Dupuytren Literature: Proteomic Studies

These materials are available for nonprofit educational use. This repository is allowed by copyright disclaimer under title 17, Appendix E, section 107 of the United States Copyright Act. Under this statute, allowance is made for “fair use” for purposes such as criticism, comment, news reporting, teaching, scholarship, and research. As defined, fair use specifically applies to this repository.

Medline Title Search (Dupuytren + (Proteomic OR “Western blot” OR Immunohistochemistry OR ELISA OR “mass spectrometry”))

Selected Publications

  • Augoff K, Kula J, Gosk J, Rutowski R. Epidermal growth factor in Dupuytren’s disease. Plast Reconstr Surg. 2005;115(1):128-33. (PDF)
  • Augoff K, Ratajczak K, Gosk J, Tabola R, Rutowski R. Gelatinase A activity in Dupuytren’s disease. J Hand Surg Am. 2006;31(10):1635-9. (PDF)
  • Augoff K, Tabola R, Kula J, Gosk J, Rutowski R. Epidermal growth factor receptor (EGF-R) in Dupuytren’s disease. J Hand Surg Br. 2005;30(6):570-3. (PDF)
  • Bayat A, Watson JS, Stanley JK, Ferguson MW, Ollier WE. Genetic susceptibility to dupuytren disease: association of Zf9 transcription factor gene. Plast Reconstr Surg. 2003;111(7):2133-9. (PDF)
  • Berndt A, Kosmehl H, Mandel U, Gabler U, Luo X, Celeda D, et al. TGF beta and bFGF synthesis and localization in Dupuytren’s disease (nodular palmar fibromatosis) relative to cellular activity, myofibroblast phenotype and oncofetal variants of fibronectin. Histochem J. 1995;27(12):1014-20. (PDF)
  • Bianchi E, Taurone S, Bardella L, Signore A, Pompili E, Sessa V, et al. Involvement of pro-inflammatory cytokines and growth factors in the pathogenesis of Dupuytren’s contracture: a novel target for a possible future therapeutic strategy? Clin Sci (Lond). 2015;129(8):711-20. (PDF)
  • Borgschulze A, Sahlender B, Logters T, Windolf J, Grotheer V. New Insights into the Tissue Homeostasis between TIMP and MMP in Dupuytren’s Disease. Cell Biology: Research & Therapy. 2017;06(02). (PDF)
  • Ehrlich HP, Brown H, White BS. Evidence for type V and I trimer collagens in Dupuytren’s Contracture palmar fascia. Biochem Med. 1982;28(3):273-84. (PDF)
  • Forsman M, Kallioinen L, Kallioinen M, Ryhanen J. Dupuytren’s contracture; increased cellularity–proliferation, is there equality? Scand J Surg. 2005;94(1):71-5. (PDF)
  • Forsman M, Paakkonen V, Tjaderhane L, Vuoristo J, Kallioinen L, Salo T, et al. The expression of myoglobin and ROR2 protein in Dupuytren’s disease. J Surg Res. 2008;146(2):271-5. (PDF)
  • Gay D, Ghinatti G, Guerrero-Juarez CF, Ferrer RA, Ferri F, Lim CH, et al. Phagocytosis of Wnt inhibitor SFRP4 by late wound macrophages drives chronic Wnt activity for fibrotic skin healing. Sci Adv. 2020;6(12):eaay3704. (PDF)
  • Halliday NL, Rayan GM, Zardi L, Tomasek JJ. Distribution of ED-A and ED-B containing fibronectin isoforms in Dupuytren’s disease. J Hand Surg Am. 1994;19(3):428-34. (PDF)
  • Hart SE. A Primer of Collagen Biology: Synthesis, Degradation, Subtypes, and Role in Dupuytren’s Disease. In: Eaton C, Seegenschmiedt MH, Bayat A, Gabbiani G, Werker P, Wach W, editors. Dupuytren’s Disease and Related Hyperproliferative Disorders. Heidelberg: Springer; 2012. p. 131-42. (PDF)
