs
postoperative

124 Grade 1–4 HO:
preoperative 26%;
postoperative
28%

Preoperative may be
similar to
postoperative in
HO prevention.

Healy et al,95

1995
Retrospective study

of postoperative
7 Gy (1 fx) and
postoperative
5.5 Gy (1 fx)

107 Grade 1–4 HO: 7 Gy
10%; 5.5 Gy 63%
(P 5 .03)

5.5 Gy (1 fx) is
insufficient.

Seegenschmiedt
et al,96 1997

PRT of preoperative
7 Gy (1 fx) vs
postoperative
17.5 (5 fx)

161 Grade 1–4 HO:
preoperative 24%;
postoperative 5%
(P 5 .05)

Preoperative
inferior to
postoperative for
HO prevention

Padgett et al,97

2003
PRT of postoperative

5 Gy (2 fx) vs 10 Gy
(5 fx)

59 Grade 1–4 HO: 5 Gy
69%; 10 Gy 43%
(P 5 .09)

5 Gy (2 fx) may be
inferior to 10 Gy
(5 fx) for HO
prevention.

Burd et al,98

2003
PRT of RT (8 Gy in 1

fx) vs
indomethacin
6 wk

166 Grade 3–4 HO: RT
7%; indomethacin
14%; (P 5 .22)

NSAIDs not
statistically
inferior to RT for
HO prevention
but may be due to
small sample size

Pakos and
Ioannidis,90

2004

Meta-analysis 7 PRTs
of RT vs NSAIDs

1143 Grade 3–4 HO: OR
0.42 (95%CI, 0.18–
0.97) favoring RT

RT more effective
than NSAIDs for
HO prevention.
1.2% absolute risk
difference

Abbreviations: fx, fraction(s); PRT, prospective randomized trial; OR, odds ratio; RT, radiation
therapy.



Fig. 6. Graphic retrospective analysis of 32 studies. Red (center) represents a failure rate of
less than 10%. The lowest dose and number of fractions to achieve failure rate of less than
10% seems to be 7 Gy in 1 fraction. (From Luh JY, Cavanaugh SX, Eng TY, et al. A graphic
retrospective analysis of 32 studies investigating optimal dose and fractionation schedules
in the prevention of heterotopic ossification after hip arthroplasty. Int J Radiat Oncol Biol
Phys 2004;60(1S):S547; with permission.)
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The general treatment regimen for HO is surgical excision with HO prophylaxis,
which may include NSAIDs, or external beam radiation therapy (EBRT) because
recurrence rate after surgical excision alone is high. Effective prophylaxis of HO
generally should be given to patients at high risk of HO. Indomethacin is themost com-
mon NSAID used for HO prophylaxis. The recommended dose of indomethacin is
75 mg/d to 100 mg/d and should be continued for 7 days to 14 days postoperatively.
Matta and Siebenrock88 showed indomethacin was not effective in preventing ectopic
bone formation. Other NSAIDs also have been used. Bleeding and gastrointestinal
side effects are potential disadvantages of using NSAIDs.
EBRT is another effective option for HO prophylaxis. A prospective randomized

study showed both EBRT and indomethacin are effective in postoperative HO preven-
tion.89 A 2004 meta-analysis of 7 randomized studies comparing EBRT with NSAIDs
demonstrated that EBRT is more effective.90 Various radiation doses have been
used. A 2010 retrospective study by Pakos and colleagues91 showed great efficacy
of combined EBRT and indomethacin in preventing HO after total hip arthroplasty.
A fractionated total dose of 10 Gy does not seem to offer additional benefit compared
with a single dose of 7 Gy. Several randomized studies demonstrated that the failure
Fig. 7. (A) A small treatment field encompassing the soft tissue surrounding the hip joint
and hardware but avoiding the bowels and genitals. (B) Isodose plan.