  • Hindman HB, Marty-Roix R, Tang JB, Jupiter JB, Simmons BP, Spector M. Regulation of expression of alpha-smooth muscle actin in cells of Dupuytren’s contracture. J Bone Joint Surg Br. 2003;85(3):448-55. (PDF)
  • Holzer LA, Cor A, Pfandlsteiner G, Holzer G. Expression of VEGF, its receptors, and HIF-1alpha in Dupuytren’s disease. Acta Orthop. 2013;84(4):420-5. (PDF)
  • Howard JC, Varallo VM, Ross DC, Faber KJ, Roth JH, Seney S, et al. Wound healing-associated proteins Hsp47 and fibronectin are elevated in Dupuytren’s contracture. J Surg Res. 2004;117(2):232-8. (PDF)
  • Howard JC, Varallo VM, Ross DC, Roth JH, Faber KJ, Alman B, et al. Elevated levels of beta-catenin and fibronectin in three-dimensional collagen cultures of Dupuytren’s disease cells are regulated by tension in vitro. BMC Musculoskelet Disord. 2003;4:16. (PDF)
  • Iqbal SA, Manning C, Syed F, Kolluru V, Hayton M, Watson S, et al. Identification of mesenchymal stem cells in perinodular fat and skin in Dupuytren’s disease: a potential source of myofibroblasts with implications for pathogenesis and therapy. Stem Cells Dev. 2012;21(4):609-22. (PDF)
  • Izadi D, Layton TB, Williams L, McCann F, Cabrita M, Espirito Santo AI, et al. Identification of TNFR2 and IL-33 as therapeutic targets in localized fibrosis. Sci Adv. 2019;5(12):eaay0370. (PDF)
  • Johnston P, Chojnowski AJ, Davidson RK, Riley GP, Donell ST, Clark IM. A complete expression profile of matrix-degrading metalloproteinases in Dupuytren’s disease. J Hand Surg Am. 2007;32(3):343-51. (PDF)
  • Kosmehl H, Berndt A, Katenkamp D, Mandel U, Bohle R, Gabler U, et al. Differential expression of fibronectin splice variants, oncofetal glycosylated fibronectin and laminin isoforms in nodular palmar fibromatosis. Pathology – Research and Practice. 1995;191(11):1105-13. (PDF)
  • Kraljevic Pavelic S, Sedic M, Hock K, Vucinic S, Jurisic D, Gehrig P, et al. An integrated proteomics approach for studying the molecular pathogenesis of Dupuytren’s disease. J Pathol. 2009;217(4):524-33. (PDF)
  • Krause C, Kloen P, Ten Dijke P. Elevated transforming growth factor beta and mitogen-activated protein kinase pathways mediate fibrotic traits of Dupuytren’s disease fibroblasts. Fibrogenesis Tissue Repair. 2011;4(1):14. (PDF)
  • Kuhn MA, Wang X, Payne WG, Ko F, Robson MC. Tamoxifen decreases fibroblast function and downregulates TGF(beta2) in dupuytren’s affected palmar fascia. J Surg Res. 2002;103(2):146-52. (PDF)
  • Lappi DA, Martineau D, Maher PA, Florkiewicz RZ, Buscaglia M, Gonzalez AM, et al. Basic fibroblast growth factor in cells derived from Dupuytren’s contracture: synthesis, presence, and implications for treatment of the disease. J Hand Surg Am. 1992;17(2):324-32. (PDF)
  • Magro G, Lanzafame S, Micali G. Co-ordinate expression of alpha5 beta1 integrin and fibronectin in Dupuytren’s disease. Acta Histochemica. 1995;97(3):229-33. (PDF)
  • Mayerl C, Del Frari B, Parson W, Boeck G, Piza-Katzer H, Wick G, et al. Characterisation of the inflammatory response in Dupuytren’s disease. J Plast Surg Hand Surg. 2016;50(3):171-9. (PDF)
  • Meister P, Gokel JM, Remberger K. Palmar Fibromatosis-”Dupuytren’s Contracture” A Comparison of Light Electron and Immunofluorescence Microscopic Findings. Pathology – Research and Practice. 1979;164(4):402-12. (PDF)
  • Merlo G, Ambroggio GP, Mosca A, Oberto E. Possible role of plasminogen activator content of the palmar nodules in recurrence of Dupuytren’s contracture. The Journal of Hand Surgery. 1987;12(6):1017-9. (PDF)
  • Mosakhani N, Guled M, Lahti L, Borze I, Forsman M, Paakkonen V, et al. Unique microRNA profile in Dupuytren’s contracture supports deregulation of beta-catenin pathway. Mod Pathol. 2010;23(11):1544-52. (PDF)
  • Nyberg LM, Bias WB, Hochberg MC, Walsh PC. Identification of an Inherited Form of Peyronie’s Disease with Autosomal Dominant Inheritance and Association with Dupuytren’s Contracture and Histocompatibility B7 Cross-Reacting Antigens. Journal of Urology. 1982;128(1):48-51. (PDF)
  • O’Gorman DB, Wu Y, Seney S, Zhu RD, Gan BS. Wnt expression is not correlated with beta-catenin dysregulation in Dupuytren’s Disease. J Negat Results Biomed. 2006;5:13. (PDF)
  • On N, Koh SP, Brasch HD, Dunne JC, Armstrong JR, Tan ST, et al. Embryonic Stem Cell-Like Population in Dupuytren’s Disease Expresses Components of the Renin-Angiotensin System. Plast Reconstr Surg Glob Open. 2017;5(7):e1422. (PDF)
  • Pagnotta A, Specchia N, Greco F. Androgen receptors in Dupuytren’s contracture. J Orthop Res. 2002;20(1):163-8. (PDF)
  • Piersma B, de Rond S, Werker PM, Boo S, Hinz B, van Beuge MM, et al. YAP1 Is a Driver of Myofibroblast Differentiation in Normal and Diseased Fibroblasts. Am J Pathol. 2015;185(12):3326-37. (PDF)
  • Poon R, Hong H, Wei X, Pan J, Alman BA. A high throughput screen identifies Nefopam as targeting cell proliferation in beta-catenin driven neoplastic and reactive fibroproliferative disorders. PLoS One. 2012;7(5):e37940. (PDF)
  • Quaglino D, Bergamini G, Croce A, Boraldi F, Barbieri D, Caroli A, et al. Cell behavior and cell-matrix interactions of human palmar aponeurotic cells in vitro. J Cell Physiol. 1997;173(3):415-22. (PDF)
  • Ratajczak-Wielgomas K, Gosk J, Rabczynski J, Augoff K, Podhorska-Okolow M, Gamian A, et al. Expression of MMP-2, TIMP-2, TGF-beta1, and decorin in Dupuytren’s contracture. Connect Tissue Res. 2012;53(6):469-77. (PDF)
  • Raykha C, Crawford J, Gan BS, Fu P, Bach LA, O’Gorman DB. IGF-II and IGFBP-6 regulate cellular contractility and proliferation in Dupuytren’s disease. Biochim Biophys Acta. 2013;1832(10):1511-9. (PDF)
  • Satish L. Cytokine Targeted Therapy for Dupuytren’s Disease. EBioMedicine. 2018;34:14-5. (PDF)
  • Satish L, O’Gorman DB, Johnson S, Raykha C, Gan BS, Wang JH, et al. Increased CCT-eta expression is a marker of latent and active disease and a modulator of fibroblast contractility in Dupuytren’s contracture. Cell Stress Chaperones. 2013;18(4):397-404. (PDF)
  • Sayadi LR, Alhunayan D, Sarantopoulos N, Kong C, Condamoor S, Sayadi J, et al. The Molecular Pathogenesis of Dupuytren Disease: Review of the Literature and Suggested New Approaches to Treatment. Ann Plast Surg. 2019;83(5):594-600. (PDF)
  • Shih B, Wijeratne D, Armstrong DJ, Lindau T, Day P, Bayat A. Identification of biomarkers in Dupuytren’s disease by comparative analysis of fibroblasts versus tissue biopsies in disease-specific phenotypes. J Hand Surg Am. 2009;34(1):124-36. (PDF)
  • Shin SS, Liu C, Chang EY, Carlson CS, Di Cesare PE. Expression of bone morphogenetic proteins by Dupuytren’s fibroblasts. J Hand Surg Am. 2004;29(5):809-14. (PDF)