Fig. 8. A typical punched-out skull lesion in a 10-year-old boy who had histiocytosis.
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rates are similar among those who received EBRT preoperatively (within 4 hours) or
postoperatively (within 72 hours).86,92 Delivering radiation preoperatively helps reduce
patients’ discomfort but scheduling is challenging, especially if surgery is delayed.
Table 8
Summary of selected treatment results of histiocytosis

Authors,
Year No. Patients Follow-up Treatment Outcome Comments

Laird
et al,115

2018

39 Med 45 mo 7.5–50.4 Gy/
varied fx sizes

LC 89% (100%
in bone
lesions)

Bone lesions
well controlled
with low doses
of RT

Kotecha
et al,119

2014

69 Med 6 y 2.5–45 Gy using
0.66–6 Gy per
fraction

LC 91.4% Increased long-
term morbidity
in pediatric
patients

Jahraus
et al,116

2004

24 Med 28 mo 3–20 Gy/varied
fx sizes

1.8–2.0 Gy/fx,
score 1.29; if
<1.8 Gy/fx,
score 2.1
(P 5 .013)

Recommended
fx <1.8 Gy

Rosenzweig
et al,120

1997

14 diabetes
insipidus

7.3 y 6–14.4 Gy/3–9 fx
med 7.5 Gy

14% CR Early disease
responded

Minehan
et al,121

1992

47 diabetes
insipidus

Med 14.7 y 10–11 Gy mean
(hypothalamic-
pituitary RT vs
no RT)

RT: 22% CR,
14% PR No
RT: 0%
CR/PR

Actuarial survival
at 40 y was
65%

el-Sayed
and
Brewin,111

1992

15 1–20 y Low doses RT 14/15 bone
CR; 2/2 (DI)
responded

Selch and
Parker,112

1990

22 (40 bony,
16 soft
tissue
sites)

1–13 y 6–26 Gy
Med 9 Gy (bone)
Med 15 (soft
tissue)

All LC 82%
Bone 88%
Soft tissue

69%

Pediatric LC
100%

Score system: 1, CR; 2, greater than 50% PR; 3, less than 50% PR; 4, NR.
Abbreviations: CR, complete response; DI, diabetes insipidus; fx, fraction; LC, local control; med,

median; NR, no response; PR, partial response; RT, radiation therapy.
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Table 7 summarizes some of the selected treatment results. Fig. 6 shows a graphic
analysis of radiation doses and failure rates of HO prevention. Fig. 7 illustrates a
typical radiation treatment field used in HO.
Secondary malignancy induced by single-fraction radiation therapy is extremely

rare. The University of Mississippi reports a 51 year-old patient who developed high
grade undifferentiated sarcoma of the proximal thigh 16 months after prophylactic
RT.99 There is a relative contraindication for radiation in patients who have a posterior
hip dislocation with a femoral head fracture because there is a theoretic risk of contrib-
uting to avascular necrosis or nonunion.
HISTIOCYTOSIS

Langerhans cell histiocytosis (LCH), previously known as histiocytosis X, is a rare
disorder that consists of a cohort of idiopathic mononuclear cell regulation derange-
ments100 that present as infiltrative collections of monocytic cells with telltale cyto-
plasmic inclusions (Birbeck granules). LCH received its name from the due to the
resemblance of the morphology and immunophenotype to Langerhans cells. LCH
cells were discovered to be myeloid dendritic cells distinct from Langerhans dendritic
cells of skin using gene expression array.101 LCH is a monoclonal disorder character-
ized by the by the accumulation of CD2071 dendritic cells with BRAF V600E mutation
in stem cell and dendritic cells demonstrating support for LCH being a myeloid
neoplasia.102

LCH may present in multiple organ sites with a wide number of presentations,103

many of which possess eponymous historical designations (for example, the classic
exophthalmos, punched-out cranial lesions, and diabetes insipidus of Hand-Schül-
ler-Christian disease or the pediatric hepatosplenomegaly, anemia, and hemorrhagic
diathesis of Letterer-Siwe syndrome).104 LCH has a predilection for bone involvement
but may also include many other sites, including skin, lymph nodes, bone marrow,
liver, and lungs.105 Fig. 8 shows a 10-year-old boy who has a typical punched-out
skull lesion. He was treated with low-dose radiation therapy and had a complete
response.
Multiple treatments exist for the treatment of LCH, including steroids, systemic ther-

apy, and surgery.106–110 The role of radiation in LCH has not been well defined111,112

because treatment strategies have been changing over time. Bone pain and vertebral
lesions remain an area that may benefit from radiation113; however, there is a
decreased need for radiation, with cure rates of 70% to 90% with frontline surgical
intervention.114 When surgery is contraindicated, or for palliation of multifocal, persis-
tent, or osseous disease, low-dose conventional fractionation of 6 Gy to 10 Gy may
be utilized with good results.113,115–118 Multiple series report local control greater
than 80% with radiotherapy and local control in more than 90% of localized bone
lesions.112,115,117,119 Table 8 summarizes some of the results of radiation therapy
in LCH.
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