  • Tan K, Brasch HD, van Schaijik B, Armstrong JR, Marsh RW, Davis PF, et al. Expression and Localization of Cathepsins B, D, and G in Dupuytren’s Disease. Plast Reconstr Surg Glob Open. 2018;6(2):e1686. (PDF)
  • Townley WA, Cambrey AD, Khaw PT, Grobbelaar AO. Matrix metalloproteinase inhibition reduces contraction by dupuytren fibroblasts. J Hand Surg Am. 2008;33(9):1608-16. (PDF)
  • Ulrich D, Hrynyschyn K, Pallua N. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in sera and tissue of patients with Dupuytren’s disease. Plast Reconstr Surg. 2003;112(5):1279-86. (PDF)
  • Ulrich D, Ulrich F, Piatkowski A, Pallua N. Expression of matrix metalloproteinases and their inhibitors in cords and nodules of patients with Dupuytren’s disease. Arch Orthop Trauma Surg. 2009;129(11):1453-9. (PDF)
  • van Beuge MM, Ten Dam EJ, Werker PM, Bank RA. Wnt pathway in Dupuytren disease: connecting profibrotic signals. Transl Res. 2015;166(6):762-71 e3. (PDF)
  • Verhoekx JSN, Verjee LS, Izadi D, Chan JKK, Nicolaidou V, Davidson D, et al. Isometric contraction of Dupuytren’s myofibroblasts is inhibited by blocking intercellular junctions. J Invest Dermatol. 2013;133(12):2664-71. (PDF)
  • Verjee LS, Midwood K, Davidson D, Eastwood M, Nanchahal J. Post-transcriptional regulation of alpha-smooth muscle actin determines the contractile phenotype of Dupuytren’s nodular cells. J Cell Physiol. 2010;224(3):681-90. (PDF)
  • Verjee LS, Verhoekx JS, Chan JK, Krausgruber T, Nicolaidou V, Izadi D, et al. Unraveling the signaling pathways promoting fibrosis in Dupuytren’s disease reveals TNF as a therapeutic target. Proc Natl Acad Sci U S A. 2013;110(10):E928-37. (PDF)
  • Viil J, Maasalu K, Maemets-Allas K, Tamming L, Lohmussaar K, Tooming M, et al. Laminin-rich blood vessels display activated growth factor signaling and act as the proliferation centers in Dupuytren’s contracture. Arthritis Res Ther. 2015;17:144. (PDF)
  • Wang JP, Yu HM, Chiang ER, Wang JY, Chou PH, Hung SC. Corticosteroid inhibits differentiation of palmar fibromatosis-derived stem cells (FSCs) through downregulation of transforming growth factor-beta1 (TGF-beta1). PLoS One. 2018;13(6):e0198326. (PDF)
  • Wilkinson JM, Davidson RK, Swingler TE, Jones ER, Corps AN, Johnston P, et al. MMP-14 and MMP-2 are key metalloproteases in Dupuytren’s disease fibroblast-mediated contraction. Biochim Biophys Acta. 2012;1822(6):897-905. (PDF)
  • Williams LM, McCann FE, Cabrita MA, Layton T, Cribbs A, Knezevic B, et al. Identifying collagen VI as a target of fibrotic diseases regulated by CREBBP/EP300. Proc Natl Acad Sci U S A. 2020. (PDF)
  • Williamson K, Cooper G, Lee KJ, Beamish EL, Simpson D, Carter A, et al. Active synthesis of collagen (I) homotrimer and matrisomal proteins in Dupuytren’s fibrosis. bioRxiv preprint 2020. (PDF)
  • Zhang AY, Fong KD, Pham H, Nacamuli RP, Longaker MT, Chang J. Gene expression analysis of Dupuytren’s disease: the role of TGF-beta2. J Hand Surg Eur Vol. 2008;33(6):783-90. (PDF)
  • Zhou C, Zeldin Y, Baratz ME, Kathju S, Satish L. Investigating the effects of Pirfenidone on TGF-beta1 stimulated non-SMAD signaling pathways in Dupuytren’s disease -derived fibroblasts. BMC Musculoskelet Disord. 2019;20(1):135. (PDF